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Radu Ioan Boţ ∗ Sorin-Mihai Grad † Gert Wanka ‡

Abstract. We give new regularity conditions for convex optimization prob-
lems in separated locally convex spaces. We completely characterize the stable
strong and strong Fenchel-Lagrange duality. Then we give similar statements for
the case when a solution of the primal problem is assumed as known, obtaining
complete characterizations for the so-called total and, respectively, stable total
Fenchel-Lagrange duality. For particular settings the conditions we consider turn
into some constraint qualifications already used by different authors, like Farkas-
Minkowski CQ, locally Farkas-Minkowski CQ and basic CQ and we rediscover
and improve some recent results in the literature.
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1 Introduction

To a convex optimization problem

(P ) inf
x∈U,

g(x)∈−C

f(x),

one can attach different dual problems. Usually the classical Lagrange dual prob-
lem is considered, but the recently introduced Fenchel-Lagrange-type duals gather
more and more attention. These duals can be obtained via perturbations or by
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constructing Fenchel dual problems to the infimum problem that appears in the
formulation of the Lagrange dual. In the recent paper [1] the authors have dealt
with both Lagrange and Fenchel-Lagrange duality, giving weak conditions that
ensure strong duality and, respectively, completely characterizing the so-called
stable strong duality.

In another recent paper [2] we went further, completely characterizing via
subdifferentials the so-called total Lagrange duality, namely the situation when
there is strong duality, but moreover a solution of the primal problem is assumed
to be known, for all the convex optimization problems for which the objective
functions satisfy some weak conditions. There we have also completely charac-
terized via subdifferentials the stable total Lagrange duality and via epigraphs
the strong Lagrange duality for all the convex optimization problems with the
objective functions fulfilling some weak hypotheses.

In this paper we extend the investigations and results to three types of
Fenchel-Lagrange-type dual problems one can introduce to (P ). New complete
characterizations via epigraphs are given for stable strong and strong duality,
respectively via subdifferentials for stable total and total duality for each type
of Fenchel-Lagrange dual problem we consider. The conditions we use general-
ize the constraint qualifications called Farkas-Minkowski (FM), locally Farkas-
Minkowski (LFM) and the basic constraint qualification (BCQ) treated in works
like [8–10,12,13,16,17,21]. We also show how our results generalize some recent
ones from [5, 8, 10, 21]. The conditions we consider in this paper belong to the
recently introduced class of so-called closedness type conditions and they are
weaker than the generalized interiority type regularity conditions, as it is proved
for instance in [4]. Let us also mention that, unlike most of the papers in locally
convex spaces with topological assumptions on the functions, we consider the
constraint function C-epi-closed, neither C-lower semicontinuous as introduced
in [19], nor star C-lower semicontinuous as in [10, 15]. Thus we work in a more
general framework. An example we gave in [2] sustains this option.

The paper is organized as follows. In order to make the paper self-contained,
we dedicate Section 2 to the necessary preliminaries. In Section 3 we deal
with strong and stable strong Fenchel-Lagrange duality, completely character-
izing them via conditions involving epigraphs. Section 4 is dedicated to similar
characterizations, this time for total and stable total duality and the equiva-
lent conditions use subdifferentials. Then we give optimality conditions for the
problem (P ). A short conclusive section closes the paper.

2 Preliminaries

Consider two separated locally convex vector spaces X and Y and their contin-
uous dual spaces X∗ and Y ∗, endowed with the weak∗ topologies w(X∗, X) and
w(Y ∗, Y ), respectively. Let the nonempty closed convex cone C ⊆ Y and its
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dual cone C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ Y } be given, where we denote by
〈y∗, y〉 = y∗(y) the value at y of the continuous linear functional y∗. On Y we
consider the partial order induced by C, ”≤C”, defined by z ≤C y ⇔ y − z ∈ C,
z, y ∈ Y . To Y we attach a greatest element with respect to ”≤C” which does
not belong to Y denoted by ∞Y and let Y • = Y ∪ {∞Y }. Then for any
y ∈ Y • one has y ≤C ∞Y and we consider on Y • the following operations:
y +∞Y = ∞Y + y = ∞Y and t · ∞Y = ∞Y for all y ∈ Y and all t ≥ 0. Denote
also the set of nonnegative real numbers by R+ = [0, +∞).

Given a subset U of X, by cl(U) we denote its closure in the corresponding
topology, its boundary by bd(U), while its indicator function δU : X → R =
R∪{±∞} and, respectively, support function σU : X∗ → R are defined as follows

δU(x) =

{
0, if x ∈ U,
+∞, otherwise,

and σU(x∗) = sup
x∈U

〈x∗, x〉.

Next we give some notions regarding functions.

For a function f : X → R we have

· the domain: dom(f) = {x ∈ X : f(x) < +∞},

· the epigraph: epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

· the conjugate regarding the set U ⊆ X: f ∗U : X∗ → R given by f ∗U(x∗) =
sup{〈x∗, x〉 − f(x) : x ∈ U},

· f is proper : f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅,

· the subdifferential of f at x, where f(x) ∈ R: ∂f(x) = {x∗ ∈ X∗ : f(u) −
f(x) ≥ 〈x∗, u− x〉 ∀u ∈ X} .

One can easily notice that δ∗U = σU . When U = X the conjugate regarding
the set U is the classical (Fenchel-Moreau) conjugate function of f denoted by f ∗.
For a function and its conjugate regarding some set U ⊆ X the Young-Fenchel
inequality holds

f ∗U(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ U ∀x∗ ∈ X∗.

Given a proper function f : X → R, for all x ∈ dom(f) and x∗ ∈ X∗ one has

x∗ ∈ ∂f(x) ⇔ f ∗(x∗) + f(x) = 〈x∗, x〉.

For two proper functions f, g : X → R, we always have ∂f(x) + ∂g(x) ⊆ ∂(f +
g)(x) ∀x ∈ dom(f) ∩ dom(g). The infimal convolution of f and g is defined by

f�g : X → R,
(
f�g

)
(a) = inf{f(x) + g(a− x) : x ∈ X},
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and it is said to be exact at some a ∈ X when there is an x ∈ X such that(
f�g

)
(a) = f(x) + g(a− x). Let us also recall a result from [3], needed later.

Lemma 1. Let f, g : X → R be proper, convex and lower semicontinuous
functions, with the intersection of their domains nonempty. Then

epi((f + g)∗) = cl(epi(f ∗�g∗)) = cl(epi(f ∗) + epi(g∗)).

There are notions given for functions with extended real values that can be
formulated also for functions having their ranges in infinite dimensional spaces.

For a function g : X → Y • one has

· the domain: dom(g) = {x ∈ X : g(x) ∈ Y },

· g is proper : dom(g) 6= ∅,

· g is C-convex : g(tx + (1− t)y) ≤C tg(x) + (1− t)g(y) ∀x, y ∈ X ∀t ∈ [0, 1],

· for λ ∈ C∗, (λg) : X → R, (λg)(x) = 〈λ, g(x)〉 for x ∈ dom(g) and
(λg)(x) = +∞ otherwise,

· the C-epigraph epiC(g) = {(x, y) ∈ X × Y : y ∈ g(x) + C},

· g is C-epi-closed if epiC(g) is closed,

· g is star C-lower-semicontinuous at x ∈ X: (λg) is lower-semicontinuous
at x ∀λ ∈ C∗,

· for a subset W ⊆ Y : g−1(W ) = {x ∈ X : ∃z ∈ W s.t. g(x) = z}.

Remark 1. There are other extensions of lower semicontinuity for functions
taking values in infinite dimensional spaces used in convex optimization, we men-
tion here just the C-lower semicontinuity, introduced in [19] and refined in [6].
Between these types of generalized lower semicontinuity there is the following
relation (cf. [15,18,19])

C-lower semicontinuity ⇒ star C-lower semicontinuity ⇒ C-epi-closedness.

The opposite implications do not always hold, see [2] for an example of a
C-convex function, which is C-epi-closed, but not star C-lower semicontinuous
or [19] for a function which is C-epi-closed but not C-lower semicontinuous (in
this example the function is not C-convex). We work here with C-epi-closedness,
i.e. in the most general framework.

The following statement was given in [14] and [15] under the assumption of
continuity, respectively star C-lower semicontinuity, alongside C-convexity, for
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the vector function involved. We give it here in a more general way, by consider-
ing the function g C-convex and only C-epi-closed.

Lemma 2. Let U ⊆ X be a nonempty convex closed set and a proper, C-
convex and C-epi-closed function g : X → Y • such that U ∩ g−1(−C) 6= ∅. Then

epi(σU∩g−1(−C)) = cl(epi(σU) + ∪
λ∈C∗

epi((λg)∗)) = cl
(
∪

λ∈C∗
epi((λg)∗U)

)
.

Proof. The first equality was proven in Lemma 1 in [2]. For each λ ∈ C∗

one has (λg)∗U(y) ≤ σU�(λg)∗(y) ∀y ∈ X∗, which yields epi(σU) + epi((λg)∗) ⊆
epi((λg)∗U), immediately followed by epi(σU∩g−1(−C)) ⊆ cl(∪λ∈C∗ epi((λg)∗U)). On
the other hand, δU∩g−1(−C)(x) ≥ δU(x)+(λg)(x) ∀x ∈ X ∀λ ∈ C∗, thus δ∗U∩g−1(−C)

(y) ≤ (δU+(λg))∗(y) ∀y ∈ X∗ ∀λ ∈ C∗, which yields epi(σU∩g−1(−C)) ⊇ epi((λg)∗U)
∀λ ∈ C∗. Consequently, we obtain epi(σU∩g−1(−C)) ⊇ cl(∪λ∈C∗ epi((λg)∗U)), and
so we are done. �

Taking U = X this turns into the following characterization.

Corollary 1. Given the proper, C-convex and C-epi-closed function g : X →
Y • fulfilling g−1(−C) 6= ∅, there is

epi(σg−1(−C)) = cl( ∪
λ∈C∗

epi((λg)∗)).

From the general case we get as special cases some results previously given
for semi-infinite systems of convex inequalities. This is the reason why we recall
some notations used in the literature on semi-infinite programming. Let T be a
possibly infinite index set and denote by RT the space of all functions x : T → R,
endowed with the product topology and with the operations being the usual
pointwise ones. For simplicity, denote xt = x(t) ∀x ∈ RT ∀t ∈ T . The dual space
of RT is (RT )∗, the space of generalized finite sequences λ = (λt)t∈T such that
λt ∈ R ∀t ∈ T , and with finitely many λt different from zero. The positive cone
in RT is RT

+ = {x ∈ RT : xt = x(t) ≥ 0 ∀t ∈ T}, and its dual is the positive cone
in (RT )∗, namely (RT

+)∗ = {λ = (λt)t∈T ∈ (RT )∗ : λt ≥ 0 ∀t ∈ T}.
In order to avoid repetitions we introduce here the framework and the opti-

mization problems we will use later in the paper.

The spaces X and Y are defined like in the beginning of the section, the lat-
ter being ordered by the nonempty convex closed cone C. Let U be a nonempty
convex closed subset of X. Consider the proper, C-convex and, unless otherwise
specified, C-epi-closed function g : X → Y • such that the set A = U∩g−1(−C) =
{x ∈ U : g(x) ∈ −C} is nonempty. It is clear from the way it is defined that
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A is convex and closed. For a proper convex and lower semicontinuous function
f : X → R which satisfies A ∩ dom(f) 6= ∅ consider the optimization problem

(P ) inf
x∈A

f(x).

For any p ∈ X∗ we also consider the linearly perturbed optimization problem

(Pp) inf
x∈A

[f(x) + 〈p, x〉].

To (Pp) one can attach the Lagrange dual problem

(DL
p ) sup

λ∈C∗
inf
x∈U

[f(x) + 〈p, x〉+ (λg)(x)].

Let us focus on the inner minimization problem that appears in (DL
p ). For

any λ ∈ C∗ it can be rewritten as

inf
x∈X

[f(x) + 〈p, x〉+ δU(x) + (λg)(x)].

To this problem one can attach different Fenchel dual problems, obtaining via
(DL

p ) different Fenchel-Lagrange-type dual problems to (Pp). The name Fenchel-
Lagrange is given to the following dual problems because they are “combinations”
of the classical Fenchel and Lagrange dual problems. Keeping together f and δU ,
respectively (λg) and 〈p, ·〉, one gets the following Fenchel dual problem to the
minimization problem given above supβ∈X∗ [−f ∗U(β) − (λg)∗(−p − β)] and the
Fenchel-Lagrange-type dual problem obtained in this way to (Pp) is

(D̃p) sup
λ∈C∗,
β∈X∗

{−f ∗U(β)− (λg)∗(−p− β)}.

When (λg), δU and 〈p, ·〉 remain together, the Fenchel-Lagrange-type dual
problem to (Pp) becomes

(D̄p) sup
λ∈C∗,
β∈X∗

{−f ∗(β)− (λg)∗U(−p− β)}.

Finally, when f and (λg) are separated, while 〈p, ·〉 and δU stay together, the
following Fenchel-Lagrange-type dual problem to (Pp) is obtained

(Dp) sup
λ∈C∗,

β,α∈X∗

{−f ∗(β)− σU(−p− α)− (λg)∗(α− β)}.

For p = 0 we call these problems (D̃), (D̄) and, respectively, (D) and they
are Fenchel-Lagrange-type dual problems to (P ). These dual problems can be
obtained also by means of the perturbation theory. For more on this subject
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see [4].

Remark 2. When (λg) and f and, respectively, δU and 〈p, ·〉, are grouped
together one can obtain also the following Fenchel-Lagrange-type dual problem
to (Pp)

(D′
p) sup

λ∈C∗,
β∈X∗

{−(f + (λg))∗(β)− σU(−p− β)}.

This dual will not be mentioned further in the paper, but one can notice that
results similar to the ones obtained for the other three dual problems can be given
for (D′

p), too.

For the optimization problem (P ) we denote by v(P ) its optimal objective
value and this notation is extended to all the optimization problems we use in
this paper. There is always weak duality for (Pp) and its duals, i.e. the optimal
objective value of (Pp) is always greater than or equal to the optimal objective
values of each of its duals. For each p ∈ X∗, the optimal objective values of the
problems considered above fulfill the following inequalities

v(Dp) ≤
v(D̄p)

v(D̃p)
≤ v(DL

p ) ≤ v(Pp).

Below there are some examples, given in case p = 0, where the inequalities
involving the optimal objective values of the three Fenchel-Lagrange-type dual
problems are strictly fulfilled.

Example 1. (see [20]) Let X = R2, equipped with the Euclidean norm ‖(·, ·)‖,
Y = R2, C = R2

+ and the functions f : R2 → R and g : R2 → (R2)• =
R2 ∪ {∞R2}. Denote the closed ball centered in the origin with radius λ > 0 by
Bλ = {(x1, x2) ∈ R2 : ‖(x1, x2)‖ ≤ λ}.

(i) Let U = B1 − (1, 0), f(x1, x2) = x1 + x2 ∀(x1, x2) ∈ R2 and g(x1, x2) =
(x1, x2) if (x1, x2) ∈ B1+(1, 0) and g(x1, x2) = ∞R2 otherwise. For them we
have f ∗ = δ{(1,1)}, σU(y1, y2) = ‖(y1, y2)‖−y1, f ∗U(y1, y2) = σU(y1−1, y2−1),
(λg)∗(y1, y2) = ‖(y1−λ1, y2−λ2)‖+y1−λ1 and (λg)∗U(y1, y2) = 0 ∀(y1, y2) ∈
R2, where λ = (λ1, λ2) ∈ R2

+. With these conjugates, we obtain v(D) =

v(D̃) = 1−
√

2 < 0 = v(D̄).

(ii) Consider the real numbers a and b such that 0 < b ≤ a. Take U =
Ba − (a, 0), f(x1, x2) = δBb+(b,0)(x1, x2) + x1 + x2 and g(x1, x2) = (0, 0)
∀(x1, x2) ∈ R2. For every (y1, y2) ∈ R2 we have f ∗(y1, y2) = b‖(y1, y2) −
(1, 1)‖+ b(y1− 1), σU(y1, y2) = a‖(y1, y2)‖− ay1, f ∗U(y1, y2) = 0, and for all
λ ∈ R2

+ (λg)∗ = δ{(0,0)} and (λg)∗U = σU . With these conjugates, we obtain

v(D) = v(D̄) = 1−
√

2 < 0 = v(D̃).
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Remark 3. From these examples we see that in general no order can be es-
tablished between v(D̄) and v(D̃).

Let us recall that by strong duality we understand the situation when the
optimal objective values of the primal and dual problem coincide and the dual
problem has an optimal solution. When there is strong duality and the primal
problem has an optimal solution, too, we say that we have total duality. With
stable strong/total duality we refer to the situation when there is strong/total
duality for all the optimization problems obtained by linearly perturbing the
objective function of the primal problem. We also write min (max) instead of inf
(sup) when the infimum (supremum) is attained.

3 New characterizations for strong Fenchel-La-

grange duality

We introduce first some closedness conditions which completely characterize sta-
ble strong Fenchel-Lagrange duality regarding an optimization problem of the
type (P ). Let us consider the following regularity conditions for f and A

(C1(f,A)) epi(f ∗) + epi(σU) + ∪
λ∈C∗

epi((λg)∗) is closed,

(C2(f,A)) epi(f ∗) + ∪
λ∈C∗

epi(((λg) + δU)∗) is closed

and

(C3(f,A)) epi((f + δU)∗) + ∪
λ∈C∗

epi((λg)∗) is closed.

As one can notice, these regularity conditions require the closedness of some
sets constructed with the epigraphs of the conjugates of the functions involved in
the primal optimization problem (P ). Such conditions are said to be of closedness
type. Despite being recently introduced, conditions belonging to this class were
treated in papers like [1–5, 8, 10, 14–16], because they proved to be weaker than
the classical generalized interior type regularity conditions considered so far in
the literature for the same kinds of convex optimization problems.

Because f and δA are proper, convex and lower semicontinuous, one has by
Lemma 1 epi(f + δA)∗ = cl(epi(f ∗) + epi(σA)). By Lemma 2, this is further
equal to cl(epi(f ∗)+cl(epi(σU)+∪λ∈C∗ epi((λg)∗))), which is actually cl(epi(f ∗)+
epi(σU) + ∪λ∈C∗ epi ((λg)∗)). Thus

epi(f + δA)∗ = cl
(

epi(f ∗) + epi(σU) + ∪
λ∈C∗

epi((λg)∗)
)
. (1)
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On the other hand, using Lemma 2 and the considerations in its proof we get

epi(f ∗) + epi(σU) + ∪
λ∈C∗

epi((λg)∗) ⊆ epi(f ∗) + ∪
λ∈C∗

epi((λg)∗U)

⊆ epi(f ∗) + epi(σA) ⊆ epi(f + δA)∗,

which yields via (1)

cl(epi(f ∗)+epi(σU)+ ∪
λ∈C∗

epi((λg)∗))=cl(epi(f ∗)+ ∪
λ∈C∗

epi((λg)∗U))=epi(f+δA)∗,

thus the fulfillment of (C1(f,A)) guarantees the satisfaction of (C2(f,A)).
We also know that Lemma 1 states that epi((f +δU)∗) = cl(epi(f ∗)+epi(σU)),

which yields

epi(f ∗) + epi(σU) + ∪
λ∈C∗

epi((λg)∗) ⊆ epi((f + δU)∗) + ∪
λ∈C∗

epi((λg)∗).

Moreover, via (1) one has

cl(epi((f + δU)∗)+ ∪
λ∈C∗

epi((λg)∗))=cl(cl(epi(f ∗)+epi(σU))+ ∪
λ∈C∗

epi((λg)∗))

= cl(epi(f ∗) + epi(σU) + ∪
λ∈C∗

epi((λg)∗)) = epi(f + δA)∗.

It is obvious now that the validity of (C1(f,A)) implies also the satisfaction of
(C3(f,A)). Moreover, analogously it can be shown that when any of the three
conditions we introduced above is valid, so is the following regularity condition
used in [2]

(C(f,A)) ∪
λ∈C∗

epi((f + (λg) + δU)∗) is closed.

The condition (C1(f,A)) was used in [5] in order to characterize the opti-
mal solutions of the problem (P ), while the condition (C2(f,A)) was introduced
in [1] for stable Fenchel-Lagrange duality. These regularity conditions completely
characterize the stable Fenchel-Lagrange duality for (P ) and the mentioned dual
problems as follows.

Theorem 1. The set A and the proper convex lower semicontinuous function
f : X → R satisfy condition (C1(f,A)) if and only if there is stable strong duality
for the problems (P ) and (D), i.e. one has strong duality for the pair of problems
(Pp) and (Dp) for all p ∈ X∗.

Proof. “⇒” Let p ∈ X∗. It is known that weak duality for the pair of
problems (Pp) and (Dp) always holds, namely v(Pp) ≥ v(Dp). If v(Pp) = −∞,
then we get strong duality for (Pp) and (Dp) via weak duality, otherwise v(Pp) ∈
R. We have v(Pp) = −(f + δA)∗(−p), thus (−p,−v(Pp)) ∈ epi(f + δA)∗.
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Because of (1), the satisfaction of (C1(f,A)) guarantees the existence of some
λ̄ ∈ C∗, β̄, ᾱ ∈ X∗ such that (β̄, f ∗(β̄)) ∈ epi(f ∗), (ᾱ − β̄, (λ̄g)∗(ᾱ − β̄)) ∈
epi((λ̄g)∗) and (−p− ᾱ, σU(−p− ᾱ)) ∈ epi(σU), fulfilling moreover

f ∗(β̄) + (λ̄g)∗(ᾱ− β̄) + σU(−p− ᾱ) ≤ −v(Pp).

By weak duality for (Pp) and (Dp) we obtain

v(Pp) = max
λ∈C∗,

β,α∈X∗

{−f ∗(β) + (λg)∗(α− β)− σU(−p− α)},

i.e. strong duality for the pair of problems (Pp) and (Dp). As p ∈ X∗ has been
arbitrarily chosen we obtain that there is stable strong duality for the problems
(P ) and (D).

“⇐” Take some (p, v) ∈ epi(f + δA)∗. Because v(P−p) = −(f + δA)∗(p), we
have −v(P−p) ≤ v. There is strong duality for the problems (P−p) and (D−p),
i.e. there are some λ̄ ∈ C∗, β̄, ᾱ ∈ X∗ such that

f ∗(β̄) + (λ̄g)∗(ᾱ− β̄) + σU(p− ᾱ) = −v(P−p) ≤ v.

Consequently, (β̄, f ∗(β̄)) ∈ epi(f ∗), (ᾱ − β̄, (λ̄g)∗(ᾱ − β̄)) ∈ epi((λ̄g)∗) and
(p − ᾱ, v − f ∗(β̄) − (λ̄g)∗(ᾱ − β̄)) ∈ epi(σU). Together, these yield (p, v) ∈
epi(f ∗)+epi((λ̄g)∗)+epi(σU). Since (p, v) was arbitrarily chosen in epi(f + δA)∗,
by (1) we obtain the validity of (C1(f,A)). �

Analogously one can prove also the following two statements.

Theorem 2. (see [1]) The set A and the proper convex lower semicontinuous
function f : X → R satisfy condition (C2(f,A)) if and only if there is stable
strong duality for the problems (P ) and (D̄), i.e. one has strong duality for the
pair of problems (Pp) and (D̄p) for all p ∈ X∗.

Theorem 3. The set A and the proper convex lower semicontinuous function
f : X → R satisfy condition (C3(f,A)) if and only if there is stable strong duality

for the problems (P ) and (D̃), i.e. one has strong duality for the pair of problems

(Pp) and (D̃p) for all p ∈ X∗.

Remark 4. In the following we consider f not necessarily lower semicontinu-
ous, respectively g not necessarily C-epi-closed. When f is continuous at some
point of U , due to Theorem 2.8.7(iii) in [22] and Proposition 2.2 in [3] we get
that (C1(f,A)) is equivalent to (C3(f,A)), while when f is continuous at some
point of U ∩ dom(g) (C2(f,A)) becomes condition (C(f,A)) used in [2]. On the
other hand, when g is continuous at some point of U , (C1(f,A)) is equivalent to
(C2(f,A)), while when g is continuous at some point of U ∩ dom(f) (C3(f,A))
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becomes actually condition (C(f,A)) in [2].

If we take f(x) = 0 ∀x ∈ X, conditions (C1(f,A)) and (C3(f,A)) collapse into

(C1(0,A)) epi(σU) + ∪
λ∈C∗

epi((λg)∗) is closed in the product topology of

(X∗, w(X∗, X))× R.

In the literature (C1(0,A)) is known as the closed cone constraint qualifica-
tion (CCCQ). It was introduced in [14] as a weak condition for strong Lagrange
duality for problems of type (P ), while in [4] it was shown that it guarantees
under some additional assumptions (for instance condition (FRC) which will be
used later in this paper) also strong Fenchel-Lagrange duality for such problems.
Note also that when g is continuous at some point of A, (CCCQ) is equivalent
to saying that ∪λ∈C∗ epi((λg) + δU)∗ is closed, i.e. condition (C(0,A)) in [2].
Meanwhile, it is obvious that when f(x) = 0 ∀x ∈ X, conditions (C2(0,A)) and
(C(0,A)) from [2] coincide.

In the following statement we completely characterize by using the condition
(CCCQ) the strong duality for the problem of minimizing a linear continuous
functional over A and its Fenchel-Lagrange-type dual problem. For the case
g : X → Y continuous the following statement rediscovers Theorem 3.2 in [4].
Here it follows directly from Theorem 1.

Corollary 2. A fulfills the condition (CCCQ) if and only if for each p ∈ X∗

one has

inf
x∈A

〈p, x〉 = max
λ∈C∗,
α∈X∗

{−σU(−p− α)− (λg)∗(α)} = max
λ∈C∗,
α∈X∗

{−σU(−α)− (λg)∗(α− p)}.

Remark 5. Note also that for f everywhere equal to 0 Theorem 2 rediscovers
as a special case Corollary 1 in [2].

Similar characterizations are available also for the strong duality for (P ) and
its Fenchel-Lagrange-type dual (D). Because in its formulation appear only the
constraints of (P ), we can say that (CCCQ) is a constraint qualification. Though,
(CCCQ) is not enough to ensure strong duality for (P ) and (D) and in order to
achieve it one has to introduce some weak assumptions on the objective function
f , too. Let us consider the following condition (cf. [5, 8, 10])

(CC) epi(f ∗) + epi(σA) is closed.

According to [3], if one removes the assumption of lower semicontinuity from
f and takes it continuous at some point of A, then condition (CC) is automati-
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cally satisfied.

Theorem 4. A fulfills the condition (CCCQ) if and only if for each proper
convex lower semicontinuous function f : X → R which satisfies A∩dom(f) 6= ∅
and (CC) one has strong duality between (P ) and (D), i.e.

inf
x∈A

f(x) = max
λ∈C∗,

β,α∈X∗

{−f ∗(β)− σU(−α)− (λg)∗(α− β)}.

Proof. The sufficiency follows from the previous corollary by taking f linear
and continuous. To prove the necessity take first some function f which fulfills
the hypothesis.

If v(P ) = −∞ weak duality for (P ) and (D) yields that we are done, oth-
erwise we have v(P ) ∈ R. It is obvious that (f + δA)∗(0) = −v(P ). Further
we have (0,−v(P )) ∈ epi((f + δA)∗). Because of (CC) and Lemma 1, there
is a β̄ ∈ X∗ such that f ∗(β̄) + σA(−β̄) = −v(P ), which can be rewritten as
infx∈A〈β̄, x〉 = v(P ) + f ∗(β̄). By Corollary 2, (CCCQ) yields that there are
some λ̄ ∈ C∗ and ᾱ ∈ X∗ such that infx∈A〈β̄, x〉 = −σU(−ᾱ) − (λ̄g)∗(ᾱ − β̄).
Consequently, −f ∗(β̄) − σU(−ᾱ) − (λ̄g)∗(ᾱ − β̄) = v(P ). By weak duality one
obtains that the necessity is proven, i.e. the optimal objective values of (P ) and
(D) coincide and (λ̄, β̄, ᾱ) solves (D). �

Before closing this section we show that the results we gave so far general-
ize some characterizations of the strong duality for optimization problems with
(possibly) infinitely many real inequality constraints via the so-called Farkas-
Minkowski property (FM) of a system of (infinitely many) convex or linear in-
equalities. Such assertions were treated in papers dealing with semi-infinite pro-
gramming problems, like [8,10,11]. Note that (FM) is a special case of (CCCQ).

Remark 6. When T is a possibly infinite index set consider the family of
functions gt : X → R, each of them assumed to be proper, convex and continuous
at some point of {x ∈ U : gt(x) ≤ 0 ∀t ∈ T}. Note that, unlike [8, 10], we do
not ask the functions gt, t ∈ T , to be also lower semicontinuous. Take C = RT

+,
denote by ∞RT the element attached to RT as the greatest with respect to the
order induced by the positive cone, and let (RT )• = RT ∪ {∞RT }. Consider the
function

g : X → (RT )•, g(x) =

{
(gt(x))t∈T , if x ∈ ∩

t∈T
dom(gt),

∞RT , otherwise.

Note that in this case we do not assume g to be RT
+-epi-closed. One can easily

show that g is proper and RT
+-convex. In this situation the condition (CCCQ)

becomes, due to Theorem 2.8.7(iii) in [22] and Proposition 2.2 in [3], equivalent
to (C(0,A)) from [2]. By Remark 4 in [2] the latter is in this particular instance

12



equivalent to saying that epi(σU) + cone(∪t∈T epi(g∗t )) is closed, which is actually
the so-called condition Farkas-Minkowski (FM) in [10].

Remark 7. One can notice that when taking g as in Remark 6, Corollary 2
and Theorem 4 improve Theorem 4.1 in [10] in the sense that the results given
there remain true also when removing the lower semicontinuity assumption from
the functions gt, t ∈ T .

4 New characterizations for total Fenchel-La-

grange duality

It is also interesting to study via duality the situation when the primal prob-
lem is assumed to have an optimal solution. Using the terminology from [2], in
this case we denote strong duality by total duality. For a proper convex lower
semicontinuous function f : X → R and the set A we introduce the following
regularity conditions at x ∈ A ∩ dom(f)

(GBCQ1(f,A)) ∂(f + δA)(x) = ∂f(x) + ∂δU(x) + ∪
λ∈C∗,

(λg)(x)=0

∂(λg)(x),

(GBCQ2(f,A)) ∂(f + δA)(x) = ∂f(x) + ∪
λ∈C∗,

(λg)(x)=0

∂(δU + (λg))(x)

and

(GBCQ3(f,A)) ∂(f + δA)(x) = ∂(f + δU)(x) + ∪
λ∈C∗,

(λg)(x)=0

∂(λg)(x).

We say that f and A satisfy the condition (GBCQi(f,A)) when (GBCQi(f,A))
is valid for all x ∈ A ∩ dom(f), i = 1, 2, 3.

Take x̄ ∈ A ∩ dom(f). Then one has

∂f(x̄) + ∂δU(x̄) + ∪
λ∈C∗,

(λg)(x̄)=0

∂(λg)(x̄) ⊆ ∂f(x̄) + ∪
λ∈C∗,

(λg)(x̄)=0

∂(δU + (λg))(x̄) (2)

and

∂f(x̄) + ∂δU(x̄) + ∪
λ∈C∗,

(λg)(x̄)=0

∂(λg)(x̄) ⊆ ∂(f + δU)(x̄) + ∪
λ∈C∗,

(λg)(x̄)=0

∂(λg)(x̄). (3)

Let p ∈ X∗ such that p ∈ ∂(f + δU)(x̄) + ∪ λ∈C∗,
(λg)(x̄)=0

∂(λg)(x̄). Thus, there is

a λ̄ ∈ C∗ such that (λ̄g)(x̄) = 0 fulfilling p ∈ ∂(f + δU)(x̄) + ∂(λ̄g)(x̄). Con-
sequently, there is a β̄ ∈ ∂(f + δU)(x̄) such that p − β̄ ∈ ∂(λ̄g)(x̄), which
means that for all x ∈ X one has f(x) + δU(x)− f(x̄)− δU(x̄) ≥ 〈β̄, x− x̄〉 and
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(λ̄g)(x)−(λ̄g)(x̄) ≥ 〈p−β̄, x−x̄〉. Summing these inequalities up and noticing that
δA(x) ≥ δU(x)+ (λ̄g)(x) ∀x ∈ X, we get f(x)+ δA(x)− f(x̄)− δA(x̄) ≥ 〈p, x− x̄〉
∀x ∈ X. This is nothing but p ∈ ∂(f + δA)(x̄), therefore the inclusion “⊇” in the
expression of (GBCQ3(f,A)) at x̄ is secured. Analogously one can prove that
“⊇” in the expression of (GBCQ2(f,A)) is valid at each x̄ ∈ A∩dom(f) and, via
(2), that “⊇” in the expression of (GBCQ1(f,A)) holds at each x̄ ∈ A∩dom(f),
too.

Remark 8. If (GBCQ1(f,A)) is fulfilled at any x̄ ∈ A ∩ dom(f) then

∂(f + δA)(x̄) ⊆ ∂f(x̄) + ∂δU(x̄) + ∪
λ∈C∗,

(λg)(x)=0

∂(λg)(x̄).

Hence, by (2) and (3) also (GBCQ2(f,A)) and (GBCQ3(f,A)) must be satisfied
at x̄. Moreover, one can verify in an analogous way that the fulfillment of any of
these conditions at x̄ ∈ A ∩ dom(f) guarantees the validity at x̄ of the following
condition used in [2]

(GBCQ(f,A)) ∂(f + δA)(x̄) = ∪
λ∈C∗,

(λg)(x̄)=0

∂(f + δU + (λg))(x̄).

We show that these conditions completely characterize the stable total duality
for (P ) and its Fenchel-Lagrange-type dual problems (D), (D̄) and (D̃).

Theorem 5. Let be given the proper convex lower semicontinuous function
f : X → R. A and f fulfill the condition (GBCQ1(f,A)) at x̄ ∈ A ∩ dom(f) if
and only if for each p ∈ X∗ for which the infimum over A of the function f +〈p, ·〉
is attained at x̄ one has total duality for (Pp) and (Dp), i.e.

f(x̄)+ 〈p, x̄〉 = min
x∈A

[f(x)+ 〈p, x〉] = max
λ∈C∗,

α,β∈X∗

{−f ∗(β)−σU(−p−α)− (λg)∗(α−β)}.

(4)

Proof. Let x̄ ∈ A ∩ dom(f). For a p ∈ X∗ it can be easily seen that x̄ is an
optimal solution of (Pp) if and only if 0 ∈ ∂(f +〈p, ·〉+δA)(x̄), which is equivalent
to −p ∈ ∂(f + δA)(x̄).

“⇒” Let p ∈ X∗ such that x̄ solves (Pp). Thus−p ∈ ∂(f+δA)(x̄). Because the
condition (GBCQ1(f,A)) is valid at x̄, one gets a λ̄ ∈ C∗ such that (λ̄g)(x̄) = 0
and −p ∈ ∂f(x̄) + ∂δU(x̄) + ∂(λ̄g))(x̄).

Thus there are some β̄ ∈ ∂f(x̄) and ᾱ ∈ ∂(λ̄g)(x̄) such that −p − ᾱ − β̄ ∈
∂δU(x̄), i.e. f(x̄) + f ∗(β̄) = 〈β̄, x̄〉, (λ̄g)∗(ᾱ) + (λ̄g)(x̄) = 〈ᾱ, x̄〉 and σU(−p− ᾱ−
β̄) + δU(x̄) = 〈−p− ᾱ− β̄, x̄〉. Note that δU(x̄) = (λ̄g)(x̄) = 0. Summing up the
equalities obtained above we get

f(x̄) + f ∗(β̄) + (λ̄g)∗(ᾱ) + σU(−p− ᾱ− β̄) = −〈p, x̄〉,
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which, taking into consideration the way p was chosen, can be rewritten as

v(Pp) = f(x̄) + 〈p, x̄〉 = −f ∗(β̄)− (λ̄g)∗(ᾱ)− σU(−p− ᾱ− β̄). (5)

Remark that the expression in the right-hand side of (5) is less than or equal to
v(Dp), thus we get v(Pp) ≤ v(Dp). Because the weak duality for the two problems
means that the latter inequality is satisfied also in the reverse direction, we get
v(Pp) = v(Dp). Moreover, by (5) we see that (λ̄, β̄, ᾱ− β̄) solves (Dp), therefore
(4) holds.

“⇐” Take now p ∈ ∂(f + δA)(x̄). By the considerations from the beginning
of the proof this means that x̄ is an optimal solution to (P−p). By (4) there are
some λ̄ ∈ C∗ and ᾱ, β̄ ∈ X∗ such that

f(x̄)− 〈p, x̄〉 = −f ∗(β̄)− σU(p− ᾱ)− (λ̄g)∗(ᾱ− β̄). (6)

By the Young-Fenchel inequality we have that the expression in the right-hand
side of (6) is at most f(x̄) + (λ̄g)(x̄) + δU(x̄)− 〈p, x̄〉. As δU(x̄) = 0, this implies
(λ̄g)(x̄) ≥ 0. On the other hand, (λ̄g)(x̄) ≤ 0 because of the feasibility of x̄ to
(P−p). Consequently, (λ̄g)(x̄) = 0. Using this, we can rewrite (6) in the following
way (

f(x̄) + f ∗(β̄)− 〈β̄, x̄〉
)

+
(
δU(x̄) + σU(p− ᾱ)− 〈p− ᾱ, x̄〉

)
+

(
(λ̄g)(x̄) + (λ̄g)∗(ᾱ− β̄)− 〈ᾱ− β̄, x̄〉

)
= 0.

Applying the Young-Fenchel inequality for the functions involved above we get
that in each case it is fulfilled as equality, thus β̄ ∈ ∂f(x̄), ᾱ− β̄ ∈ ∂(λ̄g)(x̄) and
p− ᾱ ∈ ∂δU(x̄). The inclusion “⊆” in the expression of (GBCQ1(f,A)) at x̄ fol-
lows at once, and, since “⊇” holds, too, we obtain the validity of (GBCQ1(f,A)).
�

In an analogous way one can verify the next two theorems.

Theorem 6. Let be given the proper convex lower semicontinuous function
f : X → R. A and f fulfill the condition (GBCQ2(f,A)) at x̄ ∈ A ∩ dom(f) if
and only if for each p ∈ X∗ for which the infimum over A of the function f +〈p, ·〉
is attained at x̄ one has total duality for (Pp) and (D̄p).

Theorem 7. Let be given the proper convex lower semicontinuous function
f : X → R. A and f fulfill the condition (GBCQ3(f,A)) at x̄ ∈ A ∩ dom(f) if
and only if for each p ∈ X∗ for which the infimum over A of the function f +〈p, ·〉
is attained at x̄ one has total duality for (Pp) and (D̃p).

The following statements follow naturally.

Theorem 8. Let be given the proper convex lower semicontinuous function
f : X → R.
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(i) A and f fulfill the condition (GBCQ1(f,A)) if and only if for each p ∈ X∗

for which the infimum over A of the function f + 〈p, ·〉 is attained one has
total duality for (Pp) and (Dp).

(ii) A and f fulfill the condition (GBCQ2(f,A)) if and only if for each p ∈ X∗

for which the infimum over A of the function f + 〈p, ·〉 is attained one has
total duality for (Pp) and (D̄p).

(iii) A and f fulfill the condition (GBCQ3(f,A)) if and only if for each p ∈ X∗

for which the infimum over A of the function f + 〈p, ·〉 is attained one has

total duality for (Pp) and (D̃p).

Remark 9. Like in Remark 4, consider now f not necessarily lower semicon-
tinuous, respectively g not necessarily C-epi-closed. When f is continuous at
some point of U , (GBCQ1(f,A)) is equivalent to (GBCQ3(f,A)), while when
f is continuous at some point of U ∩ dom(g) (GBCQ2(f,A)) becomes condition
(GBCQ(f,A)) used in [2]. On the other hand, when g is continuous at some
point of U (GBCQ1(f,A)) is equivalent to (GBCQ2(f,A)), while when g is con-
tinuous at some point of U ∩dom(f) (GBCQ3(f,A)) becomes actually condition
(GBCQ(f,A)) in [2].

When f(x) = 0 for all x ∈ X, (GBCQ1(f,A)) and (GBCQ3 (f,A)) at some
x ∈ A turn both into a condition which generalizes the classical basic constraint
qualification at x

(GBCQ1(0,A)) ∂δA(x) = ∂δU(x) + ∪
λ∈C∗,

(λg)(x)=0

∂(λg)(x).

Remark 10. Note that (GBCQ2(0,A)) at x ∈ A is actually condition (GBCQ
(0,A)) at x from [2]. If g is continuous at some point of A, (GBCQ1(0,A)) co-
incides with (GBCQ(0,A)).

If the set A satisfies (GBCQ1(0,A)) for all x ∈ A we say that it fulfills
(GBCQ1(0,A)).

A direct consequence of Theorem 5 and also of Theorem 7 is the next result,
where the condition (GBCQ1(0,A)) at some x̄ ∈ A completely characterizes the
total Fenchel-Lagrange duality for optimization problems consisting in minimiz-
ing linear functionals that attain their minimum over A at x̄.

Corollary 3. A fulfills the condition (GBCQ1(0,A)) at x̄ ∈ A if and only if
for each p ∈ X∗ such that 〈p, ·〉 attains its minimum over A at x̄ one has

〈p, x̄〉 = min
x∈A

〈p, x〉 = max
λ∈C∗,
α∈X∗

{−σU(−p− α)− (λg)∗(α)}.
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Note that when f takes everywhere the value zero Theorem 5 collapses into
Theorem 6 in [2]. The next theorem completely characterizes via (GBCQ1(0,A))
at some x̄ ∈ A the strong duality for convex optimization problems consisting
in minimizing over the set A of proper convex lower semicontinuous functions
f : X → R which attain their minima over A at x̄ and fulfill the following con-
dition (see [3])

(FRC) f ∗�δ∗A is a lower semicontinuous function and it is exact at 0,

and their Fenchel-Lagrange-type dual problems.

Remark 11. The condition (FRC) is implied by (CC), consult [3] for details.
There one finds an example for which (FRC) holds, unlike (CC). Consequently
if one removes the assumption of lower semicontinuity from f and takes it con-
tinuous at some point of A, then condition (FRC) is automatically satisfied.

Theorem 9. A fulfills the condition (GBCQ1(0,A)) at x̄ ∈ A if and only
if for each proper convex lower semicontinuous function f : X → R that fulfills
A ∩ dom(f) 6= ∅, attains its minimum over A at x̄ and satisfies (FRC) one has
total duality for (P ) and (D), i.e.

f(x̄) = inf
x∈A

f(x) = max
λ∈C∗,

α,β∈X∗

{−f ∗(β)− σU(−α)− (λg)∗(α− β)}.

Proof. Because the sufficiency follows from the preceding theorem by taking
f linear, we prove here only the necessity. Take some f as requested in the
hypothesis. We have

f(x̄) = inf
x∈A

f(x) = −(f + δA)∗(0)

and (FRC) guarantees (see [4]) that there is some β̄ ∈ X∗ such that (f+δA)∗(0) =
f ∗(β̄) + σA(−β̄). Further we get

0 =
(
f(x̄) + f ∗(β̄)− 〈β̄, x̄〉

)
+

(
σA(−β̄) + δA(x̄)− 〈−β̄, x̄〉

)
≥ 0,

therefore the Young-Fenchel inequality applied for both pairs f and f ∗, and δA
and σA, respectively, is fulfilled as equality, i.e. β̄ ∈ ∂f(x̄) and −β̄ ∈ ∂δA(x̄).
As (GBCQ1(0,A)) is satisfied at x̄, there are a λ̄ ∈ C∗ and a ᾱ ∈ X∗ such that
(λ̄g)(x̄) = 0, −ᾱ ∈ ∂δU(x̄) and ᾱ − β̄ ∈ ∂(λ̄g)(x̄). Thus σU(−ᾱ) = 〈−ᾱ, x̄〉
and (λ̄g)∗(ᾱ − β̄) = 〈ᾱ − β̄, x̄〉, therefore (λ̄g)∗(ᾱ − β̄) + σU(−ᾱ) = −〈β̄, x̄〉 =
−f(x̄)− f ∗(β̄), i.e.

f(x̄) = −(λ̄g)∗(ᾱ− β̄)− σU(−ᾱ)− f ∗(β̄).
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The right-hand side of the equality above is less than or equal to v(D), while the
left-hand side coincides, by hypothesis, with v(P ). We get v(P ) ≤ v(D), but the
opposite inequality stands also because of weak duality. Therefore v(P ) = v(D)
and, because there are some feasible points where the objective functions of these
two problems coincide, we have total duality. �

Such statements are valid also for (GBCQ1(0,A)) as follows.

Theorem 10. The following statements are equivalent:

(i) A fulfills condition (GBCQ1(0,A)),

(ii) for each p ∈ X∗ that attains its minimum over A one has

〈p, x̄〉 = inf
x∈A

〈p, x〉 = max
λ∈C∗,
α∈X∗

{−σU(−p− α)− (λg)∗(α)},

(iii) for each proper convex lower semicontinuous function f : X → R that
attains its minimum over A and satisfies (FRC) and A∩ dom(f) 6= ∅ one
has

inf
x∈A

f(x) = max
λ∈C∗,

α,β∈X∗

{−f ∗(β)− σU(−α)− (λg)∗(α− β)}.

Remark 12. Using Remark 4.2 in [4], one can show that Theorems 9 and 10
can be proven in a slightly more general context, namely by asking the functions
f ∗�δ∗A to be lower semicontinuous only at 0 and exact at 0, instead of requiring
f to satisfy (FRC).

Remark 13. Let T be a possibly infinite index set and let g be as in Remark
6. In this setting the condition (GBCQ1(0,A)) at x becomes, due to Theo-
rem 2.8.7(iii) in [22], equivalent to (GBCQ(0,A)) from [2]. By Remark 9 in [2]
the latter is in this particular instance equivalent to the so-called locally Farkas-
Minkowski condition at x (cf. [8, 9])

(LFM) ∂δU(x) + cone
(

∪
t∈T (x)

∂gt(x)
)

= ∂δA(x),

where T (x) = {t ∈ T : gt(x) = 0}, which is known also under the name basic con-
straint qualification (BCQ) at x (cf. [8]). In this case (GBCQ1(0,A)) becomes
exactly the condition (LFM) in [10].

Remark 14. If g : X → (Rm)• and U = X, (GBCQ1(0,A)) is actually the
condition (BCQ) considered in [21]. If m = 1, i.e. g : X → R, when C = R+

(GBCQ1(0,A)) is actually the condition (5) in [21], while when U = dom(g)
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and x ∈ bd(A), (GBCQ1(0,A)) at x becomes the condition extended (BCQ) at
x in [13]. Considering A ∈ Rm×n, b ∈ Rm, the convex functions cj : Rn → R,
j = 1, . . . , r, and A = {x ∈ Rn : Ax = b, cj(x) ≤ 0, j = 1, ..., r}, (GBCQ1(0,A))
becomes exactly the condition (BCQ) in its original formulation due to Hiriart-
Urruty and Lemaréchal [12]. For comparisons between other constraint qualifi-
cations and different particular instances of (BCQ) we refer to [13,16,17,21].

Remark 15. When T is a possibly infinite index set and g = (gt)t∈T such
that each gt, t ∈ T , is continuous at some point of A and C = (RT

+)∗, Theorem
10 yields, via Remark 13, a result similar to Theorem 5.1 in [10], improving it
because the functions gt, t ∈ T , are no more required to be lower semicontinu-
ous as there and also in the sense that (ii) in the mentioned statement can be
generalized by taking f not continuous at some point of A ∩ dom(f) like in the
original paper, but only fulfilling the condition (FRC) or the weaker condition
mentioned in Remark 12. Moreover, if T contains only one element, and when
C = R+, Theorem 10 generalizes Proposition 2.5 in [21].

Remark 16. Comparing Theorems 1–3 and 5–7 one sees that (Ci(f,A)) im-
plies (GBCQi(f,A)) for i = 1, . . . , 3. Consequently, (CCCQ) guarantees the
fulfillment of (GBCQ1(0,A)). This observation generalizes Corollary 2 in [8].
See Example 4.1 in [10] for a situation where (GBCQ1(0,A)) is valid, while
(CCCQ) fails.

We conclude this section by giving optimality conditions for the problem (P ).

Theorem 11. If A fulfills the condition (GBCQ1(0,A)) and f : X → R
is a proper convex lower semicontinuous function which satisfies (FRC), an
x̄ ∈ A∩dom(f) is an optimal solution to (P ) if and only if there is some λ̄ ∈ C∗

such that (λ̄g)(x̄) = 0 and 0 ∈ ∂f(x̄) + ∂δU(x̄) + ∂(λ̄g)(x̄).

Proof. It is known that f(x̄) = v(P ) if and only if 0 ∈ ∂(f + δA)(x̄).
Because (FRC) holds, by Theorem 3.2 in [3] this is further equivalent to 0 ∈
∂f(x̄) + ∂δA(x̄). We have also (GBCQ1(0,A)) fulfilled, thus x̄ solves (P ) if and
only if

0 ∈ ∂f(x̄) + ∂δU(x̄) + ∪
λ∈C∗,

(λg)(x̄)=0

∂(λg)(x).

This means that there is some λ̄ ∈ C∗ fulfilling (λ̄g)(x̄) = 0 and ∂(λ̄g)(x̄) 6= ∅
such that 0 ∈ ∂f(x̄) + ∂δU(x̄) + ∂(λ̄g)(x̄). �

Remark 17. The previous statement is valid also when replacing condition
(FRC) with the one considered in Remark 12. In the particular setting described
in Remark 6, though without assuming the functions gt, t ∈ T , continuous any-
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where and taking them only lower semicontinuous, in which case g is C-lower
semicontinuous by Proposition 1.8 in [19], so also star C-lower semicontinuous,
Theorem 11 rediscovers Theorem 3 in [8] and improves it in the sense that we take
the function f to fulfill (FRC) instead of the stronger condition (CC). Note also
that if g is continuous, Theorem 11 rediscovers and improves Theorem 4.2 in [5]
and Corollary 5.8 in [7]. If moreover f is continuous, Theorem 11 rediscovers
Corollary 3.2 in [14].

Using Theorem 9 one can also prove the following optimality conditions state-
ment.

Theorem 12. Let x̄ ∈ A ∩ dom(f). A fulfills the condition (GBCQ1(0,A))
at x̄ if and only if for each proper convex lower semicontinuous function f :
X → R which satisfies (FRC) the fact that x̄ is an optimal solution to (P )
is equivalent with the existence of some λ̄ ∈ C∗ such that (λ̄g)(x̄) = 0 and
0 ∈ ∂f(x̄) + ∂δU(x̄) + ∂(λ̄g)(x̄).

Remark 18. This statement generalizes and improves by dropping the conti-
nuity assumptions Theorem 4 in [8] and Theorem 4.1(i) ⇔ (iii) in [16].

5 Conclusions and future research

We completely characterize the strong, stable strong, total and stable total Fenchel
-Lagrange duality for convex optimization problems through equivalent condi-
tions. By total duality we understand the situation when there is strong duality
for the primal and the dual problem, i.e. their optimal objective values coincide
and the dual has an optimal solution, but also a solution of the primal problem is
assumed to be known. When strong duality, respectively, total duality takes place
for all the problems obtained by perturbing with a linear function the objective
function of the primal problem, we say that we have stable strong/total duality.
To a given convex optimization problem we consider three Fenchel-Lagrange-type
dual problems and for each of them we introduce conditions which are equivalent
to stable strong, respectively to stable total duality. For all convex optimization
problems with the objective functions satisfying some additional weak assump-
tions we completely characterize the strong and total Fenchel-Lagrange duality
through some conditions derived from the previously mentioned ones. For convex
optimization problems having (in)finitely many convex inequalities as constraints
these conditions turn into the so-called conditions Farkas-Minkowski (FM), lo-
cally Farkas-Minkowski (LFM) and basic constraint qualification (BCQ). Dif-
ferent results in the literature are also rediscovered as special cases and some of
them are improved in their original context.

Given the connections between the conditions we used in this paper and the
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(locally) Farkas-Minkowski conditions that completely characterize some Farkas-
type results for systems of (in)finitely many convex inequalities, one could for-
mulate such statements also for the conditions dealt with here and in [2].
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