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1. Introduction
Given an optimization problem with a single-valued objective function, one can associate to it, by means of the veryfruitful conjugate duality theory, various dual problems, like for example, the classical Lagrange and Fenchel duals, andalso the so-called Fenchel-Lagrange dual. The latter was introduced by Boţ and Wanka in [6]. It is a ”combination” ofthe classical ones. For more information regarding this type of dual problem the interested reader can consult variouspapers like [5], where this dual is successfully used also for optimization problems which involve more general conceptsof convexity, and [9], where Farkas-type results and theorems of the alternative are proved using the weak and strongduality between a primal problem and its Fenchel-Lagrange dual problem.As the complexity of the optimization problems is increasing, the study of problems which encompass as special casesthe already treated ones are of large interest. Since many optimization problems involve composed convex functions, theattention of many researchers has turned to such kind of problems. From the large number of papers that have appearedduring the last decades and treat composed convex optimization problems, we mention here [1, 2, 10, 11, 13–19, 22].
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Regarding optimization problems which involve composed convex functions, the Fenchel-Lagrange duality has proved tobe very useful in giving a compact formula for the dual and in deriving necessary and sufficient optimality conditions.Strong duality between the primal problem and its Fenchel-Lagrange dual holds under rather weak assumptions (see[3] for more details on this topic). Moreover, using the weak and strong duality, Farkas-type results and theorems of thealternative involving composed convex function can be proved (see, for instance, [4]).Many optimization problems which arise from various fields of applications (like physics, economics, engineering) havenot only involved one objective function, but a finite or even an infinite number of objectives. This being a reason whymany mathematicians pay great attention to such kind of problems (see [7, 8] and the references therein). For vectoroptimization problems, one can consider several types of solutions, and among the most used of them there are theproper efficient and the weakly efficient solutions. Also in a primal vector problem one can attach a vector dual problem.But, unlike in the scalar case, now the dual problem depends on the efficient solutions we deal with. For both types ofsolutions mentioned above such dual problems are given in [12]. In this work, the objective function of the dual problemis implicitly given, i.e., it is defined using the feasible set of the dual problem. Some new dual problems for properefficient solutions have been given in [7, 8]. The objective functions of the dual problems are explicitly given. Moreover,they are easier to calculate. Our aim is to give such a dual problem (i.e., a dual problem whose objective function isexplicitly given) also when dealing with weak efficient solutions.It is of great practical interest that our new vector dual problems for weakly efficient solutions presented in the currentpaper include dual objective functions that are explicitly formulated by means of conjugate functions. This allows usto apply the well-developed calculus for conjugate functions from the theory of convex analysis. In particular, a lot offunctions (e.g. linear and convex quadratic functions, exponential and logarithmic functions, norm and gauge functionsetc.) permit to calculate their conjugate functions in closed or explicit analytic form. Even more, optimality conditionscontaining conjugate functions for weakly efficient solutions can be derived using the strong duality. They can be helpfulfor the construction of optimality tests and numerical algorithms to determine weakly efficient solutions, although thisis not the direct purpose of this paper.It is well known that the weakly efficient solutions of a given vector optimization problem can be characterized by meansof linear scalarization. Provided that strong duality holds between the scalarized problem and its Fenchel-Lagrangedual problem, necessary and sufficient optimality condition for the weak efficient solutions of the initial multiobjectiveproblem can be established. Even more, using the scalar dual problem, it is possible to construct a multiobjective dualproblem to the primal one and to prove weak and strong vector duality assertions. Unlike the papers [7, 8], from wherethis approach has been borrowed, in our case some entries of the scalarizing vector can be equal to 0. Because of thissituation, some of the dual problems given in the above mentioned papers turn out to be special instances of the dualproblem we give.Let us consider a vector valued function whose entries are compositions of some convex functions. Having a problemwith an objective function of this kind and with cone inequality constraints, our aim is to provide necessary and sufficientconditions for its weakly efficient solutions, expressed by using the conjugates of the functions involved. To this end,we associate to our initial problem a family of scalar optimization problems and to each scalar problem we provide aFenchel-Lagrange-type dual. Regarding the construction of the Fenchel-Lagrange-type dual of the scalar problem, wewould like to mention that the approach we use is similar to the one used in [3, 4]. Namely, we consider a problemwhich is equivalent to the scalar one in the sense that their optimal objective values are equal, but whose dual canbe easier established. For the new problem we consider first the Lagrange dual problem. To the inner infimum of theLagrange dual we attach the Fenchel dual problem and it can be easily seen that the final dual we obtain is actuallya Fenchel-Lagrange-type dual of the primal problem. The construction of the dual is described here in detail and aconstraint qualification ensuring strong duality is introduced.Many vector optimization problems turn out to be special instances of the problem we treat and to each of them wecan attach a vector dual problem derived from the initial dual (this is a consequence of the way the dual problem isgiven). For instance the dual we obtain when we treat the classical vector optimization problem with geometrical andcone constraints as a special instance is similar with one of the dual problems given in [7]. For the vector optimizationproblem whose objective function is such that each entry of it is a sum of two convex functions the vector dual problemwe acquire is a Fenchel-type vector dual problem.Multiobjective optimization problems have a very wide range of applications in fields like operations research, economics,finance, product and process design, oil and gas industry, aircraft and automobile design, and the list is far from beingover. Because of its generality, many practical problems which are encountered in the previous mentioned fields of interest
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turn out to be special cases of the problem we treat within this paper. We mention here only some of them; namely, themultiobjective problems, which involve quadratic functions (the Markowitz mean-variance portfolio optimization problem,the smallest enclosing ball problem and the optimal separating hyperplane problem can be reformulated in this form);and, the optimization problems which have as entries ”max” functions (which can be encountered in fields like resourceallocation, production control and game theory). Also a type of fractional programming problems can be treated as aspecial instance of the optimization problem we treat. We refer here to a vector optimization problem whose entriesare ratios with the nominators squares of nonnegative convex functions and the denominators positive concave functions.Such type of problems can arise in investment and dividend coverage, production planning and scheduling, data miningand entropy optimization.We have given our approach for general ordering cones because in the applications or real-world multiobjective problemsnot only the coordinate-wise ordering (induced by the positive orthant as ordering cone) appears. Examples are availablein portfolio optimization, fractional programming or semidefinite programming, where the cone of positive semidefinitesymmetric matrices or the cone defining the lexicographic partial order are of practical interest. One should have inmind also the situation where the decision maker is not interested in the whole efficiency set. Varying the size of thecone he can reduce or extend the set of efficient solutions he is interested in. A special and very realistic situation isthat a number of k decision makers consider each of them a multiobjective problem with the same input variable x, butwith different multiobjective functions Fi and different ordering cones Ki, i = 1, . . . , k (as motivated above). They allconsider a scalarization fi ◦ Fi, i = 1, ..., k , of their own multiobjective problem and want to have a compromise solutionbased on the multiobjective problem (P) as formulated in Section 3.1.The paper is organized as follows. In Section 2 we give some notions and results which are used later. The third sectioncontains the main results of the paper. The multiobjective optimization problem we work with is presented togetherwith a family of scalar problems associated to it. Moreover, to each of these scalar problems, a dual problem is givenand, using the weak and strong duality, some necessary and sufficient conditions for the weakly efficient solutions ofthe multiobjective problem are established. A multiobjective dual to the initial problem is given and weak and strongduality assertions are also proved. In the last section of the paper, some particular cases are considered.
2. Preliminary notions and results
In this section, we present the notations we use throughout the paper. Some well-known notions and results which areused later are also mentioned. All the vectors considered are column vectors. In order to transpose a column vector toa row vector we use an upper index T . Considering two arbitrary vectors x = (x1, ..., xn)T and y = (y1, ..., yn)T from thereal space Rn, by xTy is denoted the usual inner product (i.e., we have xTy = ∑n

i=1 xiyi). As usual, by ”5K ” is denotedthe partial order introduced by the convex cone K ⊆ Rn, defined by
x 5K y⇔ y− x ∈ K, x, y ∈ Rn.

Let us mention that throughout this paper the cones are assumed to contain the element 0.If X ⊆ Rn is given, its relative interior is denoted by ri(X ). The indicator function of the set X is defined in the followingway
δX : Rn → R = R ∪ {±∞}, δX (x) = { 0, x ∈ X,+∞, otherwise.

For a given function h : Rn → R, we denote by dom(h) = {
x ∈ Rn : h(x) < +∞} its effective domain. We say that thefunction is proper if its effective domain is a nonempty set and h(x) > −∞ for all x ∈ Rn.When X is a nonempty subset of Rn, we define for the function h the conjugate regarding to the set X by

h∗X : Rn → R, h∗X (p) = sup
x∈X

{
pT x − h(x)}.

Regarding the conjugate, we would like to mention that the inequality (Young-Fenchel)
h(x) + h∗X (x∗)− x∗T x ≥ 0 (1)
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is fulfilled for all x ∈ X and x∗ ∈ Rn. It is easy to see that for X = Rn the conjugate relative to the set X is actuallythe (Fenchel-Moreau) conjugate function of h denoted by h∗. Even more, it can be easily proved that h∗X = (h+ δX )∗.The rules we adopt concerning the arithmetic calculation involving +∞ and −∞ are those in [20]. In this context, as
0(+∞) = 0 and 0(−∞) = 0,

we can easily prove that
(0h)∗(x∗) = { 0, x∗ = 0,+∞, otherwise, (2)

while (αh)∗(αx∗) = αh∗(x∗) (3)holds independently from these conventions for all x∗ ∈ Rn and α > 0.
Definition 2.1.Let K ⊆ Rk be a convex cone.(i) The function h : Rk → R is called K-increasing if for all x, y ∈ Rk such that x 5K y, then h(x) ≤ h(y).(ii) The function H : Rn → Rk is called K-convex if for all x, y ∈ Rn and for all α ∈ [0, 1] we have

H
(
αx + (1− α)y) 5K αH(x) + (1− α)H(y).

Definition 2.2.Let K ⊆ Rn be a convex cone. By the dual cone of K we denote the set
K ∗ = {x∗ ∈ Rn : x∗T x ≥ 0,∀x ∈ K}.

Lemma 2.1.
Let K ⊆ Rn be a convex cone and h : Rn → R a proper and K-increasing function. Then h∗(x∗) = +∞ for all x∗ /∈ K ∗.

Proof. Take an arbitrary x∗ /∈ K ∗. By definition there exists x ∈ K such that x∗T x < 0. Since for some arbitrary
x̃ ∈ dom(h) and for all α > 0, we have h(x̃ − αx) ≤ h(x̃). It is not hard to see that

h∗(x∗) = sup
x∈Rn
{x∗T x − h(x)} ≥ sup

α>0{x∗T (x̃ − αx)− h(x̃ − αx)}
≥ sup

α>0{x∗T (x̃ − αx)− h(x̃)} = x∗T x̃ − h(x̃) + sup
α>0{−αx∗T x} = +∞,

and the proof of the lemma is complete.
Definition 2.3.We call infimal convolution of the proper functions h1, ..., hk : Rn → R, the function

h1�...�hk : Rn → R, (h1�...�hk )(x) = inf{ k∑
i=1 hi(xi) : x = k∑

i=1 xi
}
.

The following statement closes this preliminary section.
Theorem 2.1 (cf. [20]).
Let h1, ..., hk : Rn → R be proper convex functions. If the set

⋂k
i=1 ri(dom(hi)) is nonempty, then( k∑

i=1 hi
)∗(p) = (h∗1�...�h∗k )(p) = inf{ k∑

i=1 h
∗
i (pi) : p = k∑

i=1 pi
}
,

and for each p ∈ Rn the infimum is attained.
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3. The composite multiobjective problem
In the first subsection of this section, we present the multiobjective problem we treat within the paper. A family ofscalar optimization problems is then attached to it and a characterization of the weakly efficient solutions is given. Inthe second subsection, we provide a dual problem to the scalar problem derived in the first subsection and a weak anda strong duality theorem are proved. Moreover, necessary and sufficient optimality conditions for weak efficiency arepresented. In the last subsection, a multiobjective dual of the primal one is also introduced and weak and strong dualityassertions for the vector primal and dual problems are proved.
3.1. The general framework
In the following, let X ⊆ Rn be a nonempty convex set, K ⊆ Rm a convex cone containing 0 and g : Rn → Rm,
g = (g1, ..., gm)T , be a K-convex function. For i = 1, ..., k , let Ki ⊆ Rni be a convex cone (0 ∈ Ki) and consider thefunctions fi : Rni → R and Fi : Rn → Rni such that fi is a proper, convex and Ki-increasing function, while Fi is a
Ki-convex one.The primal vector optimization problem we treat within the present paper is
(P) v-min

x∈X,
g(x)5K 0

(
f1 ◦ F1(x), ..., fk ◦ Fk (x))T .

Moreover, we suppose that
A ⊆

k⋂
i=1 F

−1
i (dom(fi)),

where A = {x ∈ X : g(x) 5K 0} 6= ∅ is the feasible set of the problem (P) and F−1
i (dom(fi)) = {x ∈ Rn : Fi(x) ∈ dom(fi)}.

Definition 3.1.A feasible element x ∈ A is called weakly efficient solution of the problem (P) if there exists no x ∈ A such that
fi ◦ Fi(x) < fi ◦ Fi(x) for all i = 1, ..., k .
The proof of the following proposition is omitted as it is trivial.
Proposition 3.1.
Under the previous assumptions each function fi ◦ Fi : Rn → R, i = 1, ..., k , is a proper convex function.

To an arbitrary λ = (λ1, ...., λk )T ∈ Rk+ we associate the set Iλ = {i ∈ {1, ..., k} : λi > 0}. One has λ ∈ Rk+ \ {0} if andonly if Iλ 6= ∅.
By Proposition 3.1, (P) is a multiobjective convex optimization problem and in order to characterize its weakly efficientsolutions, to (P) we associate a family of scalar optimization problems. Namely, for each λ = (λ1, ...., λk )T ∈ Rk+ \ {0},we consider the optimization problem
(Pλ) inf

x∈X,
g(x)5K 0

k∑
i=1 λi(fi ◦ Fi)(x).

or, equivalently,
(Pλ) inf

x∈X,
g(x)5K 0

∑
i∈Iλ

λi(fi ◦ Fi)(x).
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The following well-known result gives a characterization of the weakly efficient solutions of a convex vector optimizationproblem via linear scalarization (see, for instance, [12]).
Theorem 3.1.
A feasible point x of the problem (P) is weakly efficient if and only if there exists λ ∈ Rk+ \{0} such that x is an optimal
solution of the problem (Pλ).
3.2. Optimality conditions for weak efficiency
Let us consider an arbitrary λ ∈ Rk+ such that Iλ 6= ∅. We construct a dual problem to (Pλ) and from the strong dualityassertion we derive the optimality conditions which characterize a weakly efficient solution for (P). To this end, weassociate to the problem (Pλ) the following convex optimization problem
(P ′λ) inf

x∈X, g(x)5K 0,
yi∈Rni ,Fi(x)−yi5Ki 0,

i∈Iλ

∑
i∈Iλ

λifi(yi).
In what follows, by v(P) we mean the optimal objective value of an optimization problem (P). Regarding the optimalvalues of the problems (Pλ) and (P ′λ), the following result can be established.
Theorem 3.2.
v(Pλ) = v(P ′λ).
Proof. For an arbitrary x feasible to (Pλ) take yi = Fi(x) for all i ∈ Iλ, and so, the tuple formed by x and yi, i ∈ Iλ,is feasible to (P ′λ). Thus, ∑i∈Iλ λifi

(
Fi(x)) = ∑i∈Iλ λifi(yi) ≥ v(P ′λ), and this implies v(Pλ) ≥ v(P ′λ).

In order to prove the opposite inequality, let us consider some x and yi, i ∈ Iλ, feasible to (P ′λ). Since g(x) 5K 0,it follows immediately that x is feasible to (Pλ). By the hypothesis that fi is a Ki-increasing function the inequality
Fi(x)−yi 5Ki 0 implies fi(Fi(x)) ≤ fi(yi), ∀i ∈ Iλ. We have v(Pλ) ≤∑i∈Iλ λifi

(
Fi(x)) ≤∑i∈Iλ λifi(yi). Taking the infimumon the right-side regarding x and yi, i ∈ Iλ, feasible to (P ′λ) we obtain v(Pλ) ≤ v(P ′λ).Our next step is to construct a dual problem to (P ′λ) (see also [3, 4]) and to give sufficient conditions in order to achievestrong duality, i.e., the situation when the optimal objective value of the primal coincides with the optimal objectivevalue of the dual and the dual has an optimal solution.

First of all, we consider the Lagrange dual problem to (P ′λ)
(Dλ) sup

q∈K∗,
ui∈K∗i ,i∈Iλ

inf
x∈X,

yi∈Rni ,i∈Iλ

{∑
i∈Iλ

λifi(yi) + qTg(x) + ∑
i∈Iλ

uTi (Fi(x)− yi)},
where q ∈ K ∗ and ui ∈ K ∗i , i ∈ Iλ, are the dual variables. Concerning the inner infimum, by the definition of theconjugate regarding to X one obtains

inf
x∈X,

yi∈Rni ,i∈Iλ

{∑
i∈Iλ

λifi(yi) + qTg(x) + ∑
i∈Iλ

uTi (Fi(x)− yi)}
= − sup

x∈X

{
− qTg(x)− ∑

i∈Iλ
uTi Fi(x)}− ∑

i∈Iλ
sup
yi∈Rni

{
uTi yi − λifi(yi)}

= −
(∑

i∈Iλ
uTi Fi + qTg

)∗
X
(0)− ∑

i∈Iλ
(λifi)∗(ui).
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Moreover, by Theorem 2.1 we get further
(∑

i∈Iλ

uTi Fi + qTg
)∗
X
(0) = (∑

i∈Iλ

uTi Fi + (qTg+ δX ))∗(0) = inf
vi∈Rn,i∈Iλ

{∑
i∈Iλ

(uTi Fi)∗(vi) + (qTg+ δX )∗(−∑
i∈Iλ

vi
)}

= inf
vi∈Rn,i∈Iλ

{∑
i∈Iλ

(uTi Fi)∗(vi) + (qTg)∗X(−∑
i∈Iλ

vi
)}

. (4)
Taking into consideration the previous relations, the dual (Dλ) can be equivalently rewritten as
(Dλ) sup

q∈K∗,
ui∈K∗i ,i∈Iλ

sup
vi∈Rn,
i∈Iλ

{
−
∑
i∈Iλ

(λifi)∗(ui)− ∑
i∈Iλ

(uTi Fi)∗(vi)− (qTg)∗X(− ∑
i∈Iλ

vi
)}

.

Introducing the new variables βi := ( 1
λi

)
ui and pi := ( 1

λi

)
vi, i ∈ Iλ, the dual problem can be written as (we use relation (3))

(Dλ) sup
q∈K∗,

βi∈K∗i ,pi∈Rn,
i∈Iλ

{
−
∑
i∈Iλ

λif∗i (βi)− ∑
i∈Iλ

λi(βTi Fi)∗(pi)− (qTg)∗X(− ∑
i∈Iλ

λipi
)}

.

It is well-known that the optimal objective value of the problem (P ′λ) is always greater than or equal to the optimalobjective value of its Lagrange dual, i.e. v(P ′λ) ≥ v(Dλ). Due to Theorem 3.2, the problem (Dλ) is also a dual problem to(Pλ). and thus the following assertion arises easily.
Theorem 3.3.
Between the primal problem (Pλ) and the dual problem (Dλ) weak duality always holds, i.e. v(Pλ) ≥ v(Dλ).
In order to ensure the equality of the optimal objective values of the two problems, we have to impose a constraintqualification. The idea we follow is similar to the one presented in [3] and to this aim some preliminary work is necessary.Let us consider that Iλ = {i1, ..., il} (l ≤ k) and take Y = dom(fi1 )× ...× dom(fil ) ⊆ RN , where N = ni1 + ...+ nil . It isnot hard to see that the optimization problem (P ′λ) can be equivalently written as
(P ′′λ ) inf(x,y)∈X×Y ,

B(x,y)5Q0
A(x, y),

where Q = K × Ki1 × ...× Kil , y = (yi1 , ..., yil ) ∈ Rni1 × ...× Rnil = RN ,
A : Rn × RN → R, A(x, y) = λi1 fi1 (yi1 ) + ...+ λil fil (yil )

and
B : Rn × RN → Rm × RN , B(x, y) = (g(x), Fi1 (x)− yi1 , ..., Fil (x)− yil)T .Let us notice that Q is a convex cone containing 0 and that (P ′′λ ) is a convex optimization problem. Using the resultsand considerations in [3] (cf. the proof of Proposition 1 the closedness assumption for Q is there superfluous), it followsthat between (P ′′λ ) and its Fenchel-Lagrange dual problem

(D′′λ ) sup(x∗,y∗)∈Rn×RN ,
γ∈Q∗

{−A∗(x∗, y∗)− (γTB)∗X×Y (−x∗,−y∗)}
strong duality holds if the following condition is fulfilled, i.e.,

0 ∈ B( ri(X × Y ))+ ri(Q). (5)
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Since ri(Q) = ri(K )× ri (Ki1)× ...× ri (Kil),relation (5) requires the existence of some x ′ ∈ ri(X ) and y′ = (y′i1 , ..., y′il ) ∈ ri(Y ) such that
0 ∈ (g(x ′), Fi1 (x ′)− y′i1 , ..., Fil (x ′)− y′il)+ ri(K )× ri (Ki1)× ...× (Kil).

The last relation is equivalent with
g(x ′) ∈ − ri(K ) and Fij (x ′) ∈ y′ij − ri (Kij ), j = 1, ..., l,

and from here the condition
(CQλ) ∃x ′ ∈ ri(X ) such that { Fi(x ′) ∈ ri(dom(fi))− ri(Ki), i ∈ Iλ,

g(x ′) ∈ − ri(K ).can be easily derived.
In the following, we prove that the dual problems (Dλ) and (D′′λ ) are identical. To this end, let us take some arbitrary(x∗, y∗) ∈ Rn × RN and γ ∈ Q∗. This is equivalent with the existence of some vectors y∗i1 ∈ Rni1 , ..., y∗il ∈ Rnil and
q ∈ K ∗, βi1 ∈ K ∗i1 , ..., βil ∈ K ∗il such that y∗ = (y∗i1 , ..., y∗il ) and γ = (q, βi1 , ..., βil ), respectively.
Using the definition of the conjugate function, we obtain

A∗(x∗, y∗) = sup
x∈Rn,
y∈RN

{
x∗T x + y∗Ty− A(x, y)} = sup

x∈Rn,
yij∈R

nij ,
j=1,...,l

{
x∗T x + l∑

j=1 y
∗
ij
Tyij −

l∑
j=1 λij fij (yij )

}

= sup
x∈Rn

x∗T x + l∑
j=1 sup

yij∈R
nij

{
y∗ij

Tyij − λij fij (yij )} = sup
x∈Rn
{x∗T x}+ l∑

j=1 (λij fij )∗(y∗ij ),
while

(γTB)∗X×Y (−x∗,−y∗) = sup
x∈X,
y∈Y

{
− x∗T x − y∗Ty− γTB(x, y)}

= sup
x∈X,

yij∈dom(fij ),
j=1,...,l

{
− x∗T x −

l∑
j=1 y

∗
ij
Tyij − qTg(x)− l∑

j=1 β
T
ij (Fij (x)− yij )}

= sup
x∈X

{
−x∗T x−qTg(x)− l∑

j=1β
T
ij Fij (x)}+ l∑

j=1 sup
yij∈dom(fij ){−y

∗
ij
Tyij +βTij yij}

= (
qTg+ l∑

j=1 β
T
ij Fij

)∗
X
(−x∗) + l∑

j=1 δ
∗dom(fij )(βij − y∗ij ).

Since it is binding to have x∗ = 0 (otherwise supx∈Rn{x∗T x} = +∞), we get
v(D′′λ ) = sup(x∗,y∗)∈Rn×RN ,

γ∈Q∗

{
−A∗(x∗, y∗)−(γTB)∗X×Y (x∗,−y∗)} = sup

q∈K∗,
βij∈K

∗
ij
,

y∗ij∈R
nij ,

j=1,...,k

{ l∑
j=1
{
−(λij fij )∗(y∗ij )−δ∗dom(fij )(βij−y∗ij )}−(qTg+ l∑

j=1β
T
ij Fij
)∗
X
(0)}.
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As by Theorem 2.1 sup
y∗ij∈R

nij

{
− (λij fij )∗(y∗ij )− δ∗dom(fij )(βij − y∗ij )} = −(λij fij )∗(βij ),

j = 1, ..., l, and (
qTg+ l∑

j=1 β
T
ij Fij

)∗
X
(0) = inf

x∗ij∈Rn,
j=1,...,l

{ l∑
j=1 (βTij Fij )∗(x∗ij ) + (qTg)∗X(− l∑

j=1 x
∗
ij

)}
,

we obtain
v(D′′λ )= sup

q∈K∗,
x∗ij∈Rn,
βij∈K

∗
ij
,

j=1,...,k

{
−

l∑
j=1 (λij fij )∗(βij )− l∑

j=1 (βTij Fij )∗(x∗ij )− (qTg)∗X(− l∑
j=1 x

∗
ij

)}
.

Introducing the new variables q = q, βij := ( 1
λij

)
βij and x∗ij := ( 1

λij

)
x∗ij , j = 1, ..., l, the optimal objective value of (D′′λ )turns out to be equal to (cf. (3))

sup
q∈K∗,
x∗ij∈Rn,

βij∈K
∗
ij
,

j=1,...,k

{
−

l∑
j=1 λij f

∗
ij (βij )− l∑

j=1 λij (βTijFij )∗(x∗ij )− (qTg)∗X(− l∑
j=1 λij x

∗
ij

)}
,

and it can be easily seen that the dual problems (D′′λ ) and (Dλ) coincide.
We consider now the following constraint qualification for (P)
(CQ) ∃x ′ ∈ ri(X ) such that{ Fi(x ′) ∈ ri(dom(fi))− ri(Ki), i = 1, ..., k,

g(x ′) ∈ − ri(K ).The following assertion displays the strong duality between the optimization problems (Pλ) and (Dλ).
Theorem 3.4.
Suppose that the constraint qualification (CQ) is fulfilled. Then strong duality holds between (Pλ) and (Dλ), i.e.
v(Pλ) = v(Dλ) and the dual problem (Dλ) has an optimal solution.

Proof. Since (CQ) is fulfilled strong duality holds between the problems (P ′′λ ) and (D′′λ ), i.e. v(P ′′λ ) = v(D′′λ ) and thedual has an optimal solution. Since this implies v(Pλ) = v(P ′λ) = v(P ′′λ ) = v(D′′λ ) = v(Dλ) and the existence of a solutionfor the problem (Dλ), the proof is complete.
Remark 3.1.Although for the proof of the previous theorem we need just the weaker assumption (CQλ) we decided to consider (CQ)since this constraint qualification is independent from the set Iλ.
Based on the just proved strong duality property, we are able to point out necessary and sufficient optimality conditionsfor the solutions of problem (P). Theorem 3.5 is devoted to that matter.
Theorem 3.5.

(a) Suppose that the condition (CQ) is fulfilled and let x be a weakly efficient solution of the problem (P). Then
there exist λ = (λ1, ..., λk )T ∈ Rk+ \ {0}, q ∈ K ∗, pi ∈ Rn and βi ∈ K ∗i , i ∈ Iλ = {i ∈ {1, ..., k} : λi > 0}, such that
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(i) fi ◦ Fi(x) + f∗i (βi)− βTi Fi(x) = 0, i ∈ Iλ;
(ii) βTi Fi(x) + (βTi Fi)∗(pi)− pTi x = 0, i ∈ Iλ;

(iii) qTg(x) + (qTg)∗X(− ∑
i∈Iλ

λipi
)+ ∑

i∈Iλ
λipTi x = 0;

(iv) qTg(x) = 0.

(b) If there exists x feasible to (P) such that for some λ ∈ Rk+ \ {0}, q ∈ K ∗, pi ∈ Rn and βi ∈ K ∗i , i ∈ Iλ, the
conditions (i)− (iv) are satisfied, then x is a weakly efficient solution of (P).

Proof. (a) Since x is a weakly efficient solution of (P), by Theorem 3.1 there exists λ = (λ1, ..., λk )T ∈ Rk+ \ {0} suchthat x is an optimal solution of the problem (Pλ). As (CQ) is fulfilled, Theorem 3.4 ensures the strong duality between(Pλ) and (Dλ). Thus, there exist q ∈ K ∗, pi ∈ Rn and βi ∈ K ∗i , i ∈ Iλ, such that
∑
i∈Iλ

λi(fi ◦ Fi)(x) = −∑
i∈Iλ

λif∗i (βi)−∑
i∈Iλ

λi(βTi Fi)∗(pi)− (qTg)∗X(−∑
i∈Iλ

λipi
)
.

The last equality is nothing else than
0 = ∑

i∈Iλ

λi(fi ◦ Fi)(x)+∑
i∈Iλ

λif∗i (βi)+∑
i∈Iλ

λi(βTi Fi)∗(pi)+(qTg)∗X(−∑
i∈Iλ

λipi
) = ∑

∈Iλ

λi
[(fi ◦ Fi)(x) + f∗i (βi)− βTi Fi(x)]

+ ∑
i∈Iλ

λi
[
βTi Fi(x) + (βTi Fi)∗(pi)− pTi x]+ [qTg(x) + (qTg)∗X(−∑

i∈Iλ

λipi
)
−
(
−
∑
i∈Iλ

λipTi x
)]
− qTg(x).

As g(x) 5K 0 (x is a feasible solution to (P)) and q ∈ K ∗ we have −qTg(x) ≥ 0. Moreover, all the other terms withinthe brackets of the previous sum are non-negative (see relation (1)). Thus, each term must be equal to 0 and therelations (i)− (iv) follows.
(b) Following the same steps as in (a), but in the reverse order, the desired conclusion can be easily reached.
Remark 3.2.For the assertion (b) of Theorem 3.5, i.e., the sufficiency of the conditions (i), ..., (iv) for the weak efficiency of x thefulfillment of (CQ) is not necessary.
3.3. The vector dual of (P)
For an arbitrary λ = (λ1, ..., λk )T ∈ Rk+ \ {0} let be |λ| = ∑k

i=1 λi. We introduce the following multiobjective dualproblem to (P)
(D) v-max(λ,q,p,β,t)∈B

(
h1(λ, q, p, β, t), ..., hk (λ, q, p, β, t))T ,

where
hi(λ, q, p, β, t) = −f∗i (βi)− (βTi Fi)∗(pi)− 1

|λ| (qTg)∗X(−∑
i∈Iλ

λipi
)+ ti

for all i = 1, ..., k , and the dual variables are λ = (λ1, ..., λk )T ∈ Rk , q = (q1, ..., qm)T ∈ Rm, p = (p1, ..., pk ) ∈ Rn×...×Rn,
β = (β1, ..., βk ) ∈ Rn1 × ...× Rnk and t = (t1, ..., tk )T ∈ Rk . The feasible set of the problem (D) is described by

B = {(λ, q, p, β, t) : λ ∈ Rk+ \ {0}, q ∈ K ∗, βi ∈ K ∗i , i = 1, ..., k, k∑
i=1 λiti = 0}.

As for the primal problem (P), we also consider for the dual problem weakly efficient solutions.
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Definition 3.2.A feasible element (λ, q, p, β, t) ∈ B is called weakly efficient solution of the problem (D) if there exists no(λ, q, p, β, t) ∈ B such that hi(λ, q, p, β, t) > hi(λ, q, p, β, t) for all i = 1, ..., k .
Theorem 3.6 (Weak Vector Duality).
There is no x ∈ A and no (λ, q, p, β, t) ∈ B such that fi ◦ Fi(x) < hi(λ, q, p, β, t) for all i = 1, ..., k .
Proof. In order to prove the theorem, suppose that there exist x ∈ A and (λ, q, p, β, t) ∈ B such that fi ◦ Fi(x) <
hi(λ, q, p, β, t). Since λ ∈ Rk+ \ {0}, the inequality

k∑
i=1 λifi ◦ Fi(x) <

k∑
i=1 λihi(λ, q, p, β, t) (6)

follows immediately. But
k∑
i=1 λihi(λ, q, p, β, t) = ∑

i∈Iλ

λihi(λ, q, p, β, t) =∑
i∈Iλ

λi
[
− f∗i (βi)− (βTi Fi)∗(pi)− 1

|λ| (qTg)∗X(−∑
i∈Iλ

λipi
)+ ti

]
,

and, since |λ| = ∑k
i=1 λi = ∑i∈Iλ λi and ∑i∈Iλ λiti = ∑k

i=1 λiti = 0, we get
∑
i∈Iλ

λihi(λ, q, p, β, t) =−∑
i∈Iλ

λif∗i (βi)−∑
i∈Iλ

λi(βTi Fi)∗(pi)−(qTg)∗X(−∑
i∈Iλ

λipi
)
. (7)

The inequalities
−
∑
i∈Iλ

λif∗i (βi) ≤∑
i∈Iλ

λifi ◦ Fi(x)−∑
i∈Iλ

λiβTi Fi(x) (8)
and

−
∑
i∈Iλ

λi(βTi Fi)∗(pi) ≤∑
i∈Iλ

λiβTi Fi(x)−∑
i∈Iλ

λipTi x (9)
are easy consequences of the Young-Fenchel inequality as well as

−(qTg)∗X(−∑
i∈Iλ

λipi
)
≤
∑
i∈Iλ

λipTi x + (qTg)(x).
Since qTg(x) ≤ 0 (q ∈ K ∗ and g(x) ∈ −K ) there follows the inequality

− (qTg)∗X(−∑
i∈Iλ

λipi
)
≤
∑
i∈Iλ

λipTi x. (10)
Adding up relations (8), (9) and (10) we get

k∑
i=1 λihi(λ, q, p, β, t) = −∑

i∈Iλ

λif∗i (βi)−∑
i∈Iλ

λi(βTi Fi)∗(pi)− (qTg)∗X(−∑
i∈Iλ

λipi
)
≤
∑
i∈Iλ

λifi ◦ Fi(x).
This leads us to a contradiction to (6). Thus the initial assumption is false and the proof of the theorem is complete.
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Theorem 3.7 (Strong Vector Duality).
Assume that (CQ) is fulfilled. If x is a weakly efficient solution of the primal problem (P), then there exists (λ, q, p, β, t) ∈
B that is a weakly efficient solution to the dual problem (D) and for all i = 1, ..., k applies

fi ◦ Fi(x) = hi
(
λ, q, p, β, t

)
.

Proof. Since x is a weakly efficient solution of (P) and the condition (CQ) is fulfilled, by Theorem 3.5, there exist
λ ∈ Rk+ \ {0}, q ∈ K ∗, pi ∈ Rn and βi ∈ K ∗i , i ∈ Iλ, such that the conditions (i)− (iv) of the above mentioned theoremare fulfilled. Take an arbitrary i ∈ {1, ..., k}\ Iλ. Since the function fi is proper and convex, the function f∗i is proper andconvex, too (for more details see [20]). Therefore, there exists β̃i ∈ K ∗i (see Lemma 2.1) such that f∗i (β̃i) ∈ R. Moreover,since β̃Ti Fi is proper and convex, we can find at least one p̃i ∈ Rn such that (β̃iTFi)∗(p̃i) ∈ R. Choose

λ := λ, q := q, pi := { pi, i ∈ Iλ,
p̃i, i /∈ Iλ,

βi := { βi, i ∈ Iλ,
β̃i, i /∈ Iλ,

and

ti :=

pTi x + 1

|λ|
(
qTg

)∗
X

(
−
∑
i∈Iλ
λipi
)
, i ∈ Iλ,

fi ◦ Fi(x) + f∗i (β̃i) + (β̃iTFi)∗(p̃i) + 1
|λ|(qTg)∗X(−∑

i∈Iλ
λipi
)
, i /∈ Iλ.

It is clear that ti ∈ R since all terms occurring in the definition of ti are finite, ∀ i = 1, ..., k , and that (see Theorem 3.5(iii) and (iv))
k∑
i=1 λiti = ∑

i∈Iλ

λiti = ∑
i∈Iλ

λi(pTi x) + (qTg)∗X(−∑
i∈Iλ

λipi
) = 0

It remains to show that fi ◦Fi(x) = hi
(
λ, q, p, β, t

) for all i ∈ Iλ (for i /∈ Iλ this is trivial as a consequence of the definitionof t). We have
hi(λ, q, p, β, t) = −f∗i (βi)− (βTi Fi)∗(pi)− 1

|λ| (qTg)∗X(− ∑
i∈Iλ

λipi
)+ ti

=−f∗i (βi)−(βTi Fi)∗(pi)− 1
|λ|(qTg)∗X(−∑

i∈Iλ
λipi
)+pTi x+ 1

|λ|
(
qTg

)∗
X

(
−
∑
i∈Iλ
λipi
)

= −f∗i (βi)− (βTi Fi)∗(pi) + pTi x = −f∗i (βi) + βTi Fi(x) = fi ◦ Fi(x).
For the last equalities, we used Theorem 3.5 (i) and (ii). The fact that (λ, q, p, β, t) is a weakly efficient solution of thedual problem (D) is a straightforward consequence of Theorem 3.6.
4. Special cases
Within this section, two special cases are treated. In the first case, we consider the functions Fi being linear, while inthe second case we show how the ordinary convex optimization problem can be derived as a special case of our generalresult.
4.1. Composition with a linear operator
In the following, let fi : Rni → R be proper convex functions and Fi be linear functions, i = 1, ..., k . More precisely, weconsider the functions

Fi : Rn → Rni , Fi(x) = Aix,where Ai is an ni × n real matrix for each i = 1, ..., k . Our initial problem becomes in this special case
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(PA) v-min
x∈X,

g(x)5K 0
(
f1(A1x), ..., fk (Akx))T .

Let us consider Ki = {0} ⊂ Rni for all i = 1, ..., k . It is not hard to prove that the functions fi are Ki-increasing, while
Fi are Ki-convex. Moreover, since ri(Ki) = {0}, i = 1, ..., k , the condition (CQ) becomes in this special case
(CQA) ∃x ′ ∈ ri(X ) such that { Aix ′ ∈ ri(dom(fi)), i = 1, ..., k,

g(x ′) ∈ − ri(K ).Since for all i = 1, ..., k and for all βi ∈ Rni+ we have
(βTi Fi)∗(pi) = { 0, ATi βi = pi,+∞, otherwise,

the next results arise as easy consequences of the ones presented within the previous section.
Theorem 4.1.

(a) Suppose that the condition (CQA) is fulfilled and let x be a weakly efficient solution of the problem (PA). Then
there exists λ = (λ1, ..., λk )T ∈ Rk+ \ {0}, q ∈ K ∗ and βi ∈ Rni , i ∈ Iλ, such that(iA) fi(Aix) + f∗i (βi)− βTi (Aix) = 0, i ∈ Iλ,(iiA) qTg(x) + (qTg)∗X(− ∑

i∈Iλ
λiATi βi

)+ ∑
i∈Iλ

λiβTi (Aix) = 0,

(iiiA) qTg(x) = 0.

(b) If there exists x feasible to (P) such that for some λ ∈ Rk+ \ {0}, q ∈ K ∗ and βi ∈ Rni , i ∈ Iλ, the conditions(iA)− (iiiA) are satisfied, then x is a weakly efficient solution of (PA).
To the problem (PA), we attach as a special case of (D) (cf. 3.3) the vector dual problem
(DA) v-max(λ,q,β,t)∈BA

(
hA1 (λ, q, β, t), ..., hAk (λ, q, β, t))T ,

where for each i = 1, ..., k we have
hAi (λ, q, β, t) = −f∗i (βi)− 1

|λ| (qTg)∗X(−∑
i∈Iλ

λiATi βi
)+ ti

and the dual variables are λ = (λ1, ..., λk )T ∈ Rk , q = (q1, ..., qm)T ∈ Rm, β = (β1, ..., βk ) ∈ Rn1 × ... × Rnk and
t = (t1, ..., tk )T ∈ Rk . The feasible set turns out to be

BA = {(λ, q, β, t) : λ ∈ Rk+ \ {0}, q ∈ K ∗, k∑
i=1 λiti = 0}.

Now, we get from Theorem 3.6 and Theorem 3.7 the corresponding weak and strong vector duality results.
Theorem 4.2.
There is no x ∈ A and no (λ, q, β, t) ∈ BA such that fi(Aix) < hAi (λ, q, β, t) for all i = 1, ..., k .
Theorem 4.3.
Assume that (CQA) is fulfilled. If x is a weakly efficient solution of the problem (PA), then there exists (λ, q, β, t) ∈ BA
that is a weakly efficient solution to (DA) and for all i = 1, ..., k one has

fi(Aix) = hAi
(
λ, q, β, t

)
.
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4.2. The ordinary multiobjective optimization problem
Let us consider now n1 = ... = nk = n and let

Fi : Rn → Rn, Fi(x) = x,

for all i = 1, ..., k . For fi : Rni → R proper and convex functions, i = 1, ..., k , our initial problem becomes
(PB) v-min

x∈X,
g(x)5K 0

(
f1(x), ..., fk (x))T ,

Obviously, the previous problem is a particular case of (PA) with Ai = I (the identical operator), i = 1, ..., k . Theconstraint qualification (CQA) becomes
(CQB) ∃x ′ ∈ ri(X ) k⋂

i=1 ri ( dom(fi)) such that g(x ′) ∈ − ri(K ).
Theorem 4.4.

(a) Suppose that the condition (CQB) is fulfilled and let x be a weakly efficient solution of the problem (PB). Then
there exists λ ∈ Rk+ \ {0}, q ∈ Rm+, and pi ∈ Rn, i ∈ Iλ, such that

(iB) fi(x) + f∗i (pi)− pTi x = 0, i ∈ Iλ,

(iiB) qTg(x) + (qTg)∗X(− ∑
i∈Iλ

λipi
)+ ∑

i∈Iλ
λipTi x = 0,

(iiiB) qTg(x) = 0.

(b) If there exists x feasible to (PB) such that for some λ ∈ Rk+ \ {0}, q ∈ Rm+ and pi ∈ Rn, i ∈ Iλ, the conditions(iB)− (iiiB) are satisfied, then x is a weakly efficient solution of (PB).
As before to (PB) we associate a vector dual problem, namely
(DB) v-max(λ,q,p,t)∈BB

(
hB1 (λ, q, p, t), ..., hBk (λ, q, p, t))T ,

where
hBi (λ, q, p, t) = −f∗i (pi)− 1

|λ| (qTg)∗X(−∑
i∈Iλ

λipi
)+ ti

for all i = 1, ..., k , and the dual variables are λ = (λ1, ..., λk )T ∈ Rk , q = (q1, ..., qm)T ∈ Rm, p = (p1, ..., pk ) ∈ Rn×...×Rnand t = (t1, ..., tk )T ∈ Rk . Let
BB = {(λ, q, p, t) : λ ∈ Rk+ \ {0}, q ∈ K ∗, k∑

i=1 λiti = 0}.
Theorem 4.5.
There is no x ∈ A and no (λ, q, p, t) ∈ BB such that fi(x) < hBi (λ, q, p, t) for all i = 1, ..., k .
Theorem 4.6.
Assume that (CQB) is fulfilled. If x is a weakly efficient solution of the problem (PB), then there exists (λ, q, p, t) ∈ BB
that is a weakly efficient solution to (DB) and for all i = 1, ..., k applies

fi(x) = hBi
(
λ, q, p, t

)
.
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Remark 4.1.We would like to mention that for K = Rm+ the results presented in this paper are true if instead of g(x ′) ∈ − ri(Rm+) =
− int(Rm+) we impose the weaker assumption (see [20]){

gj (x ′) ≤ 0, j ∈ L,
gj (x ′) < 0. j ∈ N,

where L := {j ∈ {1, ..., m} : gj is an affine function} and N := {1, ..., m} \ L.
5. Conclusions
In this paper, we considered a multiobjective optimization problem the objective function of which has as entriescompositions of some convex functions, while the constraints are given by cone inequality constraints. To that problemwe associated a family of scalar optimization problems and to each member of this family a Fenchel-Lagrange-typedual is formulated. Using the weak and strong duality statements for the scalar problems optimality conditions forweakly efficient solutions of the original problem are presented, where only the involved functions and their conjugatesare used. A vectorial dual of the general problem we treat is given and weak and strong duality assertions are proved.Moreover, some special cases are considered.
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