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Abstract. When characterizing optimal solutions of both scalar and vector
optimization problems usually constraint qualifications have to be satisfied.

By considering sequential characterizations, given for the first time in vector

optimization in this paper, this drawback is eliminated. In order to establish
them we give first of all sequential characterizations for a convex composed

optimization problem with geometric and cone constraints. Then, by means

of scalarization, we extend them to the vectorial case. For exemplification we
particularize the characterization in the case of linear and set scalarization.

1. Introduction. Vector optimization problems have received a great deal of in-
terest from the scientific community due to their applicability in various practical
areas. From the theoretical point of view comprehensive studies on the subject
have been undertaken by numerous authors, among them we cite here the books
of Jahn [12], Luc [16] and Sawaragi, Nakayama and Tanino [21]. Vector optimiza-
tion has known a development similar to scalar optimization and one can easily
notice a growing interest in the community for fields like vector duality theory (see
[4, 9, 10, 22]), vector variational inequalities (see [6, 7, 15]), vector equilibrium
problems (see [14]), etc.

Due to the fact that the partial order generated by a convex cone in a topologi-
cal vector space is not necessarily a complete one, several notions of solutions for a
vector optimization problem have been given. In analogy to the scalar optimization
sufficient KKT-type optimality conditions have been given in the literature for the
different types of solutions which occur in the vector case. Unfortunately, the lack
of constraint qualifications makes the classical optimality conditions unusable. As
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an alternative we consider in this paper necessary and sufficient sequential opti-
mality conditions for both scalar and vector optimization problems, which can be
formulated in the absence of constraint qualifications.

In [2, 3] Boţ, Csetnek and Wanka have given sequential optimality conditions
in convex programming, without any constraint qualification, via a perturbation
approach, in a general framework. We consider here the convex composed opti-
mization problem with geometric and cone constraints

(Ps) inf
x∈M

G(x)∈−C

s(F (x)),

where X is a reflexive Banach space, Y and Z are Banach spaces partially ordered
by the closed convex cones, K and C, respectively, M is a nonempty closed con-
vex subset of X, F : X → Y • = Y ∪ {∞Y } is a proper, K-convex, star K-lower
semicontinuous function, G : X → Z• = Z ∪ {∞Z} is a proper, C-convex, C-epi
closed function and s : Y → R is a proper, convex, lower semicontinuous and K-
increasing function for which we make the convention that s(∞Y ) = +∞. Using
the refined version of the sequential characterizations expressed by means of the
classical subdifferential in [2], we deduce sequential characterizations for the opti-
mal solutions of the problem (Ps), with the help of an appropriate perturbation
function. They are further particularized in the case when the functions involved
are continuous. Then, by taking the cone K = {0} and F the identity function
on X we get improved sequential Lagrange multiplier conditions for the ordinary
convex optimization problem with geometric and cone constraints

(Pc) inf
x∈M

G(x)∈−C

s(x),

where s : X → R is a proper, convex and lower semicontinuous function.
Scalarization is probably the oldest and most studied method of characterizing

optimal solutions in vector optimization. It consists in associating to a vector
optimization problem a scalarized one such that making use of the solutions of
the latter, one can obtain important information on the solutions of the original
problem. The literature is quite rich in this respect, and we mention here several
authors, such as Boţ [1], Jahn [11] and [12], Luc [16], Tammer and Göpfert [22],
and the list could be continued.

A scalarized problem associated to the vector optimization problem

(Pv) v − min
x∈M

G(x)∈−C

F (x)

is actually of the form (Ps). Given a set S of scalarization functions, we introduce the
so-called S-properly efficient solutions and S-weakly efficient solutions for (Pv) and
characterize them by making use of the sequential optimality conditions obtained
for (Ps). One can notice that each S-properly efficient solution to (Pv) is a (Pareto)
efficient solution, while each S-weakly efficient solution to (Pv) is a weakly efficient
one. We further particularize the sequential characterizations by taking S as a set
of linear functions and as a set of K-strictly increasing function induced by a given
cone, respectively.

Let us underline again the fact that this optimality conditions do not require the
fulfillment of any constraint qualification.
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This article is organized as follows. Section 2 contains the preliminary notions
and results from convex analysis necessary to make this paper self-contained. Se-
quential optimality conditions for convex composed optimization problems with
geometric and cone constraints are given in section 3. The general case when F and
G are, among others, star K-lower semicontinuous and C-epi closed, respectively,
is treated. Then, they are taken continuous and this leads to general sequential
characterizations. By taking G ≡ 0 we obtain sequential optimality conditions for
composed geometric constrained optimization. In subsection 3.2 we obtain along
with a particular case of a sequential Lagrange multiplier condition, a sequential
version of the well known Pshenichnyi-Rockafellar Lemma in [18], which turns out
to be a refinement of Corollary 4.8 in [2] and improving thus Corollary 3.5 in [13].

Section 4 contains the results for vector optimization. In its beginning several
optimality notions used in the sequel are defined and the relationship among them
is described. The sequential characterizations for S-properly efficient and S-weakly
efficient solutions are given in the particular cases when the scalarizing function is
linear, and when it is defined with the help of a given cone, respectively.

2. Preliminaries. Consider X a locally convex space and X∗ its topological dual
space endowed with an arbitrary locally convex topology giving X as dual. The
most prominent examples of such a topology are the weak∗ topology ω(X∗, X) or
the strong topology when X is a reflexive Banach space. We denote by 〈x∗, x〉 the
value of the linear continuous functional x∗ ∈ X∗ at x ∈ X. For a subset M ⊆ X,
its indicator function, denoted by δM , is defined as δM : X → R = R ∪ {±∞}

δM (x) =
{

0, if x ∈M,
+∞, otherwise,

and its support functional, denoted by σM , is defined as σM : X∗ → R
σM (x∗) = sup

x∈M
〈x∗, x〉.

For a function f : X → R we denote by dom(f) = {x ∈ X : f(x) < +∞} its
domain and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We call f
proper if dom(f) 6= ∅ and f(x) > −∞ ∀x ∈ X. For x ∈ X such that f(x) ∈ R, the
subdifferential of f at x is defined by

∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}.
The normal cone to a closed subset M of X is defined by

NM (x) :=
{
∂(δM )(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈M}, if x ∈M,
∅, otherwise.

The conjugate function regarding the set U ⊆ X of f is the function f∗U : X∗ → R
defined by

f∗U (x∗) = sup
x∈U
{〈x∗, x〉 − f(x)}.

When U = X we get the classical Fenchel-Moreau conjugate of f denoted by f∗.
The so-called Young-Fenchel inequality proves to be extremely useful in applications,
and it reads as follows

f∗(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ X ∀x∗ ∈ X∗.
For all x ∈ dom(f) and x∗ ∈ X∗ one has

x∗ ∈ ∂f(x)⇐⇒ f∗(x∗) + f(x) = 〈x∗, x〉
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The conjugate function of f∗, f∗∗ : X → R, f∗∗(x) = supx∗∈X∗{〈x∗, x〉− f∗(x∗)} is
said to be the biconjugate of f . If f is a proper function one has that f is convex
and lower semicontinuous if and only if f∗∗(x) = f(x) ∀x ∈ X.

In case X is a nonreflexive Banach space the biconjugate of f is defined as
f∗∗ : X∗∗ → R, f∗∗(x∗∗) = supx∗∈X∗{〈x∗∗, x∗〉− f∗(x∗)}. If f : X → R is a proper,
convex and lower semicontinuous function, then for all x ∈ X it holds f(x) = f∗∗(x̂),
where x̂ is the canonical image of x. One can easily show that the reverse is also
true, namely if f : X → R is a proper function such that f(x) = f∗∗(x̂) ∀x ∈ X,
then f is convex and lower semicontinuous.

Having a non-empty cone C ⊆ X, we denote by C+ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥
0 for all x ∈ C} its dual cone, and by C+0 = {x∗ ∈ X∗ : 〈x∗, x〉 > 0 for all x ∈
C\{0}} the quasi-interior of the dual cone. We denote by ≤C the partial order
defined by x ≤C y if y − x ∈ C for all x, y ∈ X.

Definition 2.1. (see also [16]) Let C ⊆ X be a nonempty convex cone. A function
s : X → R is called C-increasing if for x, y ∈ X such that x ≤C y it follows
that s(x) ≤ s(y). A C-increasing function is called C-strongly increasing whenever
x ≤C y, x 6= y implies s(x) < s(y). In the case when int(C) 6= ∅ a C-increasing
function is called C-strictly increasing if for y − x ∈ int(C) it holds s(x) < s(y).

There are notions given for functions with extended real values that can be
extended also for functions having their ranges in infinite dimensional spaces. Thus,
let us consider Y a locally convex space partially ordered by the nonempty convex
cone K. To Y we attach a greatest element with respect to ≤K , which does not
belong to Y , denoted by ∞Y , and let us consider Y • = Y ∪ {∞Y }. Then, for each
y ∈ Y •, y ≤K ∞Y and we consider on Y • the following operations: y+∞Y =∞Y ,
t · ∞Y =∞Y and 〈λ,∞Y 〉 = +∞ for all y ∈ Y , t ≥ 0 and λ ∈ K+.

For a function F : X → Y • its domain is defined by dom(F ) = {x ∈ X : F (x) ∈
Y } and F is said to be proper if dom(F ) 6= ∅. The most common extension of
the classical notion of convexity for extended real valued functions is the notion of
cone-convexity, thus, F is said to be K − convex if

F (tx+ (1− t)y) ≤K tF (x) + (1− t)F (y) ∀x, y ∈ X ∀t ∈ [0, 1].

Denoting by epiK(F ) = {(x, y) ∈ X × Y : F (x) ≤K y} the K-epigraph of F we
have that F is K-convex if and only if epiK(F ) is convex.

For each λ ∈ K+ we consider the function (λF ) : X → R defined by (λF )(x) =
〈λ, F (x)〉 for all x ∈ X. We say that F is star K-lower semicontinuous if (λF ) is
lower semicontinuous for all λ ∈ K+ and that F is K-epi closed if epiK(F ) is a
closed set. The notion of a K-epi closed function was introduced by Luc in [16].
By [16, Theorem 5.9] it follows that every star K-lower semicontinuous function is
K-epi closed. One can easily observe, that when Y = R and K = R+ the notions
star K-lower semicontinuous and K-epi closed coincide, as they collapse into the
the classical lower semicontinuity. An example of a K-epi closed function which is
not star K-lower semicontinuous was given in [19, Example 1.2]. Nevertheless, this
function fails to be K-convex. An example of a K-convex and K-epi closed function
which is not star K-lower semicontinuous was recently given in [3].

3. Sequential Optimality Conditions for Convex Composed Optimization
Problems with Geometric and Cone Constraints. The general framework
used within this section is described in the following. Let us consider (X, ‖ · ‖) a
reflexive Banach space,(Y, ‖ · ‖) and (Z, ‖ · ‖) be Banach spaces, with (X∗, ‖ · ‖∗),
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(Y ∗, ‖ · ‖∗), (Z, ‖ · ‖∗), respectively, their topological dual spaces. Although the
spaces X,Y, Z and X∗, Y ∗, Z∗, are endowed with different norms, respectively, we
use the same notation for the norm, as there will be no danger of confusion. Let

{x∗n : n ∈ N} be a sequence in X∗. We write x∗n
ω∗−→ 0 (x∗n

‖·‖∗−→ 0) for the case when x∗n
converges to 0 in the weak∗ (strong) topology. We make the following convention:
if in a certain property we write x∗n → 0, we understand that the property holds
no matter which of the two topologies (weak∗ or strong) is used. The following
property will be frequently used in the paper:

if x∗n → 0 and xn → a, then 〈x∗n, xn〉 → 0,

where {xn : n ∈ N} ⊆ X, a ∈ X and xn → a means ‖xn − a‖ → 0, that is the
convergence in the topology induced by the norm on X.

Furthermore, on Y and Z we consider the partial orders induced by the nonempty
closed convex cones K ⊆ Y and C ⊆ Z, respectively, denoted by ≤K and ≤C ,
respectively.

We are going to give sequential optimality conditions for the following convex
composed optimization problem with geometric and cone constraints

(Ps) inf
x∈M

G(x)∈−C

s(F (x)),

where M is a nonempty closed convex subset of X, F : X → Y • is a proper, K-
convex, star K-lower semicontinuous function, G : X → Z• is a proper, C-convex,
C-epi closed function and s : Y → R is a proper, convex, lower semicontinuous
and K-increasing function, for which we make the convention that s(∞Y ) = +∞.
Furthermore, the following feasibility condition is required

(FC) F (M ∩ dom(F ) ∩G−1(−C)) ∩ dom(s) 6= ∅.

Remark 1. One should notice that in the framework stated above, since s is K-
increasing on Y , one has that s∗(y∗) = +∞ for all y∗ 6∈ K+.

Recently, in [2, 3], Boţ, Csetnek and Wanka have given sequential optimality
conditions in convex optimization via perturbation approach improving several pre-
existing results. Such characterizations in optimization prove to be of major im-
portance due to the fact that optimality conditions are given without requiring the
fulfillment of any constraint qualification, the case encountered when dealing with
optimality conditions obtained by other means, say for example by duality. We ex-
tend the results in [2, 3] to the case of convex composed optimization problems with
geometric and cone constraints rediscovering some of the results in the above men-
tioned papers as particular cases of the ones given here. Furthermore, they prove to
be helpful in giving sequential characterizations of solutions for vector optimization
problems. In section 5 of [2] the following theorem is given.

Theorem 3.1. Let Φ : X × Y → R be a proper convex and lower semicontinuous
function such that infx∈X Φ(x, 0) < +∞. For each a ∈ dom(Φ(·, 0)) the following
statements are equivalent:

a) a is a minimizer of Φ(·, 0) on X;
b) there exist sequences (xn, yn) ∈ dom(Φ) and (x∗n, y

∗
n) ∈ ∂Φ(xn, yn) such that

x∗n → 0, xn → a, yn → 0, 〈y∗n, yn〉 → 0,Φ(xn, yn)− Φ(a, 0)→ 0.
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We are going to rewrite (Ps) equivalently as

(P0) inf
x∈X

Φ(x, 0, 0),

where Φ : X × Y × Z → R is the perturbation function

Φ(x, y, z) =
{
s(F (x) + y), if x ∈M,G(x)− z ∈ −C,
+∞, otherwise.

In order to be able to apply Theorem 3.1 to (P0) we first need to prove that Φ is a
proper convex and lower semicontinuous function.

Lemma 3.2. The function Φ is proper, convex and lower semicontinuous.

Proof. First we notice that for all (x, y, z) ∈ X × Y × Z it holds Φ(x, y, z) =
s(F (x) + y) + δM (x) + δepiC(G)(x, z). We only have to prove that the function
Ψ : X×Y → R, Ψ(x, y) = s(F (x) + y) is convex and lower semicontinuous and this
will lead to the desired conclusion.

To this end we show that Ψ = Ψ∗∗|X×Ŷ , where Ŷ is the image of Y through the
canonical embedding into Y ∗∗. We start by computing the conjugate function of
Ψ. For (x∗, y∗) ∈ X∗ × Y ∗ we have

Ψ∗(x∗, y∗) = sup
x∈X,y∈Y

{〈x∗, x〉+ 〈y∗, y〉 − s(F (x) + y)}

= sup
x∈X,t∈Y

{〈x∗, x〉+ 〈y∗, t− F (x)〉 − s(t)}

= sup
x∈X
{〈x∗, x〉 − 〈y∗, F (x)〉}+ s∗(y∗).

From Remark 1 we have s∗(y∗) = +∞ for all y∗ 6∈ K+ and therefore

Ψ∗(x∗, y∗) =
{

(y∗F )∗(x∗) + s∗(y∗), y∗ ∈ K+,
+∞, otherwise.

By calculating the value of the biconjugate function of Ψ, Ψ∗∗ : X × Y ∗∗ → R, on
(x, ŷ) ∈ X × Y ∗∗ for (x, y) ∈ X × Y , one gets

Ψ∗∗(x, ŷ) = sup
x∗∈X∗,y∗∈K+

{〈x∗, x〉+ 〈y∗, y〉 − (y∗F )∗(x∗)− s∗(y∗)}

= sup
y∗∈K+

{〈y∗, y〉 − s∗(y∗) + (y∗F )∗∗(x)} .

The function F is proper, K-convex and star K-lower semicontinuous, therefore
since y∗ ∈ K+ the function (y∗F ) is proper, convex and lower semicontinuous.
Thus (y∗F )∗∗(x) = (y∗F )(x) for all x ∈ X. Using this we obtain that

Ψ∗∗(x, ŷ) = sup
y∗∈K+

{〈y∗, y〉 − s∗(y∗) + (y∗F )(x)}

= sup
y∗∈Y ∗

{
〈y∗, ̂y + F (x)〉 − s∗(y∗)

}
= s∗∗( ̂y + F (x))

= s(y + F (x)) = Ψ(x, y).

In conclusion Ψ∗∗|X×Ŷ = Ψ and this implies that Ψ is convex and lower semicon-
tinuous. This concludes the proof.

The following theorem gives sequential optimality conditions for (P0), which are
actually optimality conditions for (Ps).
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Theorem 3.3. An element a ∈M ∩G−1(−C) ∩ dom(F ) is an optimal solution of
problem (Ps) if and only if
∃(xn, yn, zn) ∈ (M ∩ dom(F ))× dom(s)×−C,∃(x∗n, y∗n, z∗n) ∈ X∗ ×K+ × C+,
x∗n ∈ ∂ ((y∗nF ) + (z∗nG) + δM ) (xn), y∗n ∈ ∂s(yn), 〈z∗n, zn〉 = 0 ∀n ∈ N,
x∗n → 0, xn → a, yn − F (xn)→ 0, zn −G(xn)→ 0,
〈y∗n, yn − F (a)〉 − 〈z∗n, G(a)〉 → 0,
〈y∗n, F (xn)− F (a)〉+ 〈z∗n, G(xn)−G(a)〉 → 0, s(yn)− s(F (a))→ 0.

(1)

Proof. We notice first that Φ is a proper convex and lower semicontinuous func-
tion such that infx∈X Φ(x, 0, 0) < +∞. By Theorem 3.1 and taking (FC) into
consideration we have that a ∈ M ∩ G−1(−C) ∩ dom(F ) is an optimal solution of
problem (Ps) if and only if it is also an optimal solution of (P0). So, a is an opti-
mal solution of (Ps) if and only if there exist the sequences (xn, un, vn) ∈ dom(Φ),
(x∗n, u

∗
n,−v∗n) ∈ ∂Φ(xn, un, vn) such that

x∗n → 0, xn → a, (un, vn)→ 0, 〈(u∗n,−v∗n), (un, vn)〉 → 0, and

Φ(xn, un, vn)− Φ(a, 0, 0)→ 0.

For all n ∈ N from (xn, un, vn) ∈ dom(Φ) we get that xn ∈ M ∩ dom(F ), F (xn) +
un ∈ dom(s) and G(xn)− vn ∈ −C. For (x∗n, u

∗
n,−v∗n) ∈ ∂Φ(xn, un, vn) we use the

characterization

Φ∗(x∗n, u
∗
n,−v∗n) + Φ(xn, un, vn) = 〈x∗n, xn〉+ 〈u∗n, un〉 − 〈v∗n, vn〉.

Thus, for all n ∈ N, we obtain equivalently that u∗n ∈ K+, v∗n ∈ C+ and

((u∗nF )+(v∗nG)+δM )∗(x∗n)+s∗(u∗n)+s(F (xn)+un) = 〈x∗n, x〉+ 〈u∗n, un〉−〈v∗n, vn〉.
(2)

As v∗n ∈ C+ and G(xn)−vn ∈ −C we have 〈v∗n, G(xn)−vn〉 ≤ 0. Using the Fenchel-
Young inequality we also get ((u∗nF ) + (v∗nG) + δM )∗(x∗n) ≥ 〈x∗n, xn〉− (u∗nF )(xn)−
(v∗nG)(xn)−δM (xn) ≥ 〈x∗n, xn〉−(u∗nF )(xn)−〈v∗n, vn〉 and s∗(u∗n)+s(F (xn)+un) ≥
〈u∗n, un〉+ (u∗nF )(xn) ∀n ∈ N. Thus, by (2) we obtain equality in all the inequalities
above. Hence (x∗n, u

∗
n,−v∗n) ∈ ∂Φ(xn, un, vn) is equivalent to u∗n ∈ K+, v∗n ∈ C+,

x∗n ∈ ∂((u∗nF ) + (v∗nG) + δM )(xn), u∗n ∈ ∂s(F (xn) + un) and 〈v∗n, G(xn)− vn〉 = 0.
Consequently, a ∈M ∩G−1(−C) ∩ dom(F ) is an optimal solution of problem (Ps)
if and only if

∃(xn, un, vn) ∈ (M ∩ dom(F ))× Y × Z,
F (xn) + un ∈ dom(s), G(xn)− vn ∈ −C,
∃(x∗n, u∗n, v∗n) ∈ X∗ ×K+ × C+, x∗n ∈ ∂ ((u∗nF ) + (v∗nG) + δM ) (xn),
u∗n ∈ ∂s(F (xn) + un), 〈v∗n, G(xn)− vn〉 = 0 ∀n ∈ N,
x∗n → 0, xn → a, un → 0, vn → 0,
〈u∗n, un)〉 − 〈v∗n, vn〉 → 0, s(F (xn) + un)− s(F (a))→ 0.

(3)

Making the following notations: yn := F (xn) + un, zn := G(xn) − vn, y∗n := u∗n,
z∗n := v∗n for all n ∈ N, (3) becomes
∃(xn, yn, zn) ∈ (M ∩ dom(F ))× dom(s)×−C,∃(x∗n, y∗n, z∗n) ∈ X∗ ×K+ × C+,
x∗n ∈ ∂ ((y∗nF ) + (z∗nG) + δM ) (xn), y∗n ∈ ∂s(yn), 〈z∗n, zn〉 = 0 ∀n ∈ N,
x∗n → 0, xn → a, yn − F (xn)→ 0, zn −G(xn)→ 0,
〈y∗n, yn − F (xn)〉 − 〈z∗n, G(xn)〉 → 0, s(yn)− s(F (a))→ 0.

(4)
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Further, we improve the relations in (4), by proving that under the hypotheses (xn, yn, zn) ∈ (M ∩ dom(F ))× dom(s)×−C, (x∗n, y∗n, z∗n) ∈ X∗ ×K+ × C+,
x∗n ∈ ∂ ((y∗nF ) + (z∗nG) + δM ) (xn), y∗n ∈ ∂s(yn), 〈z∗n, zn〉 = 0 ∀n ∈ N,
x∗n → 0, xn → a, yn − F (xn)→ 0, zn −G(xn)→ 0, s(yn)− s(F (a))→ 0

(5)
for the following three real sequences defined as:

bn := 〈y∗n, yn − F (a)〉+ 〈z∗n,−G(a)〉 ∀n ∈ N,

cn := 〈y∗n, F (xn)− F (a)〉+ 〈z∗n, G(xn)−G(a)〉 ∀n ∈ N
and

an := 〈y∗n, yn − F (xn)〉 − 〈z∗n, G(xn)〉 = bn − cn ∀n ∈ N,
we have

an → 0 if and only if bn → 0 and cn → 0.

The sufficiency follows at once. Therefore, it remains to prove the necessity. Assume
now that an → 0. For all n ∈ N, since y∗n ∈ ∂s(yn), it holds 〈y∗n, yn − F (a)〉 ≥
s(yn)− s(F (a)). From G(a) ∈ −C and z∗n ∈ C+ we have 〈z∗n,−G(a)〉 ≥ 0. Hence

bn ≥ s(yn)− s(F (a)) + 〈z∗n,−G(a)〉 ≥ s(yn)− s(F (a)) ∀n ∈ N. (6)

Furthermore,

−cn = ((y∗nF ) + (z∗nG)) (a)− ((y∗nF ) + (z∗nG)) (xn)

= ((y∗nF ) + (z∗nG) + δM ) (a)− ((y∗nF ) + (z∗nG) + δM ) (xn) ≥ 〈x∗n, a− xn〉,

as x∗n ∈ ∂ ((y∗nF ) + (z∗nG) + δM ) (xn) ∀n ∈ N. Thus,

− cn ≥ 〈x∗n, a− xn〉 ∀n ∈ N. (7)

From (6) and (7) we get

s(yn)− s(F (a)) ≤ bn = an + cn ≤ an + 〈x∗n, xn − a〉 ∀n ∈ N. (8)

For n → +∞, since an → 0 and taking into consideration that, by (5), s(yn) −
s(F (a))→ 0, and x∗n → 0 and xn−a→ 0, which imply 〈x∗n, xn−a〉 → 0, we obtain
from (8) that bn = an + cn → 0 and thus also cn → 0.

Therefore (1) is equivalent to (4) and the theorem is proved.

Theorem 3.3 is stated under rather weak assumptions imposed on the sets and
the functions involved in its formulation. By specializing some of these objects, we
are able to obtain as particular cases not only other important results we use later,
but also sequential characterizations of optimality previously given in the literature.

3.1. The Case when F and G are Continuous. The framework we work within
remains basically the same as in the beginning of this section. Imposing stronger
conditions on the functions involved in defining the optimization problem (Ps) the
sequential characterization of the optimal solutions in Theorem 3.3 can be substan-
tially refined.

Take F : X → Y and G : X → Z continuous, thus dom(F ) = dom(G) = X and
the feasibility condition (FC) becomes

(FCC) F (M ∩G−1(−C)) ∩ dom(s) 6= ∅.

With these hypotheses we get the following result.
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Theorem 3.4. An element a ∈ M ∩ G−1(−C) is an optimal solution of problem
(Ps) if and only if

∃(xn, yn, zn) ∈M × dom(s)×−C,
∃(u∗n, v∗n, t∗n, y∗n, z∗n) ∈ X∗ ×X∗ ×X∗ ×K+ × C+,
u∗n ∈ ∂(y∗nF )(xn), v∗n ∈ ∂(z∗nG)(xn), t∗n ∈ NM (xn), y∗n ∈ ∂s(yn),
〈z∗n, zn〉 = 0 ∀n ∈ N, u∗n + v∗n + t∗n → 0, xn → a, yn → F (a), zn → G(a),
〈y∗n, yn − F (a)〉 − 〈z∗n, G(a)〉 → 0,
〈y∗n, F (xn)− F (a)〉+ 〈z∗n, G(xn)−G(a)〉 → 0, s(yn)− s(F (a))→ 0.

(9)

Proof. From Theorem 3.3 we have that a ∈ M ∩ G−1(−C) is an optimal solution
of problem (Ps) if and only if (1) is satisfied. Using Theorem 2.8.7 in [23], for each
n ∈ N, from the fact that F and G are continuous functions we have

∂ ((y∗nF ) + (z∗nG) + δM ) (xn) = ∂(y∗nF )(xn) + ∂(z∗nG)(xn) +NM (xn).

Thus for all x∗n ∈ ∂ ((y∗nF ) + (z∗nG) + δM ) (xn), n ∈ N, taking into consideration
the equality above, one obtains the existence of other three sequences such that
u∗n, v

∗
n, t
∗
n ∈ X∗ and

x∗n = u∗n + v∗n + t∗n, u
∗
n ∈ ∂(y∗nF )(xn), v∗n ∈ ∂(z∗nG)(xn), t∗n ∈ NM (xn).

Since x∗n → 0, we have u∗n + v∗n + t∗n → 0. As F and G are continuous and xn → a
when n → +∞, it holds F (xn) → F (a) and G(xn) → G(a) when n → +∞. Then
yn − F (xn)→ 0 and zn −G(xn)→ 0 is the same with

yn → F (a) and zn → G(a).

Changing in (1) the sequences according to the facts listed above, we obtain exactly
(9).

The aforementioned particular case can be further specialized when considering
only geometric constrained problems, i.e in the case when the function G ≡ 0.
In this situation we obtain the following result which is a natural consequence of
Theorem 3.4, therefore its proof is omitted.

Corollary 1. An element a ∈M is an optimal solution of the optimization problem

(Pg) inf
x∈M

s(F (x))

if and only if
∃(xn, yn) ∈M × dom(s),∃(u∗n, t∗n, y∗n) ∈ X∗ ×X∗ ×K+,
u∗n ∈ ∂(y∗nF )(xn), t∗n ∈ NM (xn), y∗n ∈ ∂s(yn) ∀n ∈ N,
u∗n + t∗n → 0, xn → a, yn → F (a),
〈y∗n, yn − F (a)〉 → 0, 〈y∗n, F (xn)− F (a)〉 → 0, s(yn)− s(F (a))→ 0.

(10)

3.2. Sequential Lagrange Multiplier Conditions. The convex composed op-
timization problem (Ps) can be reduced to an ordinary one, by taking X = Y, the
function F as the identity function on X, i.e. F : X → X,F (x) = x for all x ∈ X,
and the cone K = {0}. Using again Theorem 3.4 we are able to develop sequential
optimality conditions for the convex optimization problem with geometric and cone
constraints

(Pc) inf
x∈M

G(x)∈−C

s(x),
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where s : X → R is a proper, convex and lower semicontinuous function, G : X → Z
is a C-convex and continuous function and the feasibility condition

(FCCL) M ∩G−1(−C) ∩ dom(s) 6= ∅
is satisfied. Then the following sequential Lagrange multiplier condition can be
given. It actually turns out to be a refinement of the result in Theorem 4.10 in [2].

Theorem 3.5. An element a ∈ M ∩G−1(−C) ∩ dom(s) is a solution of the opti-
mization problem (Pc) if and only if

∃(xn, yn, zn) ∈M × dom(s)×−C,∃(v∗n, t∗n, y∗n, z∗n) ∈ X∗ ×X∗ ×X∗ × C+,
v∗n ∈ ∂(z∗nG)(xn), t∗n ∈ NM (xn), y∗n ∈ ∂s(yn), 〈z∗n, zn〉 = 0 ∀n ∈ N,
y∗n + v∗n + t∗n → 0, xn → a, yn → a, zn → G(a),
〈y∗n, yn − a〉 − 〈z∗n, G(a)〉 → 0,
〈y∗n, xn − a〉+ 〈z∗n, G(xn)−G(a)〉 → 0, s(yn)− s(a)→ 0.

(11)

Proof. One can easily see that (Pc) is nothing but a particularization of (Ps). Since
K = {0}, its dual is K+ = X∗ and s is K-increasing. Using Theorem 3.4 we have
that a ∈M ∩G−1(−C)∩ dom(s) is a solution of (Pc) if and only if (9) holds. Since
F is the identity on X and u∗n ∈ ∂(y∗nF )(xn) it is easy to see that u∗n = y∗n for
n ∈ N, i.e. (9) becomes (11).

Remark 2. It is well known that for all x ∈M ∩G−1(−C)∩ dom(s) the following
relations hold

∂
(
s+ δ{u∈M :G(u)∈−C}

)
(x) ⊇

⋃
z∗∈C+,

(z∗G)(x)=0

∂(s+ (z∗G) + δM )(x)

⊇ ∂s(x) +
⋃

z∗∈C+,
(z∗G)(x)=0

∂((z∗G) + δM )(x).

Thus for a given a ∈M ∩G−1(−C) ∩ dom(s), if one has that

0 ∈
⋃

z∗∈C+,
(z∗G)(a)=0

∂(s+ (z∗G) + δM )(a)

or
0 ∈ ∂s(a) +

⋃
z∗∈C+,

(z∗G)(a)=0

∂((z∗G) + δM )(a),

then a is an optimal solution to (Pc). In other words, this is nothing else than asking
for the classical KKT optimality conditions for the optimization problem (Pc) to be
fulfilled. Let us also notice that, in case some regularity conditions are satisfied (for
more details, see [5]), the inclusion relations above turn into equalities. Nevertheless,
there are situations when the KKT optimality conditions are not fulfilled, unlike
the sequential optimality conditions given in Theorem 3.5. This is also the case for
the problem considered in the example below.

Example 1. Let X = R, Z = R2, C = R2
+, M = R, s : R → Rbe defined

by s(x) = −
√
x + δR+(x), x ∈ R, and G = (G1, G2)T : R → R2 be defined by

G1(x) = −1 − x and G2(x) = x, x ∈ R. Then s is a proper, convex and lower
semicontinuous function, G is R2

+-convex and continuous function and the feasibility
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condition (FCCL) is fulfilled. The element a = 0 is the (unique) optimal solution
of the problem (Pc). Since⋃

z∗∈C+,
(z∗G)(0)=0

∂(s+ (z∗G) + δM )(0) = ∂s(0) +
⋃

z∗∈C+,
(z∗G)(0)=0

∂((z∗G) + δM )(0) = ∅,

the classical KKT optimality conditions fail. Nevertheless, as we show in the fol-
lowing, the sequential optimality conditions in (11) are satisfied. To this end it
is enough to take xn = 0, yn = 1/n, zn = (1/n − 1, 0)T , v∗n =

√
n/2, t∗n =

0, y∗n = −
√
n/2 and z∗n = (0,

√
n/2)T for all n ∈ N. Thus, for all n ∈ N,√

n/2 ∈ ∂(z∗nG)(0), 0 ∈ NM (0), −
√
n/2 ∈ ∂s(1/n) and z∗Tn zn = 0. Further,

y∗n + v∗n + t∗n = 0, xn → 0, yn → 0 and zn → (−1, 0)T = G(0). Moreover,
〈y∗n, yn − a〉 − 〈z∗n, G(a)〉 = −1/(2

√
n) → 0, 〈y∗n, xn − a〉 + 〈z∗n, G(xn) − G(a)〉 = 0

and s(1/n)→ s(0).

A sequential generalization of the well-known Pshenichnyi-Rockafellar Lemma
can be given, by taking in Theorem 3.5 only geometric constraints. It is stated
bellow.

Theorem 3.6. Let s : X → R be a proper, convex and lower semicontinuous
function such that M ∩ dom(s) 6= ∅. Then a ∈ M ∩ dom(s) is an optimal solution
of the problem

(PPR) inf
x∈M

s(x)

if and only if
∃(xn, yn) ∈M × dom(s),∃(t∗n, y∗n, ) ∈ X∗ ×X∗,
y∗n ∈ ∂s(yn), t∗n ∈ NM (xn) ∀n ∈ N,
y∗n + t∗n → 0, xn → a, yn → a,
〈y∗n, yn − a〉 → 0, 〈y∗n, xn − a〉 → 0, s(yn)− s(a)→ 0.

(12)

Proof. Problem (PPR) is nothing else than (Pc) when G ≡ 0. Relation (12) is
nothing else than (11) in Theorem 3.5 in this particular case.

Theorem 3.6 is also a refinement of Corollary 4.8 in [2] and, consequently, a
generalization of Corollary 3.5 in [13].

4. Sequential Optimality Conditions in Vector Optimization. Vector opti-
mization problems are thoroughly studied due to their utility in various practical
areas. In the literature, several approaches in defining and studying optimal solu-
tions of vector optimization problems have been undertaken.

Let us consider the following vector optimization problem

(Pv) v − min
x∈M

G(x)∈−C

F (x)

where X is a reflexive Banach space, Y and Z are Banach spaces, K ⊆ Y and
C ⊆ Z are closed convex cones which define partial orders on Y and Z denoted by
≤K and ≤C , respectively. We also assume that K is pointed (K ∩−K = {0}). Let
M be a nonempty closed convex subset of X, F : X → Y be a K-convex continuous
function and G : X → Z be a C-convex continuous function such that the following
feasibility condition is satisfied

M ∩G−1(−C) 6= ∅.
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Definition 4.1. (see [12]) An element a ∈ M ∩ G−1(−C) is called a (Pareto)
efficient solution to (Pv) if from F (x) ≤K F (a) for an x ∈M ∩G−1(−C) it follows
that F (x) = F (a).

Let us consider the set of convex and K-strongly increasing functions on Y

S = {s : Y → R : s is convex and K-strongly increasing}.

Definition 4.2. (see [9, 10]) An element a ∈M∩G−1(−C) is said to be a S-properly
efficient solution to (Pv) if there exists a function s ∈ S such that s(F (a)) ≤ s(F (x))
for all x ∈M ∩G−1(−C), i.e. if it is an optimal solution of the problem

(Ps) inf
x∈M

G(x)∈−C

s(F (x)).

Remark 3. Each S-properly efficient solution to (Pv) is also an efficient one.

If int(K) 6= ∅ one can also introduce another efficiency notion, the so-called
weakly efficient solution.

Definition 4.3. (see [12]) An element a ∈ M ∩ G−1(−C) is said to be a weakly
efficient solution to (Pv) if there exists no x ∈M∩G−1(−C) such that F (x)−F (a) ∈
− int(K).

Considering the set of convex and K-strictly increasing functions on Y

T = {s : Y → R : s is convex and K-strictly increasing},
one can define the following new class of efficient solutions.

Definition 4.4. An element a ∈ M ∩ G−1(−C) is said to be a T-weakly efficient
solution to (Pv) if there exists a function s ∈ T such that s(F (a)) ≤ s(F (x)) for all
x ∈M ∩G−1(−C), i.e. if it is an optimal solution of the problem (Ps).

Remark 4. As an easy consequence of the last definition one deduces that each
T -weakly efficient solution to (Pv) is also a weakly efficient one.

Using the results from the previous section we can give sequential optimality
conditions for both S-properly and T -weakly efficient solutions to (Pv). One must
acknowledge the fact that such conditions hold without any other constraint qualifi-
cation, therefore they represent an improvement for the optimality conditions given
so far in the literature (see [4]). They can also be stated in the case when the func-
tions F and G are only star K-lower semicontinuous and C-epi closed, respectively,
but for the simplicity of the presentation we have chosen to express them in the
continuous case.

Sequential characterization of optimal solutions for problem (Ps) have already
been given in Theorem 3.4. Since they look identical both for S-properly efficient
solutions and T -weakly efficient solutions, the only difference being that for the
first one the function s is K-strongly increasing while for the second the function
is K-strictly increasing, they are not repeated here at this point. Nevertheless, in
the following subsections we give two particular cases by specializing the scalarizing
function. For them, we state explicitly the sequential optimality conditions.

It is worth mentioning that our theory can be applied to a wider area of scalarizing
functions. Nevertheless, we restrict ourselves to the afore mentioned particular
cases since besides being representative they also suffice as examples of obtaining
sequential optimality conditions for vector optimization by means of scalarization.
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4.1. Linear Scalarization. The most famous and used scalarization in vector op-
timization is the one with K-strongly increasing linear functionals. Let us start by
noticing that for each λ ∈ K+0 the function sλ : Y → R defined by

sλ(y) = 〈λ, y〉 ∀y ∈ Y
is K-strongly increasing, continuous and convex. Then, considering the set

Sl = {sλ : Y → R : sλ(y) = 〈λ, y〉 ∀y ∈ Y, λ ∈ K+0},
an element a ∈ M ∩ G−1(−C) is a Sl-properly efficient solution to (Pv) if there
exists a λ ∈ K+0 such that 〈λ, F (a)〉 ≤ 〈λ, F (y)〉 for all y ∈ M ∩ G−1(−C). The
following sequential optimality condition can be given.

Theorem 4.5. An element a ∈ M ∩ G−1(−C) is a Sl- properly efficient solution
to (Pv) if and only if there exists a λ ∈ K+0 such that ∃(xn, zn) ∈M ×−C, ∃(u∗n, v∗n, t∗n, z∗n) ∈ X∗ ×X∗ ×X∗ × C+,

u∗n ∈ ∂(λF )(xn), v∗n ∈ ∂(z∗nG)(xn), t∗n ∈ NM (xn), 〈z∗n, zn〉 = 0 ∀n ∈ N,
u∗n + v∗n + t∗n → 0, xn → a, zn → G(a), 〈z∗n, G(a)〉 → 0, 〈z∗n, G(xn)〉 → 0.

(13)

Proof. An element a ∈ M ∩ G−1(−C) is a Sl-properly efficient solution to (Pv) if
and only if there exists a λ ∈ K+0 such that it is an optimal solution to the problem

(Pλ) inf
x∈M

G(x)∈−C

〈λ, F (x)〉,

which is nothing but a reformulation of problem (Ps) in this framework. Since all
the function involved are continuous and sλ is K-increasing, we can use Theorem
3.4 where the sequential characterization of the optimal solutions is given by system
(9). Due to the particular form of sλ the following changes are made. First of all
dom(sλ) = Y while y∗n ∈ ∂sλ(yn) means actually that y∗n = λ for all n ∈ N. By
replacing y∗n with λ in (9) we obtain exactly (13), taking also into account that
sλ and F are continuous, and yn → F (a) for n → ∞, thus becoming superfluous
for us to write the conditions sλ(yn) − sλ(F (a)) → 0, 〈λ, yn − F (a)〉 → 0 and
〈λ, F (xn)− F (a)〉 → 0.

Remark 5. By taking into consideration Remark 2 one can easily see that if there
exists, for a fixed a ∈M ∩G−1(−C), an element λ ∈ K+0 such that

0 ∈
⋃

z∗∈C+,
(z∗G)(a)=0

∂((λF ) + (z∗G) + δM )(a)

or
0 ∈ ∂(λF )(a) +

⋃
z∗∈C+,

(z∗G)(a)=0

∂((z∗G) + δM )(a),

then a is a Sl-properly efficient solution to (Pv). For more details on KKT-type
optimality conditions for vector optimization problems we refer the reader to [1].
As in the scalar case, there are situations, like in the example below, where these
conditions fail, while the sequential optimality conditions are satisfied.

Example 2. Let X = R, Y = R2, Z = R, K = R2
+, C = R+, M = R, F =

(F1, F2)T : R→ R2, be defined by F1(x) = x and F2(x) = x2, x ∈ R, and G : R→ R
be defined by G(x) = x2, x ∈ R. The function F is R2

+-convex and continuous, while
G is R+-convex and continuous. Moreover, the feasibility condition M∩G−1(−C) 6=
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∅ is satisfied. Obviously, a = 0 is a Sl-properly efficient solution to (Pv), but there
is no λ ∈ int(R2

+) such that one of the optimality conditions in Remark 5 is fulfilled.
This is not the case for the sequential optimality conditions given in (13), as follows
from the following considerations. For λ = (1, 1)T we take xn = −1/n, zn = 0,
u∗n = 1−2/n, v∗n = −1, t∗n = 0 and z∗n = n/2 for all n ∈ N. Thus, for all n ∈ N, one
has 1 − 2/n ∈ ∂(λF )(1/n), −1 ∈ ∂(n/2G)(−1/n), 0 ∈ NM (−1/n) and z∗nzn = 0.
Moreover, u∗n + v∗n + t∗n = −2/n → 0, xn → 0, zn → 0 = G(0), 〈z∗n, G(a)〉 = 0 and
〈z∗n, G(xn)〉 = 1/(2n)→ 0.

4.2. Set Scalarization. Some quite recent scalarization methods are based on al-
ready given or constructed sets which have to satisfy some conditions. The scalar-
ization function we use in the following is attributed to Gerth and Weidner (cf. [8]),
but it was used before, for example, by Rubinov in [20] and Pascoletti and Serafini
in the context of vector optimization in [17].

To the general framework from the beginning of the section we add the assump-
tion that the convex closed cone K fulfills the assumption int(K) 6= ∅. For each
µ ∈ int(K) we consider the function

sµ : Y → R, sµ(y) = inf{t ∈ R : y ∈ tµ−K},

which is K-strictly increasing, convex and continuous, according to [8]. Let us
consider the following set of K-strictly increasing, convex and continuous functions

Ts = {sµ : µ ∈ int(K)}.

Then an element a ∈M ∩G−1(−C) is a Ts-weakly efficient solution to (Pv) if there
exists a µ ∈ int(K) such that a is an optimal solution to problem

(Pµ) inf
x∈M

G(x)∈−C

sµ(F (x)).

The following sequential characterization of Ts-weakly efficient solutions can be
given.

Theorem 4.6. An element a ∈ M ∩G−1(−C) is a Ts-weakly efficient solution to
(Pv) if and only if there exists a µ ∈ int(K) such that

∃(xn, yn, zn) ∈M × Y ×−C, ∃(u∗n, v∗n, t∗n, y∗n, z∗n) ∈ X∗ ×X∗ ×X∗ ×K+ × C+,
u∗n ∈ ∂(y∗nF )(xn), v∗n ∈ ∂(z∗nG)(xn), t∗n ∈ NM (xn), 〈z∗n, zn〉 = 0,
〈y∗n, µ〉 = 1, σ{λ∈K+:〈λ,µ〉=1}(yn) = 〈y∗n, yn〉 ∀n ∈ N
u∗n + v∗n + t∗n → 0, xn → a, yn → F (a), zn → G(a),
〈y∗n, yn − F (a)〉 − 〈z∗n, G(a)〉 → 0,
〈y∗n, F (xn)− F (a)〉+ 〈z∗n, G(xn)−G(a)〉 → 0.

(14)

Proof. For µ ∈ int(K) problem (Pµ) is nothing but a reformulation of problem (Ps)
in this particular framework. From Theorem 3.4 we know that a is an optimal
solution of (Pµ) if and only if (9) holds. In order to be able to reexpress it, we need
to establish the conjugate of sµ, s∗µ : Y ∗ → R . For each y∗ ∈ K+ one has



SEQUENTIAL CHARACTERIZATION OF SOLUTIONS 15

s∗µ(y∗) = sup
y∈Y

〈y∗, y〉 − inf
t∈R

y∈tµ−K

t

 = sup
t∈R

y∈tµ−K

{〈y∗, y〉 − t}

= sup
t∈R

{
−t+ sup

u∈−K
〈y∗, u+ tµ〉

}
= sup

t∈R
{t(〈y∗, µ〉 − 1)}+ sup

u∈−K
〈y∗, u〉

=
{

0, 〈y∗, µ〉 = 1
+∞, otherwise.

Thus, for yn ∈ Y and y∗n ∈ K+, y∗n ∈ ∂sµ(yn) is equivalent to

〈y∗n, µ〉 = 1 and inf
t∈R,yn∈tµ−K

t = 〈y∗n, yn〉 ∀n ∈ N. (15)

The above expression can be further refined thus obtaining a more interesting for-
mulation of it. Let yn ∈ Y, n ∈ N, be fixed. Since µ ∈ int(K) it is easy to verify the
Slater condition for the optimization problem

(PI) inf
t∈R,yn−tµ∈−K

t,

i.e. there exists t′ ∈ R such that t′µ − yn ∈ int(K). Thus, strong duality holds
between (PI) and its Lagrange dual problem. Therefore

inf
t∈R,yn∈tµ−K

t = sup
λ∈K+

inf
t∈R
{t+ 〈λ, yn − tµ〉} = sup

λ∈K+

{
〈λ, yn〉+ inf

t∈R
{t− 〈λ, tµ〉}

}
= sup
λ∈K+,〈λ,µ〉=1

〈λ, yn〉 = σ{λ∈K+,〈λ,µ〉=1}(yn).

(16)

From (15) and (16) we obtain that, for yn ∈ Y and y∗n ∈ K+, y∗n ∈ ∂sµ(yn) if and
only if

〈y∗n, µ〉 = 1 and σ{λ∈K+,〈λ,µ〉=1}(yn) = 〈y∗n, yn〉 ∀n ∈ N.
Taking into account that sµ is continuous and yn → F (a) for n→∞, it is superflu-
ous to write the condition sµ(yn) − sµ(F (a)) → 0. By replacing in (9) everything
according to the discussion above, we obtain exactly (14).
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