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Abstract. We introduce some abstract convexity notions in a real linear
space and investigate which of the results from the convex analysis in topological
vector spaces still work in a linear space. The differences between these abstract
convexity notions and those established in spaces endowed with a topology are
underlined by some examples.
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1 Introduction

Convex analysis is an important tool from the theoretical point of view, but
also because of its usefulness in the optimization theory. Developing this theory
in finite dimensional spaces (see [10]) or more general in locally convex spaces
(see [2], [15]), soon it was realized that some of the general results remain valid
in a more general setting, like metric spaces or linear spaces (so without any
topology). This theory is known under the name abstract convex analysis. For
an exhaustive survey of these abstract notions we refer to the books of Singer
(see [13]) and Rubinov (see [12]). Many papers deal with this kind of abstract
notions, see for instance [1], [4], [6], [7], [9], [11], [14].

In this paper we investigate some abstract convexity notions in the framework
of real linear spaces. In a locally convex space X there is a strong connection
between a lower semicontinuous function f : X → R ∪ {±∞} and its epigraph,
namely f is lower semicontinuous if and only if epi(f) is closed in X × R. But
the closure of a set and the lower semicontinuity are topological notions, so in a
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real linear space the question is how to define a ”lower semicontinuous” function
and the ”closure” of a set, in order to have a similar result between these two
notions.

The aim of this paper is to verify which of the results that hold in locally
convex spaces remain true in a real linear space (of course, using the abstract
convexity notions).

The paper is organized as follows. In the next section we present some defini-
tions, notations and preliminary results concerning c-convex functions that will
be used later in the paper. In Section 3 we introduce the notion of a c-convex set
and investigate some properties of it. Section 4 is devoted to the investigations
of the connections between a c-convex function and a c-convex set.

2 Preliminaries

In the following, we consider a real linear space X and X# its algebraic dual
space. Let f : X → R be a given function, where R = R ∪ {±∞}.

We have

• the domain of f : dom(f) = {x ∈ X : f(x) < +∞},

• the epigraph of f : epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

• f is proper if f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅,

• co(f) : X → R is the greatest convex function majorized by f ,

• 〈x#, x〉 := x#(x), where x#(x) defines the value of the linear functional
x# ∈ X# at the element x ∈ X,

• g : X → R is affine if ∃(x#, α) ∈ X#×R such that g(x) = x#(x) +α ∀x ∈
X,

• g ≤ f ⇔ g(x) ≤ f(x) ∀x ∈ X,

• A(X, f) is the set of affine minorants of f on X,

• the indicator function of a subset A of X, defined by

δA(x) =

{
0, if x ∈ A,
+∞, otherwise.

If X is a locally convex space, it can be proved (see for instance [2]) that the
following conditions are equivalent
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(a) f(x) > −∞ ∀x ∈ X, f convex and lower semicontinuous,

(b) there exists an affine minorant of f and f is the pointwise supremum of all
its affine minorants (here, an affine function is characterized by an element
x∗ from the topological dual X∗ of X).

Regarding this result, we give the analogue notion of ”lower semi - continuity”
for a convex function defined on a real linear space X.

Definition 1. A function f : X → R is called c-convex on X if

f(x) = sup{g(x) : g is an affine minorant of f} ∀x ∈ X.

The set of all c-convex functions on X is denoted by Γ(X). In the literature
(see, for instance, [1], [6], [7], [11]) the functions defined in this way are called
in different ways, existing a number of terms for this notion. As there exists an
analogy between it and the notion of a lower semicontinuous (closed) convex hull
of a function in locally convex spaces, we consider that the term ”c-convex” is
appropriate. Let us notice that a c-convex function is always convex (being the
pointwise supremum of a family of affine functions).

Lemma 1. Every affine function g : X → R is c-convex on X.

Proof. As g ≤ sup{h : h affine, h ≤ g} ≤ g, one has equality and so
g ∈ Γ(X). �

If X is a locally convex space, the lower semicontinuous convex hull of a func-
tion f : X → R, denoted by cl

(
co(f)

)
is the function whose epigraph is the

closure of co
(

epi(f)
)

in X × R. It is well known that cl
(

co(f)
)

is the greatest
lower semicontinuous convex function majorized by f (see [2]). So it is natural
to define an analogue notion in the case of real linear spaces, in the following way.

Definition 2. We define the c-convex hull of f by

cc(f) : X → R, cc(f)(x) = sup{g(x) : g ∈ Γ(X), g ≤ f} ∀x ∈ X.

Other authors use for the c-convex hull the terminology of ”regular hull” of
f (see [4]).

An example of a space X and a function f : X → R which is c-convex but
not lower semicontinuous will be given in Section 4.

The following result shows that in the definition of the c-convex hull of a
function it is enough to take the supremum of the family of its affine minorants.

Lemma 2. For f : X → R we have

cc(f) = sup{g : g affine, g ≤ f}.
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Proof. Using Lemma 1 we obtain that for all x ∈ X

sup{g(x) : g affine, g ≤ f} ≤ sup{g(x) : g ∈ Γ(X), g ≤ f} = cc(f)(x).

If we suppose that there exists x0 ∈ X such that

sup{g(x0) : g affine, g ≤ f} < cc(f)(x0),

then there exists r ∈ R with the following property

sup{g(x0) : g affine, g ≤ f} < r < cc(f)(x0)

= sup{g(x0) : g ∈ Γ(X), g ≤ f}.

Then
∀g affine, g ≤ f, we have g(x0) < r (1)

and
∃g0 ∈ Γ(X), g0 ≤ f such that g0(x0) > r.

The function g0 being c-convex, since g0(x0) = sup{h(x0) : h affine, h ≤ g0} > r,
there exists h0 affine, h0 ≤ g0 such that h0(x0) > r. But h0 ≤ g0 ≤ f, so h0 is
affine and h0 ≤ f . This implies by (1) that h0(x0) < r, contradicting h0(x0) > r.�

Proposition 1. Let be f : X → R. The following assertions are true:

(a) cc(f) ≤ co(f) ≤ f,

(b) f ∈ Γ(X)⇔ f = cc(f).

Proof.

(a) As ∀x ∈ X, cc(f)(x) = sup{g(x) : g ∈ Γ(X) and g ≤ f} ≤ f(x), cc(f) is a
convex function majorized by f and the conclusion follows.

(b) If f ∈ Γ(X) then cc(f)(x) = sup{g(x) : g ∈ Γ(X) and g ≤ f} ≥ f(x), ∀x ∈
X, and by (a) we get f = cc(f).
If f = cc(f) then it is obvious that f ∈ Γ(X) (see Lemma 2). �

Definition 3. Let x# ∈ X#, x# 6= 0 and α ∈ R. Then

(a) H(x#, α) = {x ∈ X : x#(x) = α} is called a hyperplane in X,

(b) H≤(x#, α) = {x ∈ X : x#(x) ≤ α} is called a c-half-space in X.
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Now we recall some well-known definitions (see for instance [15]). For a subset
D ⊆ X the core (or the algebraic interior) of D is defined by

core(D) = {d ∈ D : ∀x ∈ X, ∃ε > 0 such that ∀λ ∈ [−ε, ε], d+ λx ∈ D}.

The core of D relative to aff(D −D) is called the intrinsic core (or the relative
algebraic interior) of D and is denoted by icr(D), that is the set

{d ∈ D : ∀x ∈ aff(D −D),∃ε > 0 such that ∀λ ∈ [−ε, ε], d+ λx ∈ D}.

It is easy to see that core(D) ⊆ icr(D) ⊆ D and icr({a}) = {a} ∀a ∈ X. The
following separation theorem can be found in [3] (see also [5]).

Theorem 1. Let A and B be convex subsets of X such that both icr(A) and
icr(B) are nonempty. Then A and B can be separated by a hyperplane H with
A ∪B * H if and only if icr(A) ∩ icr(B) = ∅.

In finite dimensional spaces we have that if f is a convex function, then
f(x) = cl(f)(x),∀x ∈ ri(dom(f)), where ri(dom(f)) is the relative interior of the
domain of f (see [10]). By using Theorem 1, we show that a similar result holds
also in real linear spaces, working with the intrinsic core of dom(f).

Theorem 2. Let f : X → R be a convex function. Then

f(x) = cc(f)(x) ∀x ∈ icr(dom(f)).

Proof. If icr(dom(f)) = ∅ then we have nothing to prove. Consider an
arbitrary element x0 ∈ icr(dom(f)). We already know from Proposition 1(a)
that cc(f)(x0) ≤ f(x0). If we suppose that we have strict inequality, then one
can find a real number r0 such that cc(f)(x0) < r0 < f(x0). Using Lemma 2 we
obtain

g(x0) < r0,∀g which are affine minorants of f. (2)

Because of icr(dom(f)) 6= ∅ it follows icr(epi(f)) 6= ∅ (see [3]). As (x0, r0) /∈
epi(f), and so (x0, r0) /∈ icr(epi(f)), we can apply Theorem 1 in order to separate
the sets {(x0, r0)} and epi(f). So ∃(x#, α) ∈ X# × R, (x#, α) 6= (0, 0) such that

x#(x) + αr ≥ x#(x0) + αr0,∀(x, r) ∈ epi(f) (3)

and
x#(x) + αr > x#(x0) + αr0, for at least one (x, r) ∈ epi(f). (4)

We claim that α 6= 0. Indeed, if α = 0 then x# 6= 0, x#(x) ≥ x#(x0) ∀x ∈ dom(f)
and x#(x) > x#(x0). As the sets {x0} and dom(f) can be separated by a
hyperplane which is not containing their union, by Theorem 1 we have that
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{x0} ∩ icr(dom(f)) = icr
(
{x0}

)
∩ icr(dom(f)) = ∅, which is a contradiction.

Hence α 6= 0. Moreover, α is a non-negative number (if α < 0 then for (x, r) :=
(x0, f(x0) + ε) in (3) we get x#(x) + α(f(x0) + ε) ≥ x#(x0) + αr0 ∀ε > 0, and
taking the limit when ε→ +∞ we obtain a contradiction). Dividing by α > 0 in
(3) we get r ≥ r0 + (1/α)x#(x0)− (1/α)x#(x) ∀(x, r) ∈ epi(f), implying that

f(x) ≥ r0 + (1/α)x#(x0)− (1/α)x#(x) ∀x ∈ X.

We define g : X → R, g(x) = −(1/α)x#(x) + r0 + (1/α)x#(x0). Then g is an
affine minorant of f , so by (2), r0 > g(x0) = r0 and this is a contradiction. Hence
cc(f)(x0) = f(x0). �

Remark 1. As an easy consequence of the above theorem we have

f(x) = cc(f)(x) ∀x ∈ core(dom(f)),

if f : X → R is a convex function.

3 C-convex sets

In this section we introduce an abstract notion in a real linear space in analogy
to the closed convex hull of a set in a locally convex space. Then we investigate
some properties of this notion.

Definition 4. For M ⊆ X we define the c-convex hull of M by

cc(M) =
⋂

(x#,α)∈(X#\{0})×R

{
H≤(x#, α) : M ⊆ H≤(x#, α)

}
.

We say that M is c-convex if and only if M = cc(M). As the proof of the
following properties is trivial, we omit it.

(a) ∅ and X are c-convex;

(b) for every M ⊆ X, M ⊆ co(M) ⊆ cc(M), where co(M) is the convex hull of
M , that is the smallest convex set which contains M ;

(c) A ⊆ B ⇒ cc(A) ⊆ cc(B);

(d) For every M ⊆ X, cc
(

cc(M)
)

= cc(M);

(e) If (M)i, i ∈ I, is a family of c-convex sets in X, then
⋂
i∈I
Mi is also c-convex.
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The authors of [4] use for this set introduced in Definition 4 the notion of
regular hull of a set.

Lemma 3. H = H≤(x#, α) is c-convex, for every x# ∈ X# \{0} and α ∈ R.

Proof. We have the following sequence of inclusions

H ⊆ cc(H) =
⋂

(y#,β)∈(X#\{0})×R

{
G≤(y#, β) : H ⊆ G≤(y#, β)

}
⊆ H,

and the result follows. �

Remark 2. If X is a locally convex space, then cl
(

co(M)
)

is the intersection
of all closed half-spaces which contain M , where cl

(
co(M)

)
is the topological

closure of co(M) (see for example [2]). Here, a closed half-space is characterized
by an element x∗ from X∗, the topological dual space of X and because X∗ ⊆ X#,
we have in general M ⊆ cc(M) ⊆ cl

(
co(M)

)
. If M is convex and closed, then

from the above inclusion we have that M is c-convex. If X is of finite dimension,
then X# = X∗, so in this case cc(M) = cl

(
co(M)

)
. We show by an example that

if X is of infinite dimension, then the above inclusion may be strict. Consider X
an infinite dimensional normed space and let {ei : i ∈ I} be a vector basis of it.
We may suppose that N ⊆ I. Obviously, {

(
1/‖ei‖

)
ei : i ∈ I} is again a vector

basis, so without lose of generality we may suppose that ‖ei‖ = 1,∀i ∈ I. Define
f0 : {ei : i ∈ I} → R,

f0(ei) =

{
i, if i ∈ N
0, otherwise.

It is well known from the linear algebra that f0 can be extended uniquely to a
linear function on X, say x#

0 . We claim that x#
0 ∈ X#\X∗. Indeed, if we suppose

that x#
0 is continuous, then ∃L ≥ 0 such that |x#

0 (x)| ≤ L‖x‖ ∀x ∈ X (see
Proposition 2.1.2 in [8]). But this implies, for x = ei, i ∈ N, that i ≤ L ∀i ∈ N,
which is a contradiction. Now consider the following set

M := ker(x#
0 ) = {x ∈ X : x#

0 (x) = 0}.

M is a subspace of X, so is convex. We have

M = {x ∈ X : x#
0 (x) ≤ 0} ∩ {x ∈ X : −x#

0 (x) ≤ 0}

thus, by Lemma 3 and assertion (e), M is c-convex. Let be xn = e1−(1/n)en ∀n ∈
N. It is easy to see that xn ∈ M ∀n ∈ N. Because of ‖xn − e1‖ = 1/n ∀n ∈ N,
we get that the limit of the sequence {xn} is e1, but this element does not be-
long to M , so M is a c-convex set which is not topologically closed. Hence
M = cc(M) $ cl(M) = cl

(
co(M)

)
.

7



Proposition 2. For every subsets E, F of X we have

cc
(
E + cc(F )

)
= cc(E + F ),

where E + F is the Minkowski sum of the sets E and F .

Proof. We only have to prove the inclusion

cc
(
E + cc(F )

)
⊆ cc(E + F ),

because the reverse one is trivial. By definition,

cc
(
E + cc(F )

)
=

⋂
(x#,α)∈(X#\{0})×R

{
H≤(x#, α) : E + cc(F ) ⊆ H≤(x#, α)

}
and

cc(E + F ) =
⋂

(x#,α)∈(X#\{0})×R

{
H≤(x#, α) : E + F ⊆ H≤(x#, α)

}
.

Let H≤(x#, α) = {x ∈ X : x#(x) ≤ α} be a c-half-space with (x#, α) ∈ (X# \
{0})× R such that

E + F ⊆ H≤(x#, α). (5)

We show that
E + cc(F ) ⊆ H≤(x#, α). (6)

For this, let e ∈ E and g ∈ cc(F ) be fixed. Using (5) we obtain: e + f ∈
H≤(x#, α) ∀f ∈ F, so x#(e + f) ≤ α ∀f ∈ F or, equivalently, x#(f) ≤ α −
x#(e) ∀f ∈ F, which implies

F ⊆
{
x ∈ X : x#(x) ≤ α− x#(e)

}
.

Thus F is a subset of a c-half-space, and because g ∈ cc(F ), we get

g ∈
{
x : x#(x) ≤ α− x#(e)

}
⇔ x#(g) ≤ α− x#(e)

⇔ x#(e+ g) ≤ α⇔ e+ g ∈ H≤(x#, α).

Hence, the inclusion in (6) is true and this means, taking into consideration that
(x#, α) ∈ (X#\{0})×R was arbitrary chosen, that cc

(
E+cc(F )

)
⊆ cc(E+F ).�

We close this section giving a result concerning the c-convexity of the carte-
sian product of two sets.

Proposition 3. Let X and Y be real linear spaces, A ⊆ X and B ⊆ Y .
Then

cc(A×B) = cc(A)× cc(B).
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Proof. A c-half-space in X × Y has the following form

H≤(x#, y#, γ) =
{

(x, y) ∈ X × Y : 〈(x#, y#), (x, y)〉 ≤ γ
}

=
{

(x, y) ∈ X × Y : x#(x) + y#(y) ≤ γ
}
,

where x# ∈ X#, y# ∈ Y #, (x#, y#) 6= (0, 0) and γ ∈ R.
Let (a, b) ∈ cc(A × B) =

⋂{
H : A × B ⊆ H,H a c-half-space

}
. Consider

H≤(x#, α) an arbitrary c-half-space such that A ⊆ H≤(x#, α), with x# 6= 0 and
α ∈ R. Then A × B ⊆

{
(x, y) ∈ X × Y : x#(x) ≤ α

}
= H≤(x#, 0, α) and

because (a, b) is in the c-convex hull of A×B, we get (a, b) ∈ H≤(x#, 0, α), hence
x#(a) ≤ α, which is nothing else than a ∈ H≤(x#, α). Because H≤(x#, α) was
arbitrary chosen we obtain a ∈ cc(A). Similarly we get b ∈ cc(B), so the inclusion

cc(A×B) ⊆ cc(A)× cc(B)

is true.
For the opposite inclusion, take (a, b) ∈ cc(A) × cc(B). Consider H =

H≤(x#, y#, γ) an arbitrary c-half-space in X × Y such that A × B ⊆ H. If
we succeed to show that (a, b) ∈ H, which is nothing else than

x#(a) + y#(b) ≤ γ (7)

then we are done. As (x#, y#) 6= (0, 0), we can suppose without lose of generality
that x# 6= 0. Let b0 ∈ B be arbitrary. For all a0 ∈ A we have (a0, b0) ∈ A×B ⊆
H≤(x#, y#, γ), so x#(a0)+y#(b0) ≤ γ, hence A ⊆

{
x ∈ X : x#(x) ≤ γ−y#(b0)

}
.

Since a ∈ cc(A), a must belong to the set
{
x ∈ X : x#(x) ≤ γ − y#(b0)

}
, that is

x#(a) ≤ γ − y#(b0). We treat two cases.
(1) y# = 0. Then x#(a) ≤ γ and (7) is fulfilled.
(2) y# 6= 0. Then x#(a) + y#(b0) ≤ γ. The element b0 being arbitrary in B,

we have x#(a) + y#(b0) ≤ γ ∀b0 ∈ B, so B ⊆
{
y ∈ Y : y#(y) ≤ γ − x#(a)

}
.

Using the fact that b ∈ cc(B), relation (7) follows. �

4 The connection between c-convex functions

and c-convex sets

The aim of this section is to study the relations between the notions introduced
in the previous sections. We start by characterizing the c-half-spaces in X × R.

Lemma 4. There are three types of c-half-spaces in X × R, namely

1. {(x, r) ∈ X × R : x#(x) ≤ α}, x# ∈ X#, x# 6= 0, α ∈ R, called vertical
half-space,
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2. {(x, r) ∈ X × R : x#(x) − r ≤ α}, x# ∈ X#, α ∈ R, called upper half-
space,

3. {(x, r) ∈ X × R : x#(x) − r ≥ α}, x# ∈ X#, α ∈ R, called lower half-
space.

Proof. The hyperplanes in X × R are of the form

{(x, r) ∈ X × R : 〈(x#, b), (x, r)〉 = α} = {(x, r) ∈ X × R : x#(x) + br = α},

with x# ∈ X, b ∈ R, (x#, b) 6= (0, 0), so a c-half-space has the following form

H = {(x, r) ∈ X × R : x#(x) + br ≤ α}.

There are three possible cases, as follows.

(a) b = 0. In this case, H = {(x, r) ∈ X × R : x#(x) ≤ α}, x# 6= 0, which is a
vertical half-space.

(b) b < 0. Dividing by −b we get H = {(x, r) ∈ X × R : (−1/b)x#(x) − r ≤
(−α/b)}, which is an upper half-space.

(c) b > 0. Then H = {(x, r) ∈ X ×R : (−1/b)x#(x)− r ≥ (−α/b)}, which is a
lower half-space. �

Remark 3. Let us note that considering an arbitrary affine function h : X →
R, h(x) = x#(x) − α, for x# ∈ X# and α ∈ R, the vertical half-spaces can be
written as

{(x, r) ∈ X × R : x#(x) ≤ α} = {(x, r) : h(x) ≤ 0}

and the upper half-spaces as

{(x, r) ∈ X × R : x#(x)− α ≤ r} = epi(h),

respectively.

The following two results are quite natural if we take into consideration a
geometric argument.

Lemma 5. Let H be a vertical or an upper half-space in X ×R. If for some
x ∈ X and r ∈ R we have (x, r + ε) ∈ H ∀ε > 0, then (x, r) ∈ H.

Proof. If H is a vertical half-space, the result is trivial. Now let H = {(x, r) ∈
X × R : x#(x)− α ≤ r}, with x# ∈ X# and α ∈ R, be an upper half-space. By
the hypothesis,

x#(x)− α ≤ r + ε ∀ε > 0.
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Taking the limit when ε↘ 0, we obtain x#(x)− α ≤ r, that is (x, r) ∈ H. �

Lemma 6. Let f : X → R be such that dom(f) 6= ∅. Then there exists no
lower half-space H such that epi(f) ⊆ H.

Proof. Assume that there exists a lower half-space H = {(x, r) ∈ X ×
R : x#(x) − α ≥ r} with x# ∈ X# and α ∈ R, such that epi(f) ⊆ H. Take
y0 ∈ dom(f). Then one can find an r0 ∈ R such that

r0 > max{f(y0), x
#(y0)− α} ⇔ f(y0) < r0 and x#(y0)− α < r0

⇔ (y0, r0) ∈ epi(f) \H,

which is a contradiction. �

The next proposition says that in order to obtain the c-convex hull of the
epigraph of a given function having at least one affine minorant and nonempty
domain, it is enough to take the intersection of the family of upper half-spaces
which contain epi(f).

Proposition 4. Let f : X → R be such that {g : g affine, g ≤ f} 6= ∅ and
dom(f) 6= ∅. Then

cc
(

epi(f)
)

=
⋂{

H : H is an upper half-space, epi(f) ⊆ H
}
.

Proof. By Lemma 6, there exist no lower half-space H such that epi(f) ⊆ H.
So

cc
(

epi(f)
)

=
⋂{

H : H is a c-half-space, epi(f) ⊆ H
}

=⋂{
H : H is an upper half-space, epi(f) ⊆ H

}⋂
⋂{

H : H is a vertical half-space, epi(f) ⊆ H
}
. (8)

Let V = {(x, r) : h1(x) ≤ 0} be a vertical half-space such that epi(f) ⊆ V, where
h1 : X → R is an affine function. We show that

(X × R) \ V ⊆ (X × R) \
( ⋂
h∈A(X,f)

epi(h)

)
. (9)

Let (x0, r0) 6∈ V , so h1(x0) > 0. By the assumptions, there exists an affine
minorant h2 : X → R of f . For all λ ≥ 0 and x ∈ X we have

λh1(x) + h2(x) ≤ f(x). (10)
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Indeed, if x 6∈ dom(f), (10) is trivial. For x ∈ dom(f), one must have f(x) ∈ R.
Otherwise, if f(x) = −∞, by Proposition 1(a), we have that cc(f)(x) = −∞ and
thus, by Lemma 2, there exists no affine minorant of f . So (x, f(x)) ∈ epi(f) ⊆ V ,
hence h1(x) ≤ 0 and so the inequality (10) is true. Because of h1(x0) > 0, there
exists a sufficiently large λ0 such that

λ0h1(x0) + h2(x0) > r0.

Defining h : X → R by h(x) = λ0h1(x) + h2(x),∀x ∈ X, we have that h is an
affine minorant of f and (x0, r0) /∈ epi(h), showing that (9) is true. This implies
that

⋂
h∈A(X,f) epi(h) ⊆ V. V being arbitrary, we get⋂{

H : H is an upper half-space, epi(f) ⊆ H
}
⊆⋂{

H : H is a vertical half-space, epi(f) ⊆ H
}

and by (8) the result follows. �

As we have seen in Remark 3, in the hypotheses of Proposition 4 the c-convex
hull of the epigraph of f can be further written as

cc
(

epi(f)
)

=
⋂

h∈A(X,f)

{
epi(h) : epi(f) ⊆ epi(h)

}
.

Theorem 3. Let f : X → R be such that {g : g affine, g ≤ f} 6= ∅. Then

(a) epi(cc(f)) = cc
(

epi(f)
)
,

(b) f ∈ Γ(X)⇔ epi(f) ⊆ X × R is c-convex.

Proof. (a) By Proposition 1(a) we have cc(f) ≤ f and so

epi(f) ⊆ epi(cc(f)). (11)

We consider the following two cases.
(1) dom(f) = ∅. Then f ≡ +∞, epi(f) = ∅ and thus cc

(
epi(f)

)
= ∅. Then,

by Lemma 2, cc(f) = sup{g : g affine, g ≤ f} = sup{g : g affine} = +∞, and as
epi(cc(f)) = ∅, the equality holds.

(2) dom(f) 6= ∅. By (11), we have cc
(

epi(f)
)
⊆ cc

(
epi(cc(f))

)
.

We show that epi(cc(f)) is c-convex. If we suppose that there exists (x0, r0) ∈
cc
(

epi(cc(f))
)
\ epi(cc(f)), then cc(f)(x0) > r0, which implies by Lemma 2 that

there exists an affine minorant g0 of f such that g0(x0) > r0. Also by Lemma 2 we
have g0 ≤ cc(f), so epi(cc(f)) ⊆ epi(g0). But epi(g0) defines an upper half-space
which contains epi(cc(f)), thus (x0, r0) ∈ epi(g0), but this is a contradiction.
Hence epi(cc(f)) is c-convex, so cc

(
epi(f)

)
⊆ epi(cc(f)).
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It remains to prove the reverse inclusion, namely epi(cc(f)) ⊆ cc
(

epi(f)
)
.

Take an arbitrary (x1, r1) ∈ epi(cc(f)). Then cc(f)(x1) ≤ r1 ⇔ h(x1) ≤ r1, for
every affine minorant h of f, so (x1, r1) ∈

⋂
h∈A(X,f) epi(h) = cc

(
epi(f)

)
, where

the last equality follows by Proposition 4.
(b) Using (a) and Proposition 1(b) we obtain

f ∈ Γ(X)⇔ f = cc(f)⇔ epi(f) = epi(cc(f))

⇔ epi(f) = cc
(

epi(f)
)
⇔ epi(f) is c-convex.

�

Remark 4. The direct implication in (b) is true even if {g : g affine, g ≤
f} = ∅. In this case, by Definition 1, f ≡ −∞, epi(f) = X × R and thus
epi(f) = cc

(
epi(f)

)
= X × R.

The reverse implication does not hold in general if the function f has no affine
minorants. For f : R→ R,

f(x) =

{
−∞, if x ∈ (−∞, 0],
+∞, otherwise,

we have epi(f) = (−∞, 0] × R and this is a c-convex set. It is easy to see
that f is not c-convex. Moreover, f is an example of a function which is lower
semicontinuous and convex, but not c-convex.

In a locally convex space X, if f : X → R is convex, lower semicontinuous and
f(x) > −∞ ∀x ∈ X, then f is c-convex. Indeed, the properties of the function f
guarantee the existence of at least one affine minorant of f and epi(f) is a convex
and closed set. This shows (see Remark 2) that epi(f) is a c-convex set, implying
by Theorem 3(b) that f is c-convex.

Next we give another characterization of the c-convex hull of a function which
has at least one affine minorant.

Corollary 1. Let f : X → R be such that {g : g affine, g ≤ f} 6= ∅. Then

cc(f) = inf
{
t : (x, t) ∈ cc

(
epi(f)

)}
.

Proof. This is an easy consequence of the above theorem, since for every
function f : X → R one has f(x) = inf

{
t : (x, t) ∈ epi(f)

}
. �

Lemma 7. If f : X → R is c-convex, then the level set

{x ∈ X : f(x) ≤ a}

is c-convex ∀a ∈ R.
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Proof. Since f is c-convex, we have f(x) = sup{g(x) : g affine, g ≤ f}. Let
a ∈ R be arbitrary. Then {x ∈ X : f(x) ≤ a} =

⋂
g∈A(X,f)

{x ∈ X : g(x) ≤ a}.

By Lemma 3, {x ∈ X : g(x) ≤ a} is c-convex, for every affine function g, so the
level set {x ∈ X : f(x) ≤ a} will be also c-convex, being the intersection of an
arbitrary family of c-convex sets. �

Theorem 4. Let A be a subset of X. Then

δA ∈ Γ(X), i.e. δA is c-convex, if and only if A is c-convex.

Proof. We have epi(δA) = A× [0,+∞). By Proposition 3

cc(A× [0,+∞)) = cc(A)× [0,+∞).

Obviously, h ≡ 0 is an affine minorant of δA, hence by Theorem 3(b) we obtain

δA ∈ Γ(X)⇔ epi(δA) is c-convex⇔ A× [0,+∞) is c-convex

⇔ A× [0,+∞) = cc
(
A× [0,+∞)

)
⇔ A× [0,+∞) = cc(A)× [0,+∞)

⇔ A = cc(A)⇔ A is c-convex.

�

Remark 5. Working in a locally convex space X, A ⊆ X is closed and convex
if and only if the indicator function δA is lower semicontinuous and convex. Using
Theorem 4, we can construct a convex function defined on X which is c-convex
but not lower semicontinuous. Let M be the set considered in Remark 2

M := ker(x#
0 ) = {x ∈ X : x#

0 (x) = 0}.

Because M is c-convex and not topologically closed, we get that δM is a c-convex
function which is not lower semicontinuous.

Remark 6. The approach which we describe below gives a connection be-
tween the theory established in real linear spaces and the one existing in separated
locally convex spaces. If we consider P the set of all seminorms defined on the
real linear space X, then (X,P ) becomes a separated locally convex space. The
topological notions referred below are with respect to this topology, known in
the literature as the ”core topology”. The topological dual of X is X#. Fur-
ther, a c-convex function is closed and convex, which means, a function which is
identical −∞ or identical +∞ or a proper lower semicontinuous convex function.
Moreover, the c-convex hull of a subset M of X is nothing else than the closed
convex hull of M .

14



References

[1] Dolecki, S., Kurcyusz, S. (1978): On φ-convexity in extremal problems, SIAM
Journal on Control and Optimization 16, 277-300.

[2] Ekeland, I., Temam, R. (1976): Convex analysis and variational problems,
North-Holland Publishing Company, Amsterdam.

[3] Elster, K.H., Nehse, R., (1974): Zum Dualitätssatz von Fenchel, Mathema-
tische Operationsforschung und Statistik 5, Vol. 4/5, 269-280.
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