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ON AN OPEN PROBLEM REGARDING TOTALLY FENCHEL
UNSTABLE FUNCTIONS

RADU IOAN BOŢ AND ERNÖ ROBERT CSETNEK

Abstract. We give an answer to the Problem 11.5 posed in Stephen Simons’s

book ”From Hahn-Banach to Monotonicity”.

1. Introduction and problem formulation

Before introducing the problem proposed by Stephen Simons, we recall some
preliminary notions and results. Throughout this note, E denotes a nontrivial real
Banach space, E∗ its topological dual space and E∗∗ its bidual space. The canonical
embedding of E into E∗∗ is defined by ̂: E → E∗∗, 〈x∗, x̂〉 := 〈x, x∗〉, for all x ∈ E
and x∗ ∈ E∗, where 〈x, x∗〉 denotes the value of the linear continuous functional x∗

at x. For D ⊆ E, we denote by D̂ the image of the set D through the canonical
embedding, that is D̂ = {x̂ : x ∈ D}.

The indicator function of D ⊆ E, denoted by δD, is defined as δD : E → R,

δD(x) =
{

0, if x ∈ D,
+∞, otherwise,

where R = R ∪ {±∞}. For a function f : E → R we denote by dom(f) = {x ∈
E : f(x) < +∞} its domain and by epi(f) = {(x, r) ∈ E × R : f(x) ≤ r} its
epigraph. We call f proper if dom(f) 6= ∅ and f(x) > −∞ for all x ∈ E. The
Fenchel-Moreau conjugate of f is the function f∗ : E∗ → R defined by f∗(x∗) =
supx∈E{〈x, x∗〉 − f(x)} for all x∗ ∈ E∗.

Consider f, g : E → R two arbitrary convex functions. We say that f and g
satisfy stable Fenchel duality if for all x∗ ∈ E∗, there exists z∗ ∈ E∗ such that

(f + g)∗(x∗) = f∗(x∗ − z∗) + g∗(z∗).

If this property holds for x∗ = 0, then f and g satisfy the classical Fenchel duality.
The pair f, g is totally Fenchel unstable (see [10]) if f and g satisfy Fenchel duality
but

y∗, z∗ ∈ E∗ and (f + g)∗(y∗ + z∗) = f∗(y∗) + g∗(z∗) =⇒ y∗ + z∗ = 0.

We refer the reader to [1] for a geometric characterization of these concepts.
Obviously, stable Fenchel duality implies Fenchel duality, but the converse is not

true (see the example in [1], pp. 2798-2799 and Example 11.1 in [10]). Nevertheless,
each of these examples (which are given in R2) fails when one tries to verify total
Fenchel unstability. Surprisingly, in the finite dimensional case, it is still an open
question if there exists a pair of functions which is totally Fenchel unstable (see
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Problem 11.6 in [10]). In the infinite dimensional setting this problem receives an
answer, due to the existence of extreme points which are not support points of
certain convex sets. Recall that if C is a convex subset of E, then x ∈ C is a
support point of C if there exists x∗ ∈ E∗, x∗ 6= 0 such that 〈x, x∗〉 = sup〈C, x∗〉.
We give below an example, proposed in [10], of a pair f , g which is totally Fenchel
unstable.

Example 1.1. Let C be a nonempty, bounded, closed and convex subset of E
such that there exists an extreme point x0 of C which is not a support point of C
(an example of a set C and a point x0 with the above mentioned properties was
given in the space l2, following an idea due to Jonathan Borwein, see [10]). Take
A := x0 − C, B := C − x0, f := δA and g := δB . One can prove that the pair f, g
is totally Fenchel unstable (see Example 11.3 in [10]).

Regarding the functions defined in the above example, Stephen Simons asks
whether, denoting E∗\{0} with {0}c, the following representation of the Minkowski
sum of the sets epi(f∗) and epi(g∗) is true:

(1.1) epi(f∗) + epi(g∗) = ({0} × [0,∞)) ∪ ({0}c × (0,∞)).

The justification of this question comes from a similar representation of the set
epi(f∗0 ) + epi(g∗0), proved in [10] for a pair of functions f0, g0 defined on the space
R2 in a similar way as in Example 1.1 above (see Example 11.1 and Example 11.2
in [10]).

We give in the following a reformulation of this problem (as in [10]). The conju-
gates of the functions f and g are

f∗(y∗) = 〈x0, y
∗〉 − inf〈C, y∗〉 ≥ 0 for all y∗ ∈ E∗ and

g∗(y∗) = sup〈C, y∗〉 − 〈x0, y
∗〉 ≥ 0 for all y∗ ∈ E∗.

One can use the boundedness of the set C to conclude that f∗ and g∗ are continuous
functions. The inclusion ” ⊆ ” in (1.1) holds and, since (0, 0) = (0, 0) + (0, 0) ∈
epi(f∗) + epi(g∗), relation (1.1) is equivalent to

(1.2) epi(f∗) + epi(g∗) ⊃ E∗ × (0,∞).

Let us mention that for the implication (1.2)⇒(1.1) the assumption that x0 is not
a support point of C is decisive.

In case E is reflexive, this question has a positive answer. Although the proof
is given in [10] (Example 11.3), we give the details for the reader’s convenience.
Let y∗ ∈ E∗ be arbitrary. Consider the functions h : E∗ → R and k : E∗ → R
defined by h(z∗) := f∗(z∗) and k(z∗) := g∗(y∗ − z∗) for all z∗ ∈ E∗. Since h and
k are continuous, it follows that h and k satisfy Fenchel duality (see Theorem 2.8.7
in [11]). This and the reflexivity of the space E gives

− inf
E∗

[h + k] = (h + k)∗(0) = min
z∈E

[h∗(z) + k∗(−z)].

A simple computation shows that h∗(z) = f(z) and k∗(−z) = g(z)− 〈z, y∗〉, for all
z ∈ E. Hence, since x0 is an extreme point of C,

− inf
E∗

[h + k] = min
E

[f + g − y∗] = min
E

[δ{0} − y∗] = 0,

so, for all ε > 0, there exists z∗ ∈ E∗ such that h(z∗) + k(z∗) ≤ ε, that is f∗(z∗) +
g∗(y∗−z∗) ≤ ε. This means exactly that (y∗, ε) ∈ epi(f∗)+epi(g∗), hence the proof
of (1.2) is complete.

Remark 1.2. Regarding the proof given above, one can easily notice that relation
(1.1) is fulfilled if and only if for all y∗ ∈ E∗ and for all ε > 0 there exists z∗ ∈ E∗

such that f∗(z∗) + g∗(y∗ − z∗) ≤ ε. This is equivalent to the statement that there
exists z∗ ∈ E∗ such that for all x, y ∈ E, f(x)+g(y)−〈x−y, z∗〉 ≥ 〈y, y∗〉−ε. Using
the Hahn-Banach-Lagrange theorem (see Theorem 1.11 in [10]), this is equivalent
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to the following: there exists M ≥ 0 such that for all x, y ∈ E, f(x) + g(y) +
M‖x− y‖ ≥ 〈y, y∗〉− ε, that is to say there exists M ≥ 0 such that for all u, v ∈ C,
M‖u + v − 2x0‖ ≥ 〈v − x0, y

∗〉 − ε.

Following this remark, Stephen Simons proposed the following problem (Problem
11.5 in [10]):

Problem 1.3. Let C be a nonempty, bounded, closed and convex subset of a
nonreflexive Banach space E, x0 be an extreme point of C, y∗ ∈ E∗ and ε > 0.
Then does there always exist M ≥ 0 such that, for all u, v ∈ C, M‖u + v − 2x0‖ ≥
〈v− x0, y

∗〉 − ε? If the answer to this question is positive, then epi(f∗) + epi(g∗) ⊃
E∗ × (0,∞).

2. The solution to Problem 1.3

We give in this section an answer to Problem 1. We show that in the nonreflexive
case the answer depends on whether x0 is a weak∗-extreme point of C or not. We
recall that x0 is a weak∗-extreme point of the nonempty, bounded, closed and convex
set C ⊆ E if x̂0 is an extreme point of cl Ĉ, where the closure is taken with respect to
the weak∗ topology ω(E∗∗, E∗) (see [6]). One can show that if x0 is a weak∗-extreme
point of C, then x0 is an extreme point of C. The history of this notion goes back to
the paper of Phelps (see [8]), where the author asked the following: must the image x̂
of an extreme point of x ∈ BE (the unit ball of E) be an extreme point of BE∗∗ (the
unit ball of the bidual)? We recall that by the Goldstine theorem, the closure of B̂E

in the weak∗ topology ω(E∗∗, E∗) is BE∗∗ (hence the generalization to a nonempty,
bounded, closed and convex set is natural). Several papers from the literature deal
with this notion, see [2–4, 6–8]. In the spaces C(X) and Lp(1 ≤ p ≤ ∞) all the
extreme points of the corresponding unit balls are weak∗-extreme points (see [7]).
The first example of a Banach space of which unit ball contains elements which are
not weak∗-extreme was suggested by K. de Leeuw and proved by Y. Katznelson (see
the note added at the end of [8]). If E is a separable Banach space containing an
isomorphic copy of c0, then E is isomorphic to a strictly convex space F such that
BF has no weak∗-extreme points (see [7]). For the general case when C is a bounded,
closed and convex set, we refer to [2] and [6] for more on this subject. We recall
from [2] the following result: a Banach space E has the Radon-Nikodým property
if and only if every bounded, closed and convex subset C of E has a weak∗-extreme
point. Of course, in a Radon-Nikodým space it is possible that some of the extreme
points are not weak∗-extreme points (see [5] for other equivalent formulations of the
Radon-Nikodým property).

Theorem 2.1. We have E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗) if and only if x0 is a
weak∗-extreme point of C.

Proof. Let y∗ ∈ E∗ and ε > 0 be arbitrary. In view of Remark 1.2, the condition
(y∗, ε) ∈ epi(f∗) + epi(g∗) is equivalent to the statement that there exists z∗ ∈ E∗

such that for all x, y ∈ E, f(x)+g(y)−〈x−y, z∗〉 ≥ 〈y, y∗〉−ε, which is nothing else
than there exists z∗ ∈ E∗ such that for all u, v ∈ C, 〈u+v−2x0, z

∗〉+ 〈x0−v, y∗〉 ≥
−ε. Hence the inclusion E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗) is fulfilled if and only if

(2.1) inf
y∗∈E∗

sup
z∗∈E∗

inf
(u,v)∈C×C

[〈u + v − 2x0, z
∗〉+ 〈x0 − v, y∗〉] ≥ 0.

Take y∗ ∈ E∗. For z∗ ∈ E∗, we have

inf
(u,v)∈C×C

[〈u+v−2x0, z
∗〉+ 〈x0−v, y∗〉] = inf

(u,v)∈ bC× bC[〈z∗, u+v−2x̂0〉+ 〈y∗, x̂0−v〉]

= inf
(u,v)∈cl bC×cl bC[〈z∗, u + v − 2x̂0〉+ 〈y∗, x̂0 − v〉],
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where the first equality follows by the definition of the canonical embedding and the
second one is a consequence of the continuity (in the weak∗ topology ω(E∗∗, E∗))
of the functions 〈x∗, ·〉 : E∗∗ → R, for all x∗ ∈ E∗. The set C being bounded, we
use the celebrated Banach-Alaoglu theorem to conclude that the set cl Ĉ is weak∗-
compact. We apply a minimax theorem (see for example Theorem 3.1 in [9]) and
obtain that

sup
z∗∈E∗

inf
(u,v)∈C×C

[〈u + v − 2x0, z
∗〉+ 〈x0 − v, y∗〉] =

sup
z∗∈E∗

inf
(u,v)∈cl bC×cl bC[〈z∗, u + v − 2x̂0〉+ 〈y∗, x̂0 − v〉] =

inf
(u,v)∈cl bC×cl bC sup

z∗∈E∗
[〈z∗, u + v − 2x̂0〉+ 〈y∗, x̂0 − v〉] = inf

(u,v)∈cl bC×cl bC
u+v=2cx0

〈y∗, x̂0 − v〉.

Thus

inf
y∗∈E∗

sup
z∗∈E∗

inf
(u,v)∈C×C

[〈u + v − 2x0, z
∗〉+ 〈x0 − v, y∗〉] =

inf
y∗∈E∗

inf
(u,v)∈cl bC×cl bC

u+v=2cx0

〈y∗, x̂0 − v〉 = inf
(u,v)∈cl bC×cl bC

u+v=2cx0

inf
y∗∈E∗

〈y∗, x̂0 − v〉 =

inf
(u,v)∈cl bC×cl bC

u+v=2cx0

−δ{cx0}(v).

Since this has the value 0 if x0 is a weak∗-extreme point of C, and the value −∞
otherwise, this completes the proof of (2.1). �

Remark 2.2. The above result gives the solution to Problem 1.3 (see Remark 1.2),
namely the answer is positive if and only if x0 is a weak∗-extreme point of C. Let us
mention that the closedness of the set C, requested in [10], is not needed anymore
for this result.
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