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Abstract. We give new regularity conditions expressed via epigraphs that as-
sure strong duality between a given primal convex optimization problem and its
Lagrange and Fenchel-Lagrange dual problems, respectively, in infinite dimen-
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ments the so-called stable strong duality between the initial problem and the
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1 Introduction

Duality is an important and powerful tool in optimization, where it is present
subject to several approaches. Among the most used and known duality concepts
there are the ones named after J.L. Lagrange and, respectively, W. Fenchel.
Finding weaker conditions under which there is strong duality, i.e. the situation
when the optimal objective values of the primal and dual problem coincide and
the dual has, moreover, an optimal solution is one of the most interesting and
challenging problems in optimization. Many authors have dealt with this kind
of problems improving and extending the previous results both in finitely and
infinitely dimensional spaces. We recall here some recent works dealing with
this subject, namely [3, 5, 6, 8, 9, 12]. Some of these conditions, usually called
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regularity conditions or constraint qualifications, guarantee also strong duality for
all the optimization problems obtained by perturbing the objective function of
the original primal problem with linear continuous functionals, a situation called
stable strong duality.

In a recent paper ([2]) we have delivered new and weak conditions under
which some formulae for the subdifferential of composed convex functions in
infinite dimensional spaces are valid. Using them we have derived a new regularity
condition that guarantees strong duality between a convex optimization problem
and its Fenchel dual problem, rediscovering another recent result due to two of the
authors in [5]. This new regularity condition is, to the best of our knowledge, the
weakest condition known so far that guarantees strong duality for the Fenchel dual
problem in infinite dimensional spaces. Within the present paper we use some
results from [2] in order to determine weaker regularity conditions assuring strong
duality between a convex optimization problem and its Lagrange and Fenchel-
Lagrange dual problems, respectively, in infinite dimensional spaces. Moreover
we give equivalent statements for the so-called stable strong duality between
the initial problem and the mentioned duals. We also show that our regularity
condition for the Lagrange duality is weaker than some others recently given in
the literature.

As the Lagrange and Fenchel dual problems are widely known and used we do
not write much about them here, but the same does not apply for the Fenchel-
Lagrange dual problem. It has been introduced by two of the present authors,
Boţ and Wanka, first in finite dimensional spaces, then also for problems having
their variables lying in infinite dimensional spaces. As its name suggests, the
Fenchel-Lagrange dual problem is a “combination” of the well-known Fenchel
and Lagrange dual problems. The interested reader is referred to [3, 6] for more
on the way the Fenchel-Lagrange dual problem is constructed.

The paper is structured as follows. After this introduction follow some neces-
sary preliminaries where we introduce the context we work in and we recall the
previous results used within this paper. Section 3 contains the new results we
give concerning Lagrange duality, while the fourth part does the same for the
ones regarding Fenchel-Lagrange duality. Then come the conclusions, followed
by a short appendix dedicated to the same kind of results as in Sections 3 and 4,
concerning this time Fenchel duality.

2 Preliminaries

Consider two nontrivial separated locally convex vector spaces X and Z and their
topological dual spaces X∗ and Z∗, endowed with the weak∗ topologies w(X∗, X)
and, respectively, w(Z∗, Z). Let the non-empty closed convex cone K ⊆ Z and
its dual cone K∗ = {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 ∀z ∈ K} be given, where we denote
by 〈z∗, z〉 = z∗(z) the value at z of the continuous linear functional z∗. On Z we
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consider the partial order induced by K, ”≤K”, defined by x ≤K y ⇔ y−x ∈ K,
x, y ∈ Z. To Z we attach a greatest element with respect to ”≤K” denoted by∞
which does not belong to Z and let Z• = Z ∪{∞}. Then for any z ∈ Z• one has
z ≤K ∞ and we consider on Z• the following operations: z +∞ = ∞ + z = ∞
for all z ∈ Z•, t∞ =∞ for any t ≥ 0 and 〈λ,∞〉 = +∞ whenever λ ∈ K∗.

Given a subset U of X, by cl(U) we denote its closure in the corresponding
topology, while its indicator function is δU : X → R = R ∪ {±∞}, defined by

δU(x) =

{
0, if x ∈ U,
+∞, otherwise.

Definition 1. ([2]) A set U ⊆ X is said to be closed regarding the subspace
W ⊆ X if U ∩W = cl(U) ∩W .

Now we give some notions regarding functions used within our paper.

For a function f : X → R we have

· the domain: dom(f) = {x ∈ X : f(x) < +∞},

· the epigraph: epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

· the conjugate regarding the set U ⊆ X: f ∗U : X∗ → R given by f ∗U(x∗) =
(f + δU)∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ U},

· f is proper : f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅,

· f is C-increasing : f(x) ≥ f(y) ∀x, y ∈ X such that y ≤C x, with C a
non-empty closed convex cone in X,

· f is lower-semicontinuous regarding the subspace W ⊆ X: epi(f) ∩ (W ×
R) = cl(epi(f)) ∩ (W × R), i.e. epi(f) is closed regarding the subspace
W × R.

When U = X the conjugate regarding the set U is the classical conjugate
function f ∗. Between a function and its conjugate regarding some set U ⊆ X
there is Young’s inequality

f ∗U(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ U x∗ ∈ X∗.

Given two proper functions f, g : X → R, we have the infimal convolution of f
and g defined by

f�g : X → R,
(
f�g

)
(a) = inf{f(x) + g(a− x) : x ∈ X},
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which is called exact at some a ∈ X when there is an x ∈ X such that
(
f�g

)
(a) =

f(x)+g(a−x). Let us mention that for an attained infimum (supremum) instead
of inf (sup) we write min (max).

There are notions given for functions with extended real values that can be
formulated also for functions having their ranges in infinite dimensional spaces.

For a function h : X → Z• one has

· the domain: dom(h) = {x ∈ X : h(x) ∈ Z},

· h is proper : dom(h) 6= ∅,

· h is K-convex : h(tx+(1− t)y) ≤K th(x)+(1− t)h(y) ∀x, y ∈ X ∀t ∈ [0, 1],

· for α ∈ K∗, (αh) : X → R, (αh)(x) = 〈α, h(x)〉,

· h is star K-lower-semicontinuous at x ∈ X: (αh) is lower-semicontinuous
at x ∀α ∈ K∗,

· h is K-epi-closed if epiK(h) =
{

(x, y) ∈ X × Y : y ∈ h(x) + K
}

, the
K-epigraph of h, is closed,

· for a subset W ⊆ Z: h−1(W ) = {x ∈ X : ∃z ∈ W s.t. h(x) = z}.

Remark 1. (cf. [1, 10]) If h is star K-lower-semicontinuous at all x ∈ X is
said to be star K-lower-semicontinuous. In this case it can be proven that h is
also K-epi-closed. The reverse implication is not always valid, as [4, Example 1]
and [11, Example 1.2] show.

Remark 2. There are also other extensions of the lower-semicontinuity to func-
tions taking values in infinite dimensional spaces, like the K-lower-semicontinuity,
the level-closedness or the K-sequentially lower-semicontinuity. We refer the in-
terested reader to [1, 7, 10] for more on the subject.

In the following we recall the results given in [2] used within this paper.
Consider the proper convex lower-semicontinuous function F : X → R, the K-
increasing proper convex lower-semicontinuous function G : Z → R and the
proper K-convex K-epi-closed function H : X → Z• such that H(dom(F ) + K)
and dom(G) have at least a point in common. Moreover, let us consider the
following regularity conditions

(CQ) {0X∗} × epi(G∗) + ∪
α∈K∗
{(a,−α, r) : (a, r) ∈ epi(F + (αH))∗} is closed

regarding the subspace X∗ × {0Z∗} × R,
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(CQ) {0X∗} × epi(G∗) + {(p, 0Z∗ , r) : (p, r) ∈ epi(F ∗)} + ∪
α∈K∗
{(p,−α, r) :

(p, r) ∈ epi(αH)∗} is closed regarding the subspace X∗ × {0Z∗} × R,

(CQD) the function (p, q) 7→ inf
α∈K∗+q

[G∗(α)+(F+((α−q)H))∗(p)] is lower-

semicontinuous regarding the subspace X∗×{0Z∗} and the infimum at (0X∗ , 0Z∗)
is attained,

(CQD) the function (p, q) 7→ inf
α∈K∗+q

[G∗(α)+(F+((α−q)H))∗(p)] is lower-

semicontinuous regarding the subspace X∗ × {0Z∗} and epi(A∗�B∗) ∩ ({0X∗} ×
{0Z∗}×R) = ({0X∗}×epi(G∗)+{(p, 0Z∗ , r) : (p, r) ∈ epi(F ∗)}+ ∪

α∈K∗
{(p,−α, r) :

(p, r) ∈ epi((αH)∗)}) ∩ ({0X∗} × {0Z∗} × R),

where A,B : X × Z → R are the functions defined by A(x, z) = G(z) and
B(x, z) = F (x) + δ{(x,z)∈X×Z:H(x)−z∈−K}(x, z) for (x, z) ∈ X × Z. In [2] we have
proven that the functions A and B are proper, convex and lower-semicontinuous,
and their domains have at least a point in common. We have established there
also the following statements.

Remark 3. (CQ) yields (CQD) and (CQ) delivers (CQD), but the reverse
implications are not always true. See [2] for counter-examples.

Theorem 1. (CQ) is fulfilled if and only if for any p ∈ X∗ one has

(F +G ◦H)∗(p) = min
α∈K∗

[G∗(α) + (F + (αH))∗(p)].

Theorem 2. (CQ) is fulfilled if and only if for any p ∈ X∗ it holds

(F +G ◦H)∗(p) = min
α∈K∗,
β∈X∗

[G∗(α) + F ∗(β) + (αH)∗(p− β)].

Remark 4. The fulfillment of (CQ) implies the validity of (CQ), while (CQ)
does not always hold when (CQ) is satisfied, see [2] for a counter-example.

Theorem 3. Assume (CQD) valid. Then

inf
x∈X

[F (x) +G ◦H(x)] = max
α∈K∗
{−G∗(α)− (F + (αH))∗(0X∗)}.

Theorem 4. Assume (CQD) valid. Then

inf
x∈X

[F (x) +G ◦H(x)] = max
α∈K∗,
β∈X∗

{−G∗(α)− F ∗(β)− (αH)∗(−β)}.
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Remark 5. The fulfillment of (CQD) guarantees the satisfaction of (CQD),
while (CQD) does not always hold when (CQD) is valid (cf. [2]).

As announced, this paper deals with Lagrange and Fenchel-Lagrange duality
for convex optimization problems. Thus we consider the primal convex optimiza-
tion problem

(P ) inf
x∈U,

g(x)∈−C

f(x),

where Y is a nontrivial separated locally convex vector space, U a non-empty
closed convex subset of X, C a non-empty closed convex cone in Y , f : X → R a
proper convex lower-semicontinuous function and g : X → Y • a proper C-convex
C-epi-closed function. Moreover, we need to impose the condition

dom(f) ∩ g−1(−C) ∩ U 6= ∅.

To this problem we attach both the Lagrange and Fenchel-Lagrange dual prob-
lems. For each of these dual problems we completely characterize the so-called
stable strong duality and we give weak regularity conditions under which strong
duality occurs.

For the convex optimization problem (P ) we denote by v(P ) its optimal ob-
jective value and we use this notation also for the optimal objective values of the
other problems that appear within our paper. Let us state also that by strong
duality we understand the situation when the optimal objective values of the
primal and dual problem coincide and the dual problem has an optimal solution,
while stable strong duality (cf. [9]) takes place when strong duality holds for any
linear continuous perturbation of the objective function f .

3 Lagrange duality

In this section we introduce a new regularity condition, derived from (CQD),
which guarantees strong duality between the given primal optimization problem
(P ) and its Lagrange dual problem,

(DL) sup
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)],

while using (CQ) we give an equivalent formulation (complete characterization)
of the stable strong duality for this primal-dual pair of problems.

In order to state the mentioned duality assertions by using the cited results
from [2], let us take the following choices for the functions and sets involved

K = {0X}×C,Z = X×Y, F (x) = f(x)∀x ∈ X,G(x, y) = δ−C(y)∀(x, y) ∈ X×Y,
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and H(x) =

{
(0X , g(x)), x ∈ U,
∞, otherwise.

Note that F , G and H fulfill the hypotheses assumed for them in the previous
section. Thus K∗ = X∗ × C∗ and the conjugates of F and G are in this case
F ∗ = f ∗ and, as δ∗−C(y∗) = supv∈−C〈y∗, v〉 = δC∗(y

∗),

G∗(x∗, y∗) =

{
0, x∗ = 0X∗ , y∗ ∈ C∗,
+∞, otherwise.

It is easy to notice that one gets immediately for any (x∗, y∗) ∈ X∗×C∗, whenever
x ∈ X, one has ((x∗, y∗)H)(x) = (y∗g)(x) + δU(x) and

(F +G ◦H)(x) =

{
f(x), x ∈ U, g(x) ∈ −C,
+∞, otherwise.

In order to obtain the stable strong duality statement regarding (P ) and (DL)
we must perturb the objective function f of (P ) with a linear continuous pertur-
bation function. Thus, taking some p ∈ X∗, the perturbed primal problem is

(Pp) inf
x∈U,

g(x)∈−C

[f(x)− 〈p, x〉].

Using the functions F , G and H as chosen above, one gets

v(Pp) = − sup
x∈U,

g(x)∈−C

{〈p, x〉 − f(x)} = − sup
x∈X
{〈p, x〉 − (F +G ◦H)(x)},

thus v(Pp) = −(F +G ◦H)∗(p). As asserted in Theorem 1, the validity of (CQ)
is equivalent to

(F +G ◦H)∗(p) = min
α∈K∗

[G∗(α) + (F + (αH))∗(p)] ∀p ∈ X∗,

thus moreover to

v(Pp) = − min
α∈K∗

[G∗(α) + (F + (αH))∗(p)]

= max
(x∗,λ)∈X∗×C∗

{−G∗(x∗, λ)− (F + ((x∗, λ)H))∗(p)} ∀p ∈ X∗.

Using the formula of the conjugate of G, we get that (CQ) is further equivalent
to

v(Pp) = max
λ∈C∗
{−(F + ((0X∗ , λ)H))∗(p)} = max

λ∈C∗
{−(f + (λg))∗U(p)},

for all p ∈ X∗. Since

(f + (λg))∗U(p) = sup
x∈U
{〈p, x〉− f(x)− (λg)(x)} = − inf

x∈U
[−〈p, x〉+ f(x) + (λg)(x)],
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we get

(CQ) ⇔ v(Pp) = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)− 〈p, x〉] ∀p ∈ X∗. (1)

In order to avoid any confusions the regularity conditions (CQ) and (CQD)
will become (CQL), respectively (CQDL), for the special choices of F , G and
H announced earlier, i.e. when written using f , g, U and C. As epi(G∗) =
{0X∗} × C∗ × [0,+∞), we get that (CQL) means that the set

M = {0X∗} × {0X∗} × C∗ × [0,+∞)

+ ∪
x∗∈X∗,
λ∈C∗

{(a,−x∗,−λ, r) : (a, r) ∈ epi((f + (λg) + δU)∗)}

is closed regarding the subspace S = X∗×{0X∗}×{0Y ∗}×R. Consequently, the
set M can be characterized as follows

(a, b, c, r) ∈M ⇔ b ∈ X∗ and (a, r) ∈ ∪
λ∈C∗∩(C∗−c)

epi((f + (λg) + δU)∗). (2)

The proof is quite elementary. If (a, b, c, r) ∈M then there are some x∗ ∈ X∗,
λ̄ ∈ C∗ and s ≥ 0 such that (a, b, c, r) = (0X∗ , 0X∗ , λ̄ + c, s) + (a,−x∗,−λ̄, r − s)
and (a, r − s) ∈ epi((f + (λ̄g) + δU)∗). Thus b = −x∗, λ̄ + c ∈ C∗, which means
λ̄ ∈ C∗ − c. Moreover

(a, r) ∈ epi((f + (λ̄g) + δU)∗) ⊆ ∪
λ∈C∗∩(C∗−c)

epi((f + (λg) + δU)∗),

so the implication left to right in (2) is secured. On the other hand, taking
(a, b, c, r) in the set described in the right-hand side of (2), there is a λ̄ ∈ C∗ ∩
(C∗ − c) such that the quadruple can be written as follows

(a, b, c, r) = (0X∗ , 0X∗ , λ̄+ c, 0) + (a, b,−λ̄, r),

and it is clear that the first member of this sum belongs to {0X∗}×{0X∗}×C∗×
[0,+∞), while the second to

∪
λ∈C∗,
x∗∈X∗

{(a,−x∗,−λ, r) : (a, r) ∈ epi((f + (λg) + δU)∗)},

i.e. (a, b, c, r) ∈ M . Let us see now how we can write equivalently that M is
closed regarding the subspace S.

Lemma 1. The regularity condition (CQL) is equivalent to the fact that

∪
λ∈C∗

epi((f + (λg) + δU)∗) is closed. (3)
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Proof. First we recall that M ∩S ⊆ cl(M ∩S) ⊆ cl(M)∩ cl(S) = cl(M)∩ S.
Now let us prove that cl(M ∩S) = cl(M)∩S. Take some (a, b, c, r) ∈ cl(M)∩S.
Then b = 0X∗ and c = 0Y ∗ and let us consider the neighborhoods V of a in X∗, U
of 0X∗ in X∗ and W of 0Y ∗ in Y ∗ and some ε > 0 such that V ×U×W×(r−ε, r+ε)
is a neighborhood of (a, 0X∗ , 0Y ∗ , r). This yields the existence of a quadruple
(ā, b̄, c̄, r̄) ∈ V × U ×W × (r − ε, r + ε) such that (ā, b̄, c̄, r̄) ∈ M . This means
actually, by (2), b̄ ∈ X∗ and (ā, r̄) ∈ ∪λ∈C∗∩(C∗−c) epi((f + (λg) + δU)∗). The
latter gives (ā, r̄) ∈ ∪λ∈C∗ epi((f + (λg) + δU)∗), thus (ā, 0X∗ , 0Y ∗ , r̄) ∈ M ∩ S.
As (ā, 0X∗ , 0Y ∗ , r̄) is also in V × U ×W × (r − ε, r + ε) and this neighborhood
has been arbitrarily chosen, it follows (a, b, c, r) ∈ cl(M ∩ S). Consequently
cl(M ∩ S) ⊇ cl(M) ∩ S, therefore cl(M ∩ S) = cl(M) ∩ S. Thus the fact that M
is closed regarding the subspace S means in this case that M ∩ S = cl(M ∩ S),
i.e. M ∩ S is closed.

Consider the mapping T : X∗ ×X∗ × Y ∗ × R → X∗ × R×X∗ × Y ∗ defined
by T (a, b, c, r) = (a, r, b, c). It is clear that T is a homeomorphism, so M ∩ S
is closed if and only if T (M ∩ S) is closed. As T (M ∩ S) = ∪λ∈C∗ epi((f +
(λg) + δU)∗) × {0X∗} × {0Y ∗}, one gets that M ∩ S is closed if and only if
∪λ∈C∗ epi((f + (λg) + δU)∗) is closed. �

As (3) is equivalent to (CQL) it will be used further under this name. Using
the discussion given in the beginning of the section, especially (1), we establish
now the stable strong duality statement concerning (P ) and (DL).

Theorem 5. The set ∪λ∈C∗ epi((f + (λg) + δU)∗) is closed, i.e. (CQL) holds,
if and only if for any p ∈ X∗ one has

inf
x∈U,

g(x)∈−C

[f(x)− 〈p, x〉] = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)− 〈p, x〉].

Remark 6. One may notice that in the previous statement we have redis-
covered [9, Theorem 3.2]. The difference between our result and the cited one
consists in the fact that there g is taken star C-lower-semicontinuous and here
we consider for it a more general hypothesis, the C-epi-closedness.

Regarding (CQDL), we know that it means that the function

(p, b, c) 7→ inf
(x∗,λ)∈X∗×C∗+(b,c)

{G∗(x∗, λ) + (F + (x∗ − b, λ− c)H))∗(p)}

is lower-semicontinuous regarding the subspace X∗ × {0X∗} × {0Y ∗} and when
(p, b, c) = (0X∗ , 0X∗ , 0Y ∗) the infimum therein is attained. Taking into account
the formulae of F , G∗ and H, (CQDL) turns out to mean that the function

ϕ : X∗ ×X∗ × Y ∗ → R, ϕ(p, b, c) = inf
λ∈C∗∩(C∗+c)

(f + ((λ− c)g) + δU)∗(p)
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is lower-semicontinuous regarding the subspace X∗ × {0X∗} × {0Y ∗} and when
(p, b, c) = (0X∗ , 0X∗ , 0Y ∗) the infimum therein is attained. The following state-
ment gives a simpler formulation for (CQDL) and it is followed by the strong
duality assertion regarding the primal problem (P ) and its Lagrange dual prob-
lem (DL).

Lemma 2. (CQDL) turns out to mean that the function

η : X∗ → R, η(p) = inf
λ∈C∗

(f + (λg) + δU)∗(p)

is lower-semicontinuous and when p = 0X∗ the infimum within is attained.

Proof. One may easily notice that at (0X∗ , 0X∗ , 0Y ∗) the infimum within ϕ
is attained if and only if there is some λ̄ ∈ C∗ such that (f + (λ̄g) + δU)∗(0X∗) =
infλ∈C∗(f +(λ̄g)+ δU)∗(0X∗), i.e. when p = 0X∗ the infimum within η is attained.

On the other hand, the fact that ϕ is lower-semicontinuous regarding the
subspace X∗ × {0X∗} × {0Y ∗} means actually that epi(ϕ) ∩ S = cl(epi(ϕ)) ∩ S.
Let us prove that cl(epi(ϕ) ∩ S) = cl(epi(ϕ)) ∩ S. As the inclusion ”⊆” is
known to be true, let us take some quadruple (p, b, c, r) ∈ cl(epi(ϕ)) ∩ S. By
definition one gets immediately b = 0X∗ and c = 0Y ∗ . As (p, 0X∗ , 0Y ∗ , r) ∈
cl(epi(ϕ)), by considering the neighborhoods V of p in X∗, U of 0X∗ in X∗ and
W of 0Y ∗ in Y ∗ and some ε > 0, there follows the existence of some quadruple
(p̄, b̄, c̄, r̄) ∈ (V ×U ×W × (r− ε, r+ ε))∩ epi(ϕ). Thus infλ∈C∗∩(C∗+c̄)(f + (λg) +
δU)∗(p̄) ≤ r̄. Let ¯̄r ∈ (r̄, r + ε). There is at least a λ̄ ∈ C∗ ∩ (C∗ + c̄) such
that (f + (λ̄g) + δU)∗(p̄) < ¯̄r. This leads to infλ∈C∗(f + (λg) + δU)∗(p̄) < ¯̄r, so
(p̄, 0X∗ , 0Y ∗ , ¯̄r) ∈ epi(ϕ) ∩ S. As (p̄, 0X∗ , 0Y ∗ , ¯̄r) ∈ V × U ×W × (r − ε, r + ε) it
follows that (p, b, c, r) belongs to cl(epi(ϕ)∩S), too. Thus also the inclusion ”⊇”
is valid, therefore cl(epi(ϕ) ∩ S) = cl(epi(ϕ)) ∩ S, i.e. ϕ is lower-semicontinuous
regarding the subspace X∗ × {0X∗} × {0Y ∗} if and only if epi(ϕ) ∩ S is closed.

Using the homeomorphism T introduced within the proof Lemma 1, one has
T (epi(ϕ)∩S) = epi(η)×{0X∗}×{0Y ∗} as proven further. Taking (p, 0X∗ , 0Y ∗ , r) ∈
epi(ϕ) ∩ S it follows η(p) ≤ r, so (p, r) ∈ epi(η). As T (p, 0X∗ , 0Y ∗ , r) = (p, r, 0X∗ ,
0Y ∗) the inclusion ”⊆” is secured. Viceversa, if (p, r, 0X∗ , 0Y ∗) ∈ epi(η)×{0X∗}×
{0Y ∗}, there is (p, 0X∗ , 0Y ∗ , r) ∈ epi(ϕ) ∩ S fulfilling T (p, 0X∗ , 0Y ∗ , r) = (p, r, 0X∗ ,
0Y ∗), so the reverse inclusion stands, too.

Therefore epi(ϕ) ∩ S is closed if and only if epi(η) is closed, i.e. η is lower-
semicontinuous. Consequently (CQDL) is fulfilled if and only if η is a lower-
semicontinuous function having at 0X∗ the infimum in its definition attained. �

Theorem 6. If the function p 7→ infλ∈C∗(f + (λg) + δU)∗(p) is lower-
semicontinuous and when p = 0X∗ the infimum within is attained, i.e. (CQDL)
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is valid, then there is strong duality between (P ) and (DL), i.e.

inf
x∈U,

g(x)∈−C

f(x) = max
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)].

Proof. The assertion arises from Theorem 3 via the discussion in the begin-
ning of the section. �

Remark 7. Usually in the literature (see [6, 8, 9]) the strong duality statement
for (P ) and (DL) is given under the assumption of continuity for f , while we give
it for f lower-semicontinuous. In the following we show that even assuming f
continuous our regularity condition (CQDL) is weaker than the condition (dCQ)
introduced in [9] which is implied by many other regularity conditions in the
literature.

Proposition 1. If X is a Fréchet space and f : X → R is moreover contin-
uous, the fulfillment of the so-called dual CQ (cf. [9])

(dCQ) ∪
λ∈C∗

epi(δU + (λg))∗ is closed,

guarantees the validity of (CQDL).

Proof. By [9, (3.3)], (dCQ) is valid if and only if

∪
λ∈C∗

epi(δU + (λg))∗ = epi(δ∗U∩g−1(−C)).

As f is continuous it follows (cf. [9])

epi(f ∗) + epi(δ∗U∩g−1(−C)) = epi((f + δU∩g−1(−C))
∗) = ∪

λ∈C∗
epi((f + (λg) + δU)∗),

so the latter is a closed set, too.
Next we show that ∪λ∈C∗ epi((f + (λg) + δU)∗) is closed if and only if p 7→

η(p) = infλ∈C∗(f+(λg)+δU)∗(p) is lower-semicontinuous and the infimum therein
is always attained.

Take first some pair (p, r) ∈ ∪λ∈C∗ epi((f+(λg)+δU)∗). This means that there
is some λ̄ ∈ C∗ satisfying (f+(λ̄g)+δU)∗(p) ≤ r, so infλ∈C∗(f+(λg)+δU)∗(p) ≤ r.
Thus (p, r) ∈ epi(η), therefore ∪λ∈C∗ epi((f + (λg) + δU)∗) ⊆ epi(η).

Consider now a pair (p, r) ∈ epi(η). For any n ∈ N there is at least a λn ∈ C∗
such that (p, r+(1/n)) ∈ epi((f+(λng)+δU)∗) ⊆ ∪λ∈C∗ epi((f+(λg)+δU)∗). Let-
ting n converge towards the positive infinity we obtain (p, r) ∈ cl(∪λ∈C∗ epi((f +
(λg) + δU)∗)), so epi(η) ⊆ cl(∪λ∈C∗ epi((f + (λg) + δU)∗)). Therefore we have
obtained

∪
λ∈C∗

epi((f + (λg) + δU)∗) ⊆ epi(η) ⊆ cl
(
∪

λ∈C∗
epi((f + (λg) + δU)∗)

)
, (4)
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which delivers, by taking the closures of the sets involved

cl(epi(η)) = cl
(
∪

λ∈C∗
epi((f + (λg) + δU)∗)

)
.

If ∪λ∈C∗ epi((f + (λg) + δU)∗) is closed it follows by (4) that epi(η) is closed,
so η is lower-semicontinuous.

Fix arbitrarily some p ∈ X∗. Since dom(f) ∩ g−1(−C) ∩ U 6= ∅ one gets
η(p) > −∞. If η(p) = +∞ it is clear that the infimum within η is attained at
any λ ∈ C∗. The other possible situation is η(p) ∈ R. If this occurs, one has
(p, η(p)) ∈ epi(η) = ∪λ∈C∗ epi((f + (λg) + δU)∗). Thus there is some λ̄ ∈ C∗

such that (f + (λ̄g) + δU)∗(p) = η(p) = infλ∈C∗(f + (λg) + δU)∗(p), i.e. at p the
infimum within η is attained for λ = λ̄. Therefore the infimum within η is always
attained.

On the other hand, let p 7→ η(p) be lower-semicontinuous with the infimum
therein always attained. Observe that η is lower-semicontinuous if and only if its
epigraph is closed. Taking any (p, r) ∈ cl(∪λ∈C∗ epi((f + (λg) + δU)∗)) it follows
η(p) ≤ r and there is some λ̄ ∈ C∗ where the infimum within the formula of η
is attained. Thus (p, r) ∈ epi((f + (λ̄g) + δU)∗) ⊆ ∪λ∈C∗ epi((f + (λg) + δU)∗).
Therefore the latter set is closed.

We have shown that if (dCQ) holds, η is lower-semicontinuous and the infi-
mum therein is always attained. By Lemma 2 it follows that (CQDL) is fulfilled.�

An example showing that (CQDL) does not necessarily imply (dCQ) follows.

Example 1. Let X = U = Y = R, C = [0,+∞), f(x) = 0 for any x ∈ R
and g(x) = x2 whenever x ∈ R. We have C∗ = [0,+∞) and ∪λ∈C∗ epi((f + δU +
(λg))∗) = ∪λ≥0 epi((λg)∗).

For λ = 0 we have (λg)∗(p) = 0 if p = 0 and (λg)∗(p) = +∞ otherwise, so
epi((0g)∗) = {0}× [0,+∞). When λ > 0 one gets (λg)∗(p) = supx∈R{px−λx2} =
p2/(4λ) for any p ∈ R. Thus

∪
λ≥0

epi((λg)∗) = {0}×[0,+∞)∪
⋃
λ>0,
p∈R

{p}×
[ p2

4λ
,+∞

)
= {0}×[0,+∞)∪R×(0,+∞).

As this is clearly not a closed set, (dCQ) is violated.
On the other hand, the function η is now η(p) = infλ≥0(λg)∗(p), p ∈ R and,

as the conjugate inside has already been calculated, we get η(p) = 0 ∀p ∈ R. It
is easy to notice that this is a lower-semicontinuous function and the infimum
regarding λ ≥ 0 is attained at λ = 0 when p = 0. Therefore (CQDL) is valid in
this case, unlike (dCQ). �

Remark 8. Thus our regularity condition (CQDL) turns out to be weaker
than all the regularity conditions that assure strong duality for (P ) and (DL)
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mentioned in [9], as there is proven that they imply (dCQ). Another regularity
condition that guarantees strong duality between (P ) and (DL) when f and g
are continuous is (CCCQ) in [8] (see also [6]), mentioned later within this paper,
too. Since (CCCQ) ⇒ (dCQ) (cf. [9]) it is clear that (CQDL) is valid when
(CCCQ) holds, too. Consequently, to the best of our knowledge, (CQDL) is the
weakest regularity condition in the literature guaranteeing strong duality between
(P ) and (DL).

4 Fenchel-Lagrange duality

This part of the paper is dedicated to the introduction of a new regularity condi-
tion (CQDFL) derived from (CQD) which guarantees strong duality between the
given primal optimization problem (P ) and its Fenchel-Lagrange dual problem

(DFL) sup
λ∈C∗,
β∈X∗

{−f ∗(β)− (λg)∗U(−β)}.

The Fenchel-Lagrange dual problem has been introduced and intensively stud-
ied by Boţ and Wanka. More on the way it is introduced and its relations to
Fenchel and Lagrange duals may be found in [6], while in [3] it is proven to swal-
low as special case the still used geometric dual problem. Let us also mention
that between the primal problem and its Lagrange and Fenchel-Lagrange duals
one has the so-called weak duality statement (cf. [6])

v(DFL) ≤ v(DL) ≤ v(P ). (5)

Thus any condition that is sufficient to guarantee strong duality between (P ) and
(DFL) yields strong duality for (P ) and (DL), too.

First we give a stable strong duality type statement derived from Theorem
2. In order to avoid any confusion, (CQ) will be called further (CQFL) and it
means, after replacing F , G, H and K with their formulations using f , g, U and
C given in the previous section, that the set

N = {0X∗} × {0X∗} × C∗ × [0,+∞) + {(a, 0X∗ , 0Y ∗ , r) : (a, r) ∈ epi(f ∗)}
+ ∪

x∗∈X∗,
λ∈C∗

{(a,−x∗,−λ, r) : (a, r) ∈ epi(((λg) + δU)∗)}

is closed regarding the subspace S. By Theorem 2 we have, taking into account
the way F , G, H and K are written using f , g, U and C and the discussion in
the beginning of the previous section,

(CQFL) ⇔ v(Pp) = max
λ∈C∗,
β∈X∗

{−f ∗(β)− (λg)∗U(p− β)} ∀p ∈ X∗. (6)
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Let us notice moreover that N may be rewritten as

N = {(a, 0X∗ , c, r) : (a, r) ∈ epi(f ∗), c ∈ C∗}
+ ∪

x∗∈X∗,
λ∈C∗

{(a,−x∗,−λ, r) : (a, r) ∈ epi(((λg) + δU)∗)} (7)

and in the following we give an equivalent formulation of (CQFL) which is simpler
than the one using N .

Lemma 3. The regularity condition (CQFL) is valid if and only if the set

epi(f ∗) + ∪
λ∈C∗

epi(((λg) + δU)∗) (8)

is closed.

Proof. We know that cl(N ∩ S) ⊆ cl(N) ∩ S. Let us show first that the
reverse inclusion holds, too. Take the quadruple (a, b, c, r) ∈ cl(N) ∩ S. It is
clear that b = 0X∗ and c = 0Y ∗ . Moreover, take some neighborhoods V , U
and W as in the proof of Lemma 1 and an ε > 0. Then there is a quadruple
(ā, b̄, c̄, r̄) ∈ N∩(V ×U×W×(r−ε, r+ε)). Further, taking into consideration (7),
b̄ ∈ X∗ and there are some p1 and p2 in X∗, r1 and r2 in R and λ̄ ∈ C∗ such that
(p1, r1) ∈ epi(f ∗) and (p2, r2) ∈ epi(((λ̄g) + δU)∗), satisfying c̄ = −λ̄, ā = p1 + p2

and r̄ = r1 + r2. One may notice immediately that (ā, 0X∗ , 0Y ∗ , r̄) ∈ N , but it
belongs also to S and V ×U ×W × (r− ε, r+ ε), so (a, b, c, d) ∈ cl(N ∩S). Thus
N is closed regarding S if and only if N ∩ S is closed.

Considering now the homeomorphism T defined in the proof of Lemma 1 we
have that the set T (N ∩ S) is closed if and only if N ∩ S is closed. Let us prove
that

T (N ∩ S) =

(
epi(f ∗) + ∪

λ∈C∗
(((λg) + δU)∗)

)
× {0X∗} × {0Y ∗}.

We know that (a, 0X∗ , 0Y ∗ , r) ∈ N ∩ S if and only if there are some p1 and
p2 in X∗, r1 and r2 in R and λ ∈ C∗ such that a = p1 + p2, r = r1 +
r2, (p1, r1) ∈ epi(f ∗) and (p2, r2) ∈ epi(((λg) + δU)∗). This is equivalent to
(a, r, 0X∗ , 0Y ∗) ∈

(
epi(f ∗) + ∪λ∈C∗ epi(((λg) + δU)∗)

)
× {0X∗} × {0Y ∗}. Noticing

that T (a, 0X∗ , 0Y ∗ , r) = (a, r, 0X∗ , 0Y ∗), the mentioned equality is proved. These
considerations above allow us to conclude that (CQFL) holds if and only if the
set in (8) is closed. �

The following statement follows from Theorem 2 via (6) by taking into ac-
count Lemma 3. It may be seen as a stable strong duality assertion concerning
(P ) and its Fenchel-Lagrange dual problem (DFL), as in the left-hand side we
have actually v(Pp).

14



Theorem 7. The set epi(f ∗) +∪λ∈C∗ epi(((λg) + δU)∗) is closed, i.e. (CQFL)
is valid, if and only if for any p ∈ X∗ one has

inf
x∈U,

g(x)∈−C

[f(x)− 〈p, x〉] = max
β∈X∗,
λ∈C∗
{−f ∗(β)− (λg)∗U(p− β)}.

In order to give the strong duality theorem for (P ) and its Fenchel-Lagrange
dual problem (DFL) we will give a simpler formulation for (CQDFL). In the
previous section we have proved that the function ϕ required in (CQD) to be
lower-semicontinuous with respect to X∗×{0X∗}× {0Y ∗} enjoys this property if
and only if the function η is lower-semicontinuous. The second part in (CQD)
means actually (cf. [2]) epi(A∗�B∗) ∩ ({0X∗} × {0X∗} × {0Y ∗} ×R) ⊆ ({0X∗} ×
epi(G∗)+{(p, 0Z∗ , r) : (p, r) ∈ epi(F ∗)}+ ∪

α∈K∗
{(p,−α, r) : (p, r) ∈ epi((αH)∗)})∩

({0X∗}×{0X∗}×{0Y ∗}×R), as the reverse inclusion is always fulfilled. Knowing
that ϕ = A∗�B∗, this turns out to be (see also the discussion before Lemma 3)

∀(p, b, c, r) ∈ epi(ϕ) ∩ ({0X∗} × {0X∗} × {0Y ∗} × R) ⇒ (p, b, c, r) ∈ N. (9)

Thus we get that (CQDFL) means that η is lower-semicontinuous and (9) holds.
The next statement gives a simpler formulation to (CQDFL).

Lemma 4. The satisfaction of (CQDFL) means actually the concomitant
validity of the following two conditions

(i) the function η is lower-semicontinuous,

(ii) there is a pair (x∗, λ̄) ∈ X∗ × C∗ such that

f ∗(x∗) + (λ̄g)∗U(−x∗) ≤ inf
λ∈C∗

(f + (λg) + δU)∗(0X∗).

Proof. The relation (9) means actually that whenever r ∈ R satisfies ϕ(0X∗ ,
0X∗ , 0Y ∗) ≤ r one has also (0X∗ , 0X∗ , 0Y ∗ , r) ∈ N . This is equivalent to the
existence of some p1, p2 ∈ X∗, r1, r2 ∈ R and λ̄ ∈ C∗ such that 0X∗ = p1 + p2,
r = r1 +r2, (p1, r1) ∈ epi(f ∗) and (p2, r2) ∈ epi((λ̄g)∗U). Denoting x∗ := p1, we get
that (9) is equivalent to the existence of the mentioned x∗, r1, r2 and λ̄ such that
f ∗(x∗) ≤ r1 and (λ̄g)∗U(−x∗) ≤ r2 whenever r ∈ R satisfies ϕ(0X∗ , 0X∗ , 0Y ∗) ≤ r.
Further we get that (9) is equivalent to the fact that for any r ∈ R satisfying
ϕ(0X∗ , 0X∗ , 0Y ∗) ≤ r the existence of some x∗ ∈ X∗ and λ̄ ∈ C∗ such that
f ∗(x∗) + (λ̄g)∗U(−x∗) ≤ r is granted. Taking r = ϕ(0X∗ , 0X∗ , 0Y ∗) we get that (9)
implies

∃x∗ ∈ X∗ and ∃λ̄ ∈ C∗ : f ∗(x∗) + (λ̄g)∗U(−x∗) ≤ inf
λ∈C∗

(f + (λg) + δU)∗(0X∗).

Meanwhile, when (ii) holds, for any r ∈ R satisfying ϕ(0X∗ , 0X∗ , 0Y ∗) ≤ r one
obtains that the pair (x∗, λ̄) satisfies also f ∗(x∗) + (λ̄g)∗U(−x∗) ≤ r, i.e. (9) is
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valid. The conclusion arises immediately. �

Remark 9. The inequality in (ii) in the previous lemma may be further
rewritten as

sup
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)] ≤ −f ∗(x∗)− (λ̄g)∗U(−x∗).

We also have

−f ∗(x∗)− (λ̄g)∗U(−x∗) ≤ sup
x∗∈X∗,
λ∈C∗

{−f ∗(x∗)− (λg)∗U(−x∗)}

≤ sup
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)],

so (ii) is equivalent to

∃(x∗, λ̄) ∈ X∗ × C∗ : −f ∗(x∗)− (λ̄g)∗U(−x∗) = sup
x∗∈X∗,
λ∈C∗

{−f ∗(x∗)− (λg)∗U(−x∗)}

= sup
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)].

Further, by (CQDFL) we understand the concomitant fulfilment of conditions
(i) and (ii) in Lemma 4. Using Theorem 4 and the results above one can easily
prove the following strong duality statement for (P ) and (DFL).

Theorem 8. If (CQDFL) is satisfied then there is strong duality between (P )
and its Fenchel-Lagrange dual problem (DFL), i.e.

inf
x∈U,

g(x)∈−C

f(x) = max
λ∈C∗,
β∈X∗

{−f ∗(β)− (λg)∗U(−β)}.

Remark 10. According to Remark 5, (CQDFL) implies (CQDL), thus, as said
in the beginning of the section, (CQDFL) guarantees strong duality between (P )
and (DL), too. The example in the end of this section gives a situation where
(dCQ) fails, while (CQDFL) is valid. Note also that (CQFL) implies (CQL).

Remark 11. A result similar to the one in the last theorem has been proven in
[6, Theorem 4.5] under the additional hypotheses X Banach space and g : X →
Y continuous. There the strong duality was shown provided the concomitant
fulfillment of the following three conditions

(i) f ∗�δ∗D is lower-semicontinuous,

(ii) f ∗�δ∗D is exact at 0X∗ ,
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(iii) epi(δ∗D) ⊆ ∪
λ∈C∗

epi((λg)∗U),

where D = {x ∈ U : g(x) ∈ −C}. As in the original paper (iii) is called
(CCCQ) we will maintain this terminology, too. In the following we show that
(CQDFL) is indeed weaker than the condition imposed in [6].

Proposition 2. When X is a Banach space and g is continuous, if f ∗�δ∗D
is a lower-semicontinuous function, moreover exact at 0X∗, and (CCCQ) holds,
then (CQDFL) is valid, too.

Proof. We know that there is some p̄ ∈ X∗ such that

(f + δD)∗(0X∗) = (f ∗�δ∗D)(0X∗) = min
p∈X∗

[f ∗(p) + δ∗D(−p)] = f ∗(p̄) + δ∗D(−p̄).

According to the formula of the conjugate we have

δ∗D(−p̄) = sup
x∈X
{〈−p̄, x〉 − δD(x)} = sup

x∈U,
g(x)∈−C

〈−p̄, x〉 = − inf
x∈U,

g(x)∈−C

〈p̄, x〉.

As [6, Theorem 3.2] states

(CCCQ) ⇔ inf
x∈U,

g(x)∈−C

〈p̄, x〉 = max
λ∈C∗

inf
x∈U

[〈p̄, x〉+ (λg)(x)], (10)

we get

(f+δD)∗(0X∗) = min
p∈X∗

[f ∗(p)−max
λ∈C∗

inf
x∈U

[〈p, x〉+(λg)(x)]] = min
λ∈C∗

[f ∗(p̄)+(λg)∗(−p̄)].

Therefore there is a pair (p̄, λ̄) ∈ X∗ × C∗ such that

inf
x∈U,

g(x)∈−C

f(x) = −(f+δD)∗(0X∗) = −f ∗(p̄)−(λ̄g)∗U(−p̄) = sup
λ∈C∗

inf
x∈U

[f(x)+(λg)(x)],

and (ii) in Lemma 4 follows by Remark 9.
On the other hand, taking (p, r) ∈ ∪λ∈C∗ epi((f + δU + (λg))∗) there is some

λ̄ ∈ C∗ such that (f + δU + (λ̄g))∗(p) ≤ r. This delivers

−r ≤ −(f + δU + (λ̄g))∗(p) ≤ sup
λ∈C∗
{−(f + δU + (λg))∗(p)}

= sup
λ∈C∗

inf
x∈U

[f(x) + (λg)(x)− 〈p, x〉)} ≤ inf
x∈U,

g(x)∈−C

[f(x)− 〈p, x〉],

the last relation following because of the weak duality (5). This yields

r ≥ − inf
x∈U,

g(x)∈−C

[f(x)− 〈p, x〉] = sup
x∈U,

g(x)∈−C

{−f(x) + 〈p, x〉}

= sup
x∈X
{〈p, x〉 − f(x)− δD(x)} = (f + δD)∗(p),
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i.e. (p, r) ∈ epi((f+δD)∗). Therefore ∪λ∈C∗ epi((f+δU +(λg))∗) ⊆ epi((f+δD)∗),
which leads to

cl
(
∪

λ∈C∗
epi((f + δU + (λg))∗)

)
⊆ cl(epi((f + δD)∗)) = epi((f + δD)∗).

As (cf. [2])
epi((f + δD)∗) = cl(epi(f ∗�δ∗D)) = epi(f ∗�δ∗D),

the latter because of (i), we are allowed to write the following: for any (p, r) ∈
cl(∪λ∈C∗ epi((f+δU+(λg))∗)) we get (f ∗�δ∗D)(p) ≤ r, so for each ε > 0 there is an
sε ∈ R such that f ∗(sε)+δ∗D(p−sε) < r+ε. By (10) follows the existence of some
λε ∈ C∗ such that (λεg)∗U(p−sε) ≤ δ∗D(p−sε) < r+ε, thus f ∗(sε)+(λεg)∗U(p−sε) <
r+ε, followed by (f+(λεg))∗U(p) < r+ε. This yields infλ∈C∗(f+(λg)+δU)∗(p) ≤ r,
i.e. (p, r) ∈ epi(η), which gives

cl
(
∪

λ∈C∗
epi((f + δU + (λg))∗)

)
⊆ epi(η).

As the reverse inclusion has been proven within the proof of Proposition 1, the
relation above and (8) imply that epi(η) is closed, i.e. η is lower-semicontinuous,
so (i) in (CQDFL) holds, too. �

Remark 12. Example 1 is useful to show that (CQDFL) is indeed weaker
than the condition in [6], i.e. the concomitant fulfilment of (i)− (iii) in Remark
11. We notice that D = {0}, thus epi(δ∗D) = R× [0,+∞), which is not included
in ∪λ≥0 epi((λg)∗U) = {0} × [0,+∞) ∪ R× (0,+∞), i.e. (iii) in Remark 11 fails.
Regarding (CQDFL) we have (f ∗�δ∗D)(p) = (f+δD)∗(p) = 0 ∀p ∈ R, so f ∗�δ∗D is
lower-semicontinuous and supλ≥0 infx∈R[f(x) + (λg)(x)] = 0 = −f ∗(0)− (0g)∗(0),
which means, by Remark 9, that it is valid.

5 Conclusions

We have applied some recent regularity conditions for the formula for the sub-
differential of composed convex functions in infinite dimensional spaces to both
Lagrange and Fenchel-Lagrange dualities, delivering new regularity conditions
that guarantee strong duality in each case. Moreover we completely character-
ize the stable strong duality in both situations. We prove that these sufficient
conditions are weaker than some other recent ones given in the literature as the
weakest so far for both kinds of dualities studied, providing an example where
they fail, unlike ours.

6 Appendix: Fenchel duality

For the sake of completeness we give here without proofs some statements con-
cerning Fenchel duality following the scheme used within Sections 3 and 4 for
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Lagrange duality and Fenchel-Lagrange duality, respectively. These assertions
were stated and proven in [5] and then rediscovered in [2] where they are seen as
arising from Theorems 1− 4, too.

Take the proper convex lower-semicontinuous functions f : X → R and h :
Y → R and the linear continuous mapping A : X → Y such that dom(f) ∩
A(dom(h)) 6= ∅. We need to recall first some notions. The identity function on
X is defined by idX : X → X, idX(x) = x ∀x ∈ X. As in [5] we introduce also
the product function

(f × h) : X × Y → R× R, (f × h)(x, y) = (f(x), h(y)) ∀(x, y) ∈ X × Y.

The adjoint of A is A∗ given by 〈x,A∗y∗〉 = 〈Ax, y∗〉 for any (x, y∗) ∈ X × Y ∗.
We have also the marginal function of f through A as Af : Y → R, Af(y) =
inf
{
f(x) : x ∈ X,Ax = y

}
, y ∈ Y . Consider the following regularity conditions

(CQF ) epi(f ∗) + A∗ × idR(epi(h∗)) is closed in the product topology of
(X∗, w(X∗, X))× R,

and

(CQDF ) f ∗�A∗h∗ is lower-semicontinuous and epi(f ∗�A∗h∗) ∩ ({0X∗} ×
R) = (epi(f ∗) + A∗ × idR(epi(h∗))) ∩ ({0X∗} × R).

Remark 13. The satisfaction of (CQF ) guarantees the validity of (CQDF ),
while the reverse implication does not always hold, as proved in [2, Example 5.11].

The pair of problems we are dealing with here consists of

(P F ) inf
x∈X

[f(x) + (h ◦ A)(x)]

and its Fenchel dual

(DF ) sup
y∗∈Y ∗

{−f ∗(−A∗y∗)− h∗(y∗)}.

We give first the stable strong duality type statement for (P F ) and (DF ),
followed by the strong duality assertion.

Theorem 9. The condition (CQF ) is fulfilled if and only if for any p ∈ X∗

inf
x∈X

[f(x) + h(Ax)− 〈p, x〉] = −(f + h ◦A)∗(p) = max
y∗∈Y ∗

{−f ∗(p−A∗y∗)− h∗(y∗)}.

Theorem 10. If (CQDF ) is valid, then

inf
x∈X

[f(x) + h(Ax)] = max
y∗∈Y ∗

{−f ∗(−A∗y∗)− h∗(y∗)}.
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Remark 14. As underlined in [2, 5], (CQDF ) is the weakest sufficient condition
known to us in the literature that guarantees strong duality between (P F ) and
(DF ) in the given circumstances.

Remark 15. The results within this Appendix may be further particularized
by taking Y = X and A = idX , as shown in [2, 5].
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