
On two properties of enlargements of maximal monotone

operators
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1 Introduction

Enlargements of monotone operators have been intensively studied, among the works which
are dealing with this subject we mention here [8–13,16,25,30]. A well-known example of an
extension of a maximal monotone multifunction is the ε-subdifferential of a proper convex
lower semicontinuous function f defined on a Banach space, denoted by ∂εf , which has
been introduced in [7]. It is known since 1970 that the classical convex subdifferential of
f , ∂f , is a maximal monotone operator (see [26]).

In general, given S : X ⇒ X∗ an arbitrary monotone operator defined on a Banach
space, an enlargement Se : R+ ×X ⇒ X∗ of S can be defined as being

Se(ε, x) := {x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for all (y, y∗) ∈ G(S)}.

Introduced in [10], this enlargement has some remarkable properties similar to those
of the ε-subdifferential. Several properties of Se were studied, like local boundedness,
demiclosedness of the graph, Lipschitz continuity and the Brøndsted-Rockafellar prop-
erty (see [11, 12, 30]). Let us notice that the first paper where the Brondsted-Rockafellar
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type property for the enlargement of a maximal monotone operator has been established
is [31, Proposition 6.17] (see also [28, Theorem 29.9]).

The next step in the study of enlargements of monotone operators was to develop this
theory from a more abstract point of view, though in a systematic way, by defining a
family of enlargements E(S) associated to S (see [30]). The subfamily of E(S) containing
the enlargements with closed graph is denoted by Ec(S). The biggest element of Ec(S) is
Se, while the smallest one is Sse that is defined by Sse = ∩E∈Ec(S)E (see [30]).

In [8] the notion of full enlargeability is introduced and studied. However the charac-
terization of the maximal monotone operators S having the property that they are fully
enlargeable by Sse is left as an open problem. In the first part of this paper we provide
an answer to this question by showing that the operators S which are fully enlargeable
by Sse are precisely those for which for all x ∈ D(S) the function σS(x, ·) is continuous
at any point x∗ ∈ S(x), uniformly in S(x) (see section 2 for the definition of the function
σS).

In the second part of the paper we show, by using some techniques from convex analysis,
that under a weak regularity condition expressed via the intrinsic relative algebraic interior
the set ShS

(ε1, x) + ThT
(ε2, x) is weak∗ closed. Here hS is a representative function of S

and ShS
: R+ × X ⇒ X∗, ShS

(ε, x) := {x∗ ∈ X∗ : hS(x, x∗) ≤ ε + 〈x∗, x〉} is the so-
called enlargement of S with respect to hS (cf. [12]). As a particular instance we derive a
regularity condition that guarantees the weak∗ closedness of the set Se(ε1, x) + T e(ε2, x).
In case X is reflexive or when the maximal monotone operators S and T are strongly-
representable we obtain an improvement of a recent result published in [16], the proof of
which relies on tools from the functional analysis.

2 Preliminary notions and results

In order to make the paper self-contained we begin by introducing some preliminary no-
tions. Consider X a real separated locally convex space and X∗ its topological dual space.
The notation ω(X∗, X) stands for the weak∗ topology induced by X on X∗, while by
〈x∗, x〉 we denote the value of the linear continuous functional x∗ ∈ X∗ at x ∈ X. For a
subset C of X we denote by cl(C), co(C), lin(C), core(C) and icC its closure, convex hull,
linear hull, algebraic interior and intrinsic relative algebraic interior, respectively. Let us
note that if C is a convex set, then (cf. [34]):

(i) x ∈ core(C) if and only if
⋃
λ>0 λ(C − x) = X;

(ii) x ∈ icC if and only if
⋃
λ>0 λ(C − x) is a closed linear subspace of X.

We also consider the indicator function of the set C, denoted by δC , which is zero for
x ∈ C and +∞ otherwise.

For a function f : X → R = R∪{±∞} we denote by dom(f) = {x ∈ X : f(x) < +∞}
its domain and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We call f proper if
dom(f) 6= ∅ and f(x) > −∞ for all x ∈ X. By cl(f) we denote the lower semicontinuous
hull of f , namely the function of which epigraph is the closure of epi(f) in X × R, that
is epi(cl(f)) = cl(epi(f)). The function co(f) is the greatest convex function majorized by
f .
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Having f : X → R a proper function, for x ∈ dom(f) we define the ε-subdifferential of
f at x, where ε ≥ 0, by

∂εf(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε for all y ∈ X}.

For x /∈ dom(f) we take ∂εf(x) := ∅. The set ∂f(x) := ∂0f(x) is then the classical
subdifferential of f at x.

The Fenchel-Moreau conjugate of f is the function f∗ : X∗ → R defined by f∗(x∗) =
supx∈X{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗. We mention here some important properties of
conjugate functions. We have the so-called Young-Fenchel inequality f∗(x∗) + f(x) ≥
〈x∗, x〉 for all (x, x∗) ∈ X ×X∗. If f is proper, then f is convex and lower semicontinuous
if and only if f∗∗ = f (see [14, 34]). As a consequence we have that in case f is convex
and cl(f) is proper, then f∗∗ = cl(f) (cf. [34, Theorem 2.3.4]).

One can give the following characterizations for the subdifferential and ε-subdifferential
of a proper function f by means of conjugate functions (see [14,34]):

x∗ ∈ ∂f(x)⇔ f(x) + f∗(x∗) = 〈x∗, x〉

and, respectively,
x∗ ∈ ∂εf(x)⇔ f(x) + f∗(x∗) ≤ 〈x∗, x〉+ ε.

Having f, g : X → R two proper functions we denote by f�g : X → R, f�g(x) =
infu∈X{f(u) + g(x− u)} their infimal convolution. We say that the infimal convolution is
exact at x ∈ X if the infimum in the definition is attained, while f�g is said to be exact
if it is exact at every x ∈ X.

For a function f : A × B → R, where A and B are nonempty sets, we denote by
f> the transpose of f , namely the function f> : B × A → R, f>(b, a) = f(a, b) for all
(b, a) ∈ B × A. We consider also the projection operator prA : A× B → A, prA(a, b) = a
for all (a, b) ∈ A×B.

In the following we recall some notions and results concerning monotone operators.
For the rest of the section we assume that X is a nonzero real Banach space. A set-valued
operator S : X ⇒ X∗ is said to be monotone if

〈y∗ − x∗, y − x〉 ≥ 0, whenever x∗ ∈ S(x) and y∗ ∈ S(y).

The graph of S is denoted by

G(S) = {(x, x∗) : x∗ ∈ S(x)} ⊆ X ×X∗,

while its domain is the set D(S) = {x ∈ X : S(x) 6= ∅}. The monotone operator S is
called maximal monotone if its graph is not properly contained in the graph of any other
monotone operator S′ : X ⇒ X∗. The classical example of a maximal monotone operator
is the subdifferential of a proper, convex and lower semicontinuous function (see [26]).
However, there exist maximal monotone operators which are not subdifferentials (see [28]).

To an arbitrary monotone operator S : X ⇒ X∗ we associate the Fitzpatrick function
ϕS : X ×X∗ → R, defined by

ϕS(x, x∗) = sup{〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ S(y)},

which is obviously convex and strong-weak∗ lower semicontinuous. Introduced by Fitz-
patrick in [15] in 1988 and rediscovered after some years in [12, 21], it proved to be very
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important in the theory of maximal monotone operators, revealing important connections
between convex analysis and monotone operators (see [1–5, 12, 19, 22, 24, 27–29, 35] and
the references therein). Considering the function c : X × X∗ → R, c(x, x∗) = 〈x∗, x〉
for all (x, x∗) ∈ X × X∗, we get the equality ϕS(x, x∗) = (c + δG(S))∗(x∗, x) for all
(x, x∗) ∈ X × X∗, where we are considering the natural injection X ⊆ X∗∗. Let S be
a maximal monotone operator. Then ϕS(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X × X∗ and
G(S) = {(x, x∗) ∈ X ×X∗ : ϕS(x, x∗) = 〈x∗, x〉} (see [15]). Motivated by these properties
of the Fitzpatrick function, the notion of representative function of a monotone operator
was introduced and studied in the literature.

Definition 1 For S : X ⇒ X∗ a monotone operator, we call representative function
of S a convex and strong-weak∗ lower semicontinuous function hS : X ×X∗ → R fulfilling

hS ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉}. (1)

We observe that if G(S) 6= ∅ (in particular if S is maximal monotone), then every
representative function of S is proper. It follows immediately that the Fitzpatrick function
associated to a maximal monotone operator is a representative function of the operator.

Proposition 1 Let S : X ⇒ X∗ be a maximal monotone operator and hS be a represen-
tative function of S. Then:

(i) ϕS(x, x∗) ≤ hS(x, x∗) ≤ ϕ∗S(x∗, x) for all (x, x∗) ∈ X ×X∗;

(ii) the canonical restriction of h∗>S to X ×X∗ is also a representative function of S;

(iii) {(x, x∗) ∈ X × X∗ : hS(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X × X∗ : h∗>S (x, x∗) =
〈x∗, x〉} = G(S).

Remark 1 These properties of representative functions are well-known in the framework
of reflexive Banach spaces (see [24]). It is shown in [2] that these characterizations hold
also in a general Banach space. For more on the properties of representative functions we
refer to [2, 3, 12, 19, 24] and the references therein.

The following particular class of maximal monotone operators has been recently intro-
duced in [17] and also studied in [33].

Definition 2 An operator S : X ⇒ X∗ is said to be strongly-representable whenever
there exists a proper convex and strong lower semicontinuous function h : X × X∗ → R
such that

h ≥ c, h∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗

and
G(S) = {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉}.

In this case h is called a strong-representative of S.

If S : X ⇒ X∗ is strongly-representable, then S is maximal monotone (see [17, Theo-
rem 4.2]) and ϕS is a strong-representative of S.
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Remark 2 Recently was proved that the class of strongly-representable monotone opera-
tors coincides with the class of maximal monotone operators of type (NI) (see [18, Theorem
1.2])

Now let us recall the definition of a family of enlargements introduced in [30].

Definition 3 ( [30]) Let S : X ⇒ X∗ be a monotone operator. Define E(S) as the family
of multifunctions E : R+ ×X ⇒ X∗ satisfying the following properties:

(i) E is an enlargement of S, i.e.:

S(x) ⊆ E(ε, x) for all ε ≥ 0 and x ∈ X;

(ii) E is non-decreasing, that is for all x ∈ X, E(ε1, x) ⊆ E(ε2, x) provided that ε1 ≤ ε2;

(iii) E satisfies the transportation formula, which means that for every pair (ε1, x1, v1),
(ε2, x2, v2) ∈ G(E) and for every λ ∈ [0, 1] it implies that (ε, x, v) ∈ G(E), where
ε := λε1 + (1 − λ)ε2 + λ(1 − λ)〈v1 − v2, x1 − x2〉, x := λx1 + (1 − λ)x2 and v :=
λv1 + (1− λ)v2.

A particular choice of E was considered in [10] and it has for ε ≥ 0 and x ∈ X the
following definition :

Se(ε, x) = {x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for all (y, y∗) ∈ G(S)}.

The properties of this enlargement have been intensively studied (see [10–12, 30]). The
operator Se belongs to Ec(S) (the set of enlargements E ∈ E(S) such that G(E) is closed
with respect to the strong topology on X×X∗) and in fact is the biggest element of Ec(S)
(cf. [30]). The enlargement Se can be characterized via the Fitzpatrick function associated
to S: for ε ≥ 0 and x ∈ X we have Se(ε, x) := {x∗ ∈ X∗ : ϕS(x, x∗) ≤ ε + 〈x∗, x〉}.
The family Ec(S) has also a smallest element, namely the enlargement Sse defined as
Sse(ε, x) = ∩E∈Ec(S)E(ε, x) for ε ≥ 0 and x ∈ X. For an arbitrary representative function
hS one can consider the following enlargement of S (see [12, 13]): ShS

: R+ × X ⇒ X∗,
ShS

(ε, x) := {x∗ ∈ X∗ : hS(x, x∗) ≤ ε+〈x∗, x〉}. It follows immediately from the definitions
above that SϕS = Se. It was proved (see [12]) that for a maximal monotone operator S,
ShS
∈ Ec(S) and actually there exists a one-to-one correspondence between Ec(S) and the

set{
h : X ×X∗ → R :

h is convex and lower semicontinuous in the strong topology,
h ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉}

}
,

which has been denoted by H(S) (moreover, this correspondence is an isomorphism with
respect to some suitable operations, see [13]). Hence, in case S is a maximal monotone
operator, there exists a unique function belonging to H(S) such that Sse = ShS

(see [12,
Theorem 3.6]) and in fact Sse = SσS , where σS : X × X∗ → R, σS(x, x∗) = cl co(c +
δG(S))(x, x∗) (see [12, relation (35)]). Let us mention that ϕS(x, x∗) = σ∗>S (x, x∗) for all
(x, x∗) ∈ X ×X∗.
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Remark 3 If S = ∂f , where f is a proper, convex and lower semicontinuous function,
then

∂f(x) ⊆ ∂εf(x) ⊆ ∂εf(x) := (∂f)e(ε, x),

and the inclusions can be strict (see [10,20]). Moreover, taking h : X×X∗ → R, h(x, x∗) =
f(x) + f∗(x∗) for all (x, x∗) ∈ X ×X∗, which is a representative function of ∂f , we see
that (∂f)h(ε, x) = ∂εf(x).

Let us recall in the following the notion of full enlargeability introduced in [8].

Definition 4 ( [8]) Let S : X ⇒ X∗ be a maximal monotone operator and consider an
element E ∈ E(S). We say that:

(i) the enlargement E fully enlarges S at the point x ∈ D(S) if and only if for all ε > 0
there exists δ = δ(x, ε) > 0 such that S(x) +B(0, δ) ⊆ E(ε, x) (B(0, δ) is the closed
ball centered at the origin with radius δ);

(ii) E is a full enlargement of S when property (i) holds for all x ∈ D(S).

The operators which are fully enlargeable by Se are characterized in [8, Theorem
3.2]. The question posed in [8] concerning the characterization of the operators that are
fully enlargeable by Sse was left as an open problem. We give below an answer to this
question. Actually we provide a characterization of those operators S which are fully
enlargeable by ShS

, where hS is an arbitrary representative function of S. To this end
for an operator S : X ⇒ X∗ we introduce, as in [8], the function βS : X × X∗ → R,
βS(x, x∗) = hS(x, x∗)− 〈x, x∗〉 and for x∗ ∈ X∗ and U ⊆ X∗ consider the metric distance
from x∗ to U , that is d(x∗, U) = infu∗∈U ‖u∗ − x∗‖.

Theorem 2 Let S : X ⇒ X∗ be a maximal monotone operator and hS be a representative
function of S. Then the following statements are equivalent:

(i) ShS
is a full enlargement of S;

(ii) for all x ∈ D(S) hS(x, ·) is continuous at every x∗ ∈ S(x), uniformly in S(x).

Proof. We give first the proof of the implication (i) ⇒ (ii), which is similar to the
proof of implication (a) ⇒ (b) in [8, Theorem 3.2]. Let be x ∈ D(S). Taking into
consideration the definition of the function βS , the continuity of hS(x, ·) is equivalent to
the continuity of βS(x, ·). For x∗ ∈ S(x) we fix ε > 0 and consider δ > 0 such that
S(x) + B(0, δ) ⊆ ShS

(ε, x), which exists by the definition of full enlargeability. Take
y∗ ∈ X∗ such that d(y∗, S(x)) < δ. Consequently, there exists u∗ ∈ S(x) such that
y∗ − u∗ ∈ B(0, δ). Hence y∗ = u∗ + (y∗ − u∗) ∈ S(x) + B(0, δ) ⊆ ShS

(ε, x), that is
βS(x, y∗) ≤ ε. We obtain |βS(x, y∗) − βS(x, x∗)| = βS(x, y∗) ≤ ε for all x∗ ∈ S(x). As δ
depends only on x and ε, (ii) holds.

Assume now that (ii) holds and fix x ∈ D(S) and ε > 0. Since the function βS(x, ·) is
uniformly continuous on S(x), there exists δ > 0 (which depends on x and ε) fulfilling

βS(x, y∗) ≤ ε, for all y∗ ∈ X∗ such that d(y∗, S(x)) < δ. (2)

We claim that for δ := (1/2)δ we have S(x) +B(0, δ) ⊆ ShS
(ε, x). Indeed, take x∗ ∈ S(x)

and v∗ ∈ B(0, δ). Then d(x∗ + v∗, S(x)) = infu∗∈S(x) ‖x∗ + v∗ − u∗‖ ≤ ‖v∗‖ ≤ δ < δ.
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Combining this inequality with (2) we get βS(x, x∗ + v∗) ≤ ε, which is nothing else than
x∗+v∗ ∈ ShS

(ε, x) and the claim is proved. Hence (i) is fulfilled and the proof is complete.

Remark 4 Taking hS := ϕS in Theorem 2 we obtain exactly the equivalence between
(a) and (b) in [8, Theorem 3.2]. In this case a further equivalent characterization of full
enlargeability of S by Se can be also given (see [8, Theorem 3.2 (c)]).

Although the function σS is not a representative function of the maximal monotone
operator S (since it is lower semicontinuous with respect to the strong topology of X×X∗
and not necessarily in the strong-weak∗ topology), one can prove the following character-
ization of the operators which are fully enlargeable by Sse with the same technique as in
the proof of Theorem 2.

Corollary 3 Let S : X ⇒ X∗ be a maximal monotone operator. Then the following
statements are equivalent:

(i) Sse is a full enlargement of S;

(ii) for all x ∈ D(S) σS(x, ·) is continuous at every x∗ ∈ S(x), uniformly in S(x).

3 The weak∗ closedness of the set ShS
(ε1, x) + ThT

(ε2, x)

In this section we provide a weak generalized interior regularity condition which guarantees
that for S, T : X ⇒ X∗ maximal monotone operators with representative functions hS
and hT , respectively, and ε1, ε2 ≥ 0 and x ∈ X the set ShS

(ε1, x) + ThT
(ε2, x) is weak∗

closed. Some comments regarding the link to similar results given in the literature are
also made.

We prove first a preliminary result which will be useful when proving the main theorem
of the section.

Lemma 4 Let X and Y be separated locally convex spaces and Φ : X × Y → R a proper
convex and lower semicontinuous function. Then for all x ∈ prX(dom(Φ)) this yields

prY ∗(dom(Φ∗)) ⊆ dom ((Φ(x, ·))∗) ⊆ clω(Y ∗,Y ) (prY ∗(dom(Φ∗))) .

Proof. Let x ∈ prX(dom(Φ)) be fixed and define Ψ : Y × X → R as being Ψ(y, u) =
Φ(x+u, y). The function Ψ is proper convex and lower semicontinuous and fulfills Ψ(y, 0) =
Φ(x, y) for all y ∈ Y . Since x ∈ prX(dom(Φ)) one has that 0 ∈ prX(dom(Ψ)).

According to [6, Theorem 1] (see also [23]) we have that

(Ψ(·, 0))∗ = clω(Y ∗,Y ) (infx∗∈X∗ Ψ∗(·, x∗)) .

Consequently,

dom (infx∗∈X∗ Ψ∗(·, x∗)) ⊆ dom
(
clω(Y ∗,Y ) (infx∗∈X∗ Ψ∗(·, x∗))

)
⊆ clω(Y ∗,Y ) (dom (infx∗∈X∗ Ψ∗(·, x∗))) .
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Further we have that v∗ ∈ dom (infx∗∈X∗ Ψ∗(·, x∗)) if and only if there exists x∗ ∈ X∗ such
that Ψ∗(v∗, x∗) < +∞. Since

Ψ∗(v∗, x∗) = sup
v∈Y,u∈X

{〈v∗, v〉+ 〈x∗, u〉 − Φ(x+ u, v)}

= sup
v∈Y,t∈X

{〈v∗, v〉+ 〈x∗, t− x〉 − Φ(t, v)} = −〈x∗, x〉+ Φ∗(x∗, v∗),

this is the same with having that Φ∗(x∗, v∗) < +∞ or, equivalently, (x∗, v∗) ∈ dom(Φ∗).
Therefore dom (infx∗∈X∗ Ψ∗(·, x∗)) = prY ∗(dom(Φ∗)) and the conclusion follows.

In the following we assume that the nonzero real Banach space X is endowed with
the strong topology, while its topological dual X∗ is endowed with the weak∗ topology
ω(X∗, X). Thus for a given function f : X∗ → R its conjugate function f∗ : X → R is
f∗(x) = supx∈X{〈x∗, x〉− f(x)}, while for h : X×X∗ → R, h∗ : X∗×X → R is defined as
h∗(z∗, z) = supx∈X,x∗∈X∗{〈z∗, x〉+ 〈x∗, z〉−h(x, x∗)}. A second preliminary result follows.

Theorem 5 Let f, g : X∗ → R be two proper convex and weak∗ lower semicontinuous
functions such that 0 ∈ dom(f∗)∩dom(g∗) and consider the sets F := {x∗ ∈ X∗ : f(x∗) ≤
0} and G := {x∗ ∈ X∗ : g(x∗) ≤ 0}. If 0 ∈ ic(dom(f∗)− dom(g∗)), then F + G is weak∗

closed.

Proof. The sets F and G are both convex and weak∗ closed. If F + G is empty, then
there is nothing to be proved. Therefore we assume that F +G is not empty and consider
σF , σG : X → R the support functions of F and G defined by σF (x) = supx∗∈F 〈x∗, x〉 and
σG(x) = supx∗∈G〈x∗, x〉, respectively. Both functions σF and σG are proper convex and
lower semicontinuous (both in the ω(X,X∗) and strong topologies) and 0 ∈ dom(σF ) ∩
dom(σG). Therefore whenever 0 ∈ ic(dom(σF )− dom(σG)) one has (see, for example, [34,
Theorem 2.8.7 (vii)]) that σ∗F+G = (σF + σG)∗ = σ∗F�σ∗G = δF�δG = δF+G and this
guarantees that F +G is weak∗ closed.

To obtain the conclusion we show that if 0 ∈ ic(dom(f∗)− dom(g∗)), then we have
0 ∈ ic(dom(σF )− dom(σG)). To this aim we consider the functions h, k : X → R as being
h := infλ>0(λf)∗ and k := infµ>0(µg)∗. Since the mapping

(x, λ) 7→
{

(λf)∗(x), if x ∈ X,λ > 0,
+∞, otherwise

is convex, one has that h is convex and, consequently, that cl(h) is convex, too. Moreover,
as one can easily see, cl(h) is a proper function. The same applies for cl(k) and, by [34,
Theorem 2.3.4] using also that h and k are proper convex and lower semicontinuous, we
get that cl(h) = h∗∗ = σF and cl(k) = k∗∗ = σG. Thus dom(h) ⊆ dom(σF ) ⊆ cl(dom(h))
and dom(k) ⊆ dom(σG) ⊆ cl(dom(k)).

On the other hand, x ∈ dom(h) if and only if there exists λ > 0 such that (λf)∗(x) =
λf∗((1/λ)x) < +∞. This is further equivalent to the fact that there exists λ > 0 such
that x ∈ λ dom(f∗) or, in other words, to x ∈ ∪λ>0λ dom(f∗). Consequently, dom(h) =
∪λ>0λ dom(f∗) and, analogously, dom(k) = ∪λ>0λdom(g∗). Thus one automatically has
one hand that

∪
λ>0

λ(dom(f∗)− dom(g∗)) ⊆ ∪
λ>0

λdom(f∗)− ∪
µ>0

µ dom(g∗) ⊆ dom(σF )− dom(σG)
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and, on the other hand, that
dom(σF )− dom(σG)

⊆ cl
(
∪
λ>0

λdom(f∗)
)
− cl

(
∪
µ>0

µdom(g∗)
)
⊆ cl

(
∪
λ>0

λ dom(f∗)− ∪
µ>0

µdom(g∗)
)
.

For λ, µ > 0, x ∈ dom(f∗) and y ∈ dom(g∗), using that 0 ∈ dom(f∗) ∩ dom(g∗) and the
convexity of dom(f∗) and dom(g∗), it yields

λx− µy = (λ+ µ) (λ/(λ+ µ)(x− 0) + µ/(λ+ µ)(0− y)) ∈ (λ+ µ)(dom(f∗)− dom(g∗))

⊆ ∪λ>0λ(dom(f∗)− dom(g∗)).

Thus

∪
λ>0

λ(dom(f∗)− dom(g∗)) ⊆ dom(σF )− dom(σG) ⊆ cl
(
∪
λ>0

λ(dom(f∗)− dom(g∗))
)

and from here

∪
λ>0

λ(dom(f∗)− dom(g∗)) ⊆ ∪
λ>0

λ(dom(σF )− dom(σG))

⊆ cl
(
∪
λ>0

λ(dom(f∗)− dom(g∗))
)
.

By the hypothesis we have that ∪λ>0 λ(dom(f∗) − dom(g∗)) is a closed linear subspace
and this means that the inclusions in the relation above are fulfilled as equalities. This
has as consequence the fact that ∪λ>0 λ(dom(σF )− dom(σG)) is a closed linear subspace,
too, or, equivalently, 0 ∈ ic(dom(σF )− dom(σG)), which concludes the proof.

We come now to the proof of the main result of this section.

Theorem 6 Let S, T : X ⇒ X∗ be two maximal monotone operators with representative
functions hS and hT , respectively. If

0 ∈ ic (prX(dom(h∗S))− prX(dom(h∗T ))),

then for all ε1, ε2 ≥ 0 and x ∈ X the set ShS
(ε1, x) + ThT

(ε2, x) is weak∗ closed.

Proof. Let ε1, ε2 ≥ 0 and x ∈ X be fixed. Assume that ShS
(ε1, x)+ThT

(ε2, x) is nonempty.
Thus x ∈ prX(dom(hS))∩prX(dom(hT )). Consider the functions f, g : X∗ → R defined by
f(x∗) = hS(x, x∗)−〈x∗, x〉−ε1 and g(x∗) = hT (x, x∗)−〈x∗, x〉−ε2, respectively. The func-
tions f and g are proper convex and weak∗ lower semicontinuous. Since infx∗∈X∗ f(x∗) ≥
−ε1 > −∞ and infx∗∈X∗ g(x∗) ≥ −ε2 > −∞, it yields 0 ∈ dom(f∗) ∩ dom(g∗). Moreover,
ShS

(ε1, x) = {x∗ ∈ X∗ : f(x∗) ≤ 0} and ThT
(ε2, x) = {x∗ ∈ X∗ : g(x∗) ≤ 0}.

By the hypothesis, the set ∪λ>0λ (prX(dom(h∗S))− prX(dom(h∗T ))) is a closed linear
subspace. Taking into consideration Lemma 4 this yealds

prX(dom(h∗S)) ⊆ dom ((hS(x, ·))∗) ⊆ cl (prX(dom(h∗S)))

and, similarly,

prX(dom(h∗T )) ⊆ dom ((hT (x, ·))∗) ⊆ cl (prX(dom(h∗T ))) .
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Consequently,

prX(dom(h∗S))− prX(dom(h∗T )) ⊆ dom ((hS(x, ·))∗)− dom ((hT (x, ·))∗)

⊆ cl (prX(dom(h∗S)))− cl (prX(dom(h∗T ))) ⊆ cl (prX(dom(h∗S))− prX(dom(h∗T )))

and from here one has

∪
λ>0

λ (prX(dom(h∗S))− prX(dom(h∗T ))) ⊆ ∪
λ>0

λ (dom ((hS(x, ·))∗)− dom ((hT (x, ·))∗))

⊆ cl
(
∪
λ>0

λ (prX(dom(h∗S))− prX(dom(h∗T )))
)
.

This means that ∪λ>0 λ (dom ((hS(x, ·))∗)− dom ((hT (x, ·))∗)) is a closed linear subspace,
too, or, equivalently, 0 ∈ ic (dom ((hS(x, ·))∗)− dom ((hT (x, ·))∗)).

For all u ∈ X it implies f∗(u) = supx∗∈X∗{〈x∗, u+x〉−hS(x, x∗)}+ε1 = (hS(x, ·))∗(u+
x) + ε1 and therefore dom(f∗) = dom ((hS(x, ·))∗)−x. Analogously, we obtain dom(g∗) =
dom ((hT (x, ·))∗)− x, which implies that 0 ∈ ic(dom(f∗)− dom(g∗)). Finally, Theorem 5
guarantees that the set ShS

(ε1, x) + ThT
(ε2, x) is weak∗ closed.

The following theorem follows as a direct consequence of the result above by considering
as representative functions of S and T their Fitzpatrick functions.

Theorem 7 Let S, T : X ⇒ X∗ be two maximal monotone operators. If

0 ∈ ic (prX(dom(ϕ∗S))− prX(dom(ϕ∗T ))),

then for all ε1, ε2 ≥ 0 and x ∈ X the set Se(ε1, x) + T e(ε2, x) is weak∗ closed.

In the following we formulate two further regularity conditions which are sufficient for
obtaining the same conclusion as in the theorem above, but they are expressed via the
domains of the two operators involved. To this end we recall a result given in [29, Lemma
5.3], the proof of which uses techniques taken from [27, p. 57–62 and p. 87–88], in case
X is a reflexive Banach space and the representative functions are exactly the Fitzpatrick
functions. It can be proved in an analogous way that the result remains valid in a general
Banach space and when considering arbitrary representative functions.

Lemma 8 Let S, T : X ⇒ X∗ be two maximal monotone operators with representative
functions hS and hT , respectively. The following statements are true:

(a) If F is a closed subspace of X, w ∈ X and D(S) ⊆ F+w then prX(domhS) ⊆ F+w;

(b) ∪λ>0λ (prX(domhS)− prX(domhT )) ⊆ cl (lin (D(S)−D(T ))).

Remark 5 It follows easily from Proposition 1 and Lemma 8 that for S, T : X ⇒ X∗

maximal monotone operators the following inclusions hold

∪
λ>0

λ (D(S)−D(T )) ⊆ ∪
λ>0

λ (co(D(S))− co(D(T )))

⊆ ∪
λ>0

λ (prX(domϕ∗S)− prX(domϕ∗T )) ⊆ ∪
λ>0

λ (prX(domϕS)− prX(domϕT ))
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⊆ cl (lin(D(S)−D(T ))) ⊆ cl (lin(co(D(S))− co(D(T ))))

⊆ cl (lin(prX(domϕ∗S)− prX(domϕ∗T )))

⊆ cl (lin(prX(domϕS)− prX(domϕT ))) ⊆ cl (lin(D(S)−D(T ))) ,

thus
cl (lin(D(S)−D(T ))) = cl (lin(co(D(S))− co(D(T ))))

= cl (lin(prX(domϕ∗S)− prX(domϕ∗T ))) = cl (lin(prX(domϕS)− prX(domϕT ))) .

The remark above allows us to formulate the following result.

Theorem 9 Let S, T : X ⇒ X∗ be two maximal monotone operators. If

0 ∈ ic (co(D(S))− co(D(T ))),

then for all ε1, ε2 ≥ 0 and x ∈ X the set Se(ε1, x) + T e(ε2, x) is weak∗ closed.

For a particular instance of Theorem 9, when 0 ∈ core (co(D(S))− co(D(T ))) and
ε1 = ε2 = 0, we refer the reader to [32, Corollary 2.3].

Remark 6 In case X is a reflexive Banach space the weak generalized interior point
regularity conditions stated in Theorem 7 and Theorem 9 for the weak∗ closedness of
Se(ε1, x) + T e(ε2, x) when ε1, ε2 ≥ 0 and x ∈ X are equivalent. More than that, they
are further equivalent to (see [35])

0 ∈ ic (D(S)−D(T ))

and to
0 ∈ ic (prX(dom(ϕS))− prX(dom(ϕT ))).

In case X is a general Banach space and the operators S and T are strongly-representable,
then whenever 0 ∈ ic (prX(dom(ϕS))− prX(dom(ϕT ))) or, equivalently (see [33, Theorem
16]), 0 ∈ ic (co(D(S))− co(D(T ))) or 0 ∈ ic (D(S)−D(T )), then we also have that for
ε1, ε2 ≥ 0 and x ∈ X the set Se(ε1, x) + T e(ε2, x) is weak∗ closed.

Remark 7 In [16, Theorem 3.7] the authors prove by using tools from the functional
analysis that in case X is a Banach space and S, T : X ⇒ X∗ are two maximal monotone
operators such that 0 ∈ core (prX(dom(ϕS))− prX(dom(ϕT ))) one has for all ε ≥ 0 and
x ∈ X that Se(ε, x) + T e(ε, x) is weak∗ closed (in fact, the result works even for ε1 6= ε2).
When X is reflexive or when S and T are strongly-representable, the regularity conditions
given in Remark 6 turn out to be weaker than the one in [16]. Nevertheless, it is still an
open question whether the condition 0 ∈ ic (prX(dom(ϕS))− prX(dom(ϕT ))) is in general
sufficient for the weak∗ closedness of Se(ε1, x) + T e(ε2, x).
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[5] R.I. Boţ, S.-M. Grad, G. Wanka (2007): Weaker constraint qualifications in maximal
monotonicity, Numerical Functional Analysis and Optimization 28 (1-2), 27–41.
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