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We give two generalized Moreau-Rockafellar-type results for the sum of a convex function with
a composition of convex functions in separated locally convex spaces. Then we equivalently
characterize the stable strong duality for composed convex optimization problems through
two new regularity conditions, which also guarantee two formulae of the subdifferential of the
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the literature. A discussion on the topological assumptions for the vector function used in the
composition closes the paper.
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1. Introduction

With this paper we cover some missing results concerning composed convex func-
tions in convex analysis. Our scope with this article is twofold. First we give two
generalized Moreau-Rockafellar-type results for composed functions of type f+g◦h.
Depending on how much we perturb this function, we obtain two formulae for its
conjugate. For a simpler perturbation function, with a single perturbation variable
in the argument of g, f and h remain coupled in the final formula. On the other
hand, when using a more complicated perturbation function, with two perturbation
variables, i.e. perturbing the arguments of both f and g, f and h are separated in
the formula of (f +g ◦h)∗. Note that these formulae are always valid, not requiring
the fulfillment of any sufficient condition. By using these formulae we prove also
some characterizations of the epigraph of (f + g ◦ h)∗. The other aim of the paper
is to equivalently characterize two known formulae for the conjugate of f + g ◦ h
through closedness-type regularity conditions involving epigraphs, which are suffi-
cient to yield two formulae for ∂(f+g◦h), too. The formulae for (f+g◦h)∗ can be
seen also as stable strong duality statements. When particularizing the functions
involved we rediscover older Moreau-Rockafellar-type results known in the litera-
ture, including the classical one, respectively stable strong duality statements for
the Fenchel, Lagrange and Fenchel-Lagrange duals. Moreover, we give formulae for
the conjugate of the supremum of infinitely many functions and the epigraph of
this conjugate.

We work in separated locally convex spaces and the functions f and g are taken
proper, convex and lower semicontinuous, with g also C-increasing, while h is
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considered to be proper, C-convex and star C-lower semicontinuous. We gave in
[1] similar characterizations for (f + g ◦ h)∗, but there we have considered for h a
more relaxed topological property, namely C-epi-closedness. We observe that the
regularity conditions that equivalently characterize the mentioned formulae in [1]
are stronger than the ones obtained here, thus we end this paper with a discussion
on the topological hypothesis for h, where we formulate also an open problem for
the reader.

2. Preliminaries

Consider two separated locally convex vector spaces X and Y and their topological
dual spaces X∗ and Y ∗, endowed with the corresponding weak∗ topologies, and
denote by 〈x∗, x〉 = x∗(x) the value at x ∈ X of the linear continuous functional
x∗ ∈ X∗. Take Y to be partially ordered by the nonempty closed convex cone C,
i.e. on Y there is the partial order “≤C”, defined by z ≤C y ⇔ y− z ∈ C, z, y ∈ Y .
To Y we attach a greatest element with respect to “≤C” which does not belong to
Y , denoted by∞Y and let Y • = Y ∪{∞Y }. Then for any y ∈ Y • one has y ≤C ∞Y

and we consider on Y • the following operations: y +∞Y = ∞Y + y = ∞Y and
t · ∞Y = ∞Y for all y ∈ Y and all t ≥ 0. A function g : Y • → R = R ∪ {±∞} is
said to be C-increasing if g(∞Y ) = +∞ and for y, z ∈ Y • such that z ≤C y one
has g(z) ≤ g(y). The dual cone of C is C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C}. By
convention, let 〈y∗,∞Y 〉 = +∞ whenever y∗ ∈ C∗.

Given a subset U of X, by |U |, cl(U), co(U), δU and σU we denote its cardinality,
its closure, its convex hull, its indicator function and support function, respectively.
We use also the projection function PrX : X × Y → X, defined by PrX(x, y) = x
∀(x, y) ∈ X × Y and the identity function on X, idX : X → X with idX(x) = x
∀x ∈ X.

For a function f : X → R we use the classical notations for domain dom(f) =
{x ∈ X : f(x) < +∞}, epigraph epi(f) = {(x, r) ∈ X × R : f(x) ≤ r}, conjugate
function regarding the set U ⊆ X f∗U : X∗ → R, f∗U (x∗) = sup{〈x∗, x〉 − f(x) : x ∈
U} and subdifferential at x, where f(x) ∈ R, ∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥
〈x∗, y − x〉 ∀y ∈ X}. Between a function and its conjugate regarding some set
U ⊆ X there is Young’s inequality f∗U (x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ U ∀x∗ ∈ X∗.
When U = X the conjugate regarding the set U is actually the classical (Fenchel-
Moreau) conjugate function of f denoted by f∗. We call f proper if f(x) > −∞
∀x ∈ X and dom(f) 6= ∅. Considering for each λ ∈ R the function (λf) : X → R,
(λf)(x) = λf(x) ∀x ∈ X, note that when λ = 0 we take (0f) = δdom(f). Given
two proper functions f, g : X → R, we have the infimal convolution of f and g
defined by f�g : X → R,

(
f�g

)
(a) = inf{f(x) + g(a − x) : x ∈ X}. The lower

semicontinuous hull of f is cl(f) : X → R, the function which has as epigraph
cl(epi(f)), and the lower semicontinuous convex hull of f is cl(co(f)) : X → R,
the function which has as epigraph cl(co(epi(f))). The conjugate function of the
conjugate of a function f : X → R is said to be the biconjugate of f and it is
denoted by f∗∗ : X → R, f∗∗(x) = sup{〈x∗, x〉 − f∗(x∗) : x∗ ∈ X∗}.

Lemma 2.1: (Fenchel-Moreau) Let f : X → R be a convex function such that
cl(f) is proper. Then f∗∗ = cl(f).

There are notions given for functions with extended real values that can be
generalized also for functions having their ranges in infinite dimensional spaces.

For a function h : X → Y • one has

· the domain: dom(h) = {x ∈ X : h(x) ∈ Y },
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· h is proper : dom(h) 6= ∅,
· h is C-convex : h(tx+ (1− t)y) ≤C th(x) + (1− t)h(y) ∀x, y ∈ X ∀t ∈ [0, 1],
· the C-epigraph epiC(h) = {(x, y) ∈ X × Y : y ∈ h(x) + C},
· h is C-epi-closed if epiC(h) is closed (cf. [8]),
· h is star C-lower semicontinuous: (λh) : X → R, (λh)(x) = 〈λ, h(x)〉,

x ∈ X, is lower semicontinuous ∀λ ∈ C∗ (cf. [7]).

Remark 1 : There are other extensions of lower semicontinuity for functions tak-
ing values in infinite dimensional spaces used in convex optimization. We mention
here just the C-lower semicontinuity, introduced in [9] and refined in [6]. When a
function is C-lower semicontinuous it is automatically star C-lower semicontinu-
ous, too, and every star C-lower semicontinuous function is also C-epi-closed. The
reverse statements do not hold in general (see [3, 9]).

Given a linear continuous mapping A : X → Y , we have its adjoint A∗ : Y ∗ → X∗

given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for any (x, y∗) ∈ X × Y ∗. For the proper function
f : X → R we define also the infimal function of f through A as Af : Y → R,
Af(y) = inf {f(x) : x ∈ X,Ax = y}, y ∈ Y .

Given a function Φ : X × Y → R, the infimal value function of its conjugate is
ηΦ : X∗ → R, ηΦ(x∗) = infy∗∈Y ∗ Φ∗(x∗, y∗). Since Φ∗ is convex, ηΦ is convex, too.
We give now a result which can be obtained from [10] and plays an important role
in proving the main statements in this paper.

Theorem 2.2 : Let Φ : X × Y → R be a proper convex lower semicontinuous
function with 0 ∈ PrY (dom(Φ)). For each x∗ ∈ X∗ one has

(Φ(·, 0))∗(x∗) = sup
x∈X
{〈x∗, x〉 − Φ(x, 0)} = cl

(
inf

y∗∈Y ∗
Φ∗(·, y∗)

)
(x∗). (1)

Proof : First we determine the conjugate of ηΦ. For all x ∈ X there is

η∗Φ(x) = sup
x∗∈X∗

{
〈x∗, x〉 − inf

y∗∈Y ∗
Φ∗(x∗, y∗)

}
= sup

x∗∈X∗,
y∗∈Y ∗

{〈x∗, x〉 − Φ∗(x∗, y∗)} = Φ∗∗(x, 0).

As Φ is proper, convex and lower semicontinuous, we get further η∗Φ(x) = Φ(x, 0)
∀x ∈ X. Let us prove now that cl(ηΦ) is proper. Assuming that it takes everywhere
the value +∞ we obtain that its conjugate, which coincides with η∗Φ, is every-
where −∞. This contradicts the properness of Φ. The other possibility of cl(ηΦ)
to be improper is to take somewhere the value −∞. Because 0 ∈ PrY (dom(Φ)),
there is some x0 ∈ X such that Φ(x0, 0) < +∞. By Young’s inequality one has
ηΦ(x∗) = infy∗∈Y ∗ Φ∗(x∗, y∗) ≥ 〈x∗, x0〉 − Φ(x0, 0) ∀x∗ ∈ X∗. As 〈·, x0〉 − Φ(x0, 0)
is a continuous function we get cl(ηΦ)(x∗) ≥ 〈x∗, x0〉 − Φ(x0, 0) > −∞ ∀x∗ ∈ X∗.
Consequently, cl(ηΦ) is everywhere greater than −∞, therefore it is proper.

The first equality in (1) arises from the definition of the conjugate function. To
obtain the second one we apply Lemma 2.1 for ηΦ. From the calculations above
one gets η∗∗Φ = (Φ(·, 0))∗ and we are done. �

A consequence of this statement follows, by giving similar characterizations for
the epigraphs of the functions involved in (1).

Theorem 2.3 : Let Φ : X × Y → R be a proper convex lower semicontinuous
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function with 0 ∈ PrY (dom(Φ)). Then

epi((Φ(·, 0))∗) = cl
(

epi
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
))

= cl
(
∪

y∗∈Y ∗
epi(Φ∗(·, y∗))

)
.

Proof : Whenever (x∗, r) ∈ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)) it is clear that infy∗∈Y ∗ Φ∗(x∗,
y∗) ≤ r, thus (x∗, r) ∈ epi (infy∗∈Y ∗ Φ∗(·, y∗)).

If (x∗, r) ∈ epi (infy∗∈Y ∗ Φ∗(·, y∗)), then for each ε > 0 there is an y∗ ∈ Y ∗ such
that Φ∗(x∗, y∗) ≤ r + ε. Thus (x∗, r + ε) ∈ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)) ∀ε > 0, which
yields (x∗, r) ∈ cl (∪y∗∈Y ∗ epi(Φ∗(·, y∗))). Then we get

∪
y∗∈Y ∗

epi(Φ∗(·, y∗)) ⊆ epi
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
)
⊆ cl

(
∪

y∗∈Y ∗
epi(Φ∗(·, y∗))

)
,

which implies that the closures of these two sets coincide. Since the previous the-
orem yields epi((Φ(·, 0))∗) = cl (epi (infy∗∈Y ∗ Φ∗(·, y∗))), we are done. �

From these two theorems we can get the following statement, given also in [5].

Lemma 2.4: Let Φ : X × Y → R be a proper convex lower semicontinuous
function with 0 ∈ PrY (dom(Φ)). Then PrX∗×R(epi(Φ∗)) is closed if and only if

sup
x∈X
{〈x∗, x〉 − Φ(x, 0)} = min

y∗∈Y ∗
Φ∗(x∗, y∗) ∀x∗ ∈ X∗.

Let us mention that for an attained infimum (supremum) instead of inf (sup) we
write min (max).

3. Moreau-Rockafellar results for composed functions

The main results in this paper are given for the following framework. Consider the
proper convex lower semicontinuous function f : X → R, the proper convex lower
semicontinuous C-increasing function g : Y • → R with g(∞Y ) = +∞ and the
proper C-convex star C-lower semicontinuous function h : X → Y •. We impose
moreover the feasibility condition (h(dom(f)) + C) ∩ dom(g) 6= ∅.

Remark 1 : Since g : Y → R is C-increasing, g∗(y∗) = +∞ ∀y∗ /∈ C∗.

We formulate and prove two generalized Moreau-Rockafellar-type formulae in-
volving composed functions, namely the conjugate function of f + g ◦ h. To this
end, we attach to f + g ◦ h a so-called perturbation function Φ : X × Z → R,
where Z is a separated locally convex space, which is a function that fulfills
Φ(x, 0) = (f + g ◦ h)(x) ∀x ∈ X. We use the results introduced earlier for two
different perturbation functions attached to f + g ◦ h.

Take first the perturbation function

Φ1 : X × Y → R, Φ1(x, y) = f(x) + g(h(x)− y).

It is proper and convex and its conjugate function turns out, via Remark 1 from
this section, to be

Φ∗1 : X∗×Y ∗ → R, Φ∗1(x∗, y∗) = g∗(−y∗)+(f+(−y∗h))∗(x∗) ∀(x∗, y∗) ∈ X∗×−C∗,

and Φ∗1(x∗, y∗) = +∞ otherwise. Then the biconjugate of Φ1 is Φ∗∗1 : X × Y → R,
which at each pair (x, y) ∈ X × Y takes the value (by Lemma 2.1 and Remark 1
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from this section)

Φ∗∗1 (x, y) = sup
(x∗,y∗)∈X∗×−C∗

{〈x∗, x〉+ 〈y∗, y〉 − g∗(−y∗)− (f + (−y∗h))∗(x∗)}

= sup
y∗∈−C∗

{
〈y∗, y〉 − g∗(−y∗) + sup

x∗∈X∗
{〈x∗, x〉 − (f + (−y∗h))∗(x∗)}

}
= sup

y∗∈−C∗
{〈y∗, y〉 − g∗(−y∗) + (f + (−y∗h))∗∗(x)}

= sup
y∗∈C∗

{〈y∗,−y〉 − g∗(y∗) + (f + (y∗h))(x)}

= f(x) + sup
y∗∈C∗

{〈y∗,−y〉 − g∗(y∗) + (y∗h)(x)}

= f(x) + sup
y∗∈C∗

{〈y∗, h(x)− y〉 − g∗(y∗)}

= f(x) + g∗∗(h(x)− y) = f(x) + g(h(x)− y) = Φ1(x, y). (2)

Here the assumption h star C-lower semicontinuous is essential for obtaining
the fourth equality, because this hypothesis ensures the lower semicontinuity of
f + (y∗h) for all y∗ ∈ C∗. This function is thus proper, convex and lower semicon-
tinuous, therefore it coincides with its biconjugate. Note that (2) yields that the
function Φ1 is lower semicontinuous, too. As it is also proper and convex, using
Theorem 2.2 we obtain the first Moreau-Rockafellar-type formula for (f + g ◦ h)∗.

Theorem 3.1 : One has

(f + g ◦ h)∗ = cl
(

inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(·)}
)
. (3)

Corollary 3.2: It holds

epi((f + g ◦ h)∗) = cl
(

epi
(

inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(·)}
))

= cl
(

∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

))
.

Proof : The first equality follows directly from Theorem 3.1. For the second one,
we use Theorem 2.3. We have (x∗, r) ∈ ∪y∗∈Y ∗ epi(Φ∗1(·, y∗)) if and only if there is
some y∗ ∈ Y ∗ such that Φ∗1(x∗, y∗) ≤ r, which is nothing but the existence of a
y∗ ∈ −C∗ for which g∗(−y∗) + (f + (−y∗h))∗(x∗) ≤ r. Using Remark 1 from this
section, this turns out to be equivalent to the existence of a y∗ ∈ dom(g∗) fulfilling
g∗(y∗) + (f + (y∗h))∗(x∗) ≤ r, inequality meaning actually that (x∗, r − g∗(y∗)) ∈
epi((f + (y∗h))∗). This can be rewritten as (x∗, r) ∈ (0, g∗(y∗)) + epi((f + (y∗h))∗).
By Theorem 2.3 we have then

epi((f + g ◦ h)∗)=epi((Φ1(·, 0))∗)=cl
(

∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

))
.

�

Further we apply Lemma 2.4 for Φ1 and we obtain an equivalent characterization
through epigraphs of a formula of the conjugate of the function f + g ◦ h, which
acts as a regularity condition for the formula of the subdifferential of the mentioned
function.
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Theorem 3.3 : For each x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) = min
y∗∈C∗

{
g∗(y∗) + (f + (y∗h))∗(x∗)

}
(4)

if and only if the regularity condition

(RC1) ∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

)
is closed,

is fulfilled.

Remark 2 : The result in Theorem 3.3 can be seen also as the equivalent
characterization by the closedness-type regularity condition involving epigraphs
(RC1) of the stable strong duality statement for the primal composed convex
optimization problem

(P ) inf
x∈X
{f(x) + g ◦ h(x)},

and its conjugate dual problem

(D) sup
y∗∈C∗

{−g∗(y∗)− (f + (y∗h))∗(0)}.

Corollary 3.4: If (RC1) holds, for all x ∈ dom(f) ∩ h−1(dom(g)) one has

∂(f + g ◦ h)(x) = ∪
λ∈∂g(h(x))

∂
(
f + (λh)

)
(x). (5)

Remark 3 : As we have proven, the closedness-type regularity condition we use
in order to have (5), (RC1), is equivalent to (4). On the other hand, according
to Proposition 4.11 in [6], the interiority-type conditions considered so far for (5)
in the literature imply (4), without being equivalent to it, as Example 3.5 in [1]
shows.

Consider now another perturbation function, namely

Φ2 : X × Y ×X → R, Φ2(x, y, z) = f(x+ z) + g(h(x)− y).

It is proper and convex, too, and its conjugate function is Φ∗2 : X∗×Y ∗×X∗ → R,

Φ∗2(x∗, y∗, z∗) = g∗(−y∗)+f∗(z∗)+(−y∗h)∗(x∗−z∗) ∀(x∗, y∗, z∗) ∈ X∗×−C∗×X∗,

and Φ∗2(x∗, y∗, z∗) = +∞ otherwise. By similar calculations to the ones used to
determine Φ∗∗1 , one can show, using again that h is star C-lower semicontinuous,
that Φ2 coincides with its biconjugate, thus it is lower semicontinuous, too.

We give now another extended Moreau-Rockafellar-type formula for (f + g ◦h)∗,
provable by using Theorem 2.2, and other characterizations of the epigraph of this
conjugate function which follow from Theorem 2.3.

Theorem 3.5 : One has

(f + g ◦ h)∗ = cl

(
inf

z∗∈X∗,
y∗∈C∗

{f∗(z∗) + g∗(y∗) + (y∗h)∗(· − z∗)}

)

= cl
(

inf
y∗∈C∗

{g∗(y∗) + f∗�(y∗h)∗(·)}
)
. (6)
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Corollary 3.6: There holds

epi((f + g ◦ h)∗) = cl

(
epi

(
inf

z∗∈X∗,
y∗∈C∗

{f∗(z∗) + g∗(y∗) + (y∗h)∗(· − z∗)}

))

= cl
(

∪
z∗∈X∗,

y∗∈dom(g∗)

(
(z∗, f∗(z∗)) + (0, g∗(y∗)) + epi((y∗h)∗)

))
= cl

(
epi(f∗) + ∪

y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((y∗h)∗)

))
.

Proof : The first two equalities follow analogously to the ones in Corollary 3.2.
To prove the last one, note that, whenever y∗ ∈ dom(g∗), for each z∗ ∈ X∗ there
is (z∗, f∗(z∗)) ∈ epi(f∗), thus ∪z∗∈X∗

(
(z∗, f∗(z∗)) + (0, g∗(y∗)) + epi((y∗h)∗)

)
⊆

epi(f∗) + (0, g∗(y∗)) + epi((y∗h)∗). To prove the opposite inclusion, let (x∗, r) ∈
epi(f∗) + (0, g∗(y∗)) + epi((y∗h)∗). Then there is some z∗ ∈ X∗ such that
f∗(z∗)+g∗(y∗)+(y∗h)∗(x∗−z∗) ≤ r. Consequently, (x∗−z∗, r−f∗(z∗)−g∗(y∗)) ∈
epi((y∗h)∗), which yields (x∗, r) ∈ ∪z∗∈X∗

(
(z∗, f∗(z∗)) + (0, g∗(y∗)) + epi((y∗h)∗)

)
.

Thus for all y∗ ∈ C∗ one has

∪
z∗∈X∗

(
(z∗, f∗(z∗)) + (0, g∗(y∗)) + epi((y∗h)∗)

)
= epi(f∗) + (0, g∗(y∗)) + epi((y∗h)∗),

and the third desired equality follows at once. �

Remark 4 : Regarding the terms in the right-hand sides of (3) and (6), it can
be easily proven that

inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(x∗)} ≤ inf
z∗∈X∗,
y∗∈C∗

{f∗(z∗) + g∗(y∗) + (y∗h)∗(x∗ − z∗)}

and

∪
y∗∈dom(g∗)

(
(0, g∗(y∗))+epi((f+(y∗h))∗)

)
⊇ ∪
z∗∈X∗,

y∗∈dom(g∗)

(
(z∗, f∗(z∗))+(0, g∗(y∗))+epi((y∗h)∗)

)
.

Though, as shown above, the closures of these functions and sets, respectively,
coincide.

One can introduce another regularity condition which yields (RC1) without
being always implied by it, whose fulfillment ensures a formula for ∂(f + g ◦ h)
where the functions f and h appear separated, as indicated in the following.

Theorem 3.7 : For each x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) = min
y∗∈C∗,
z∗∈X∗

{
g∗(y∗) + f∗(z∗) + (y∗h)∗(x∗ − z∗)

}
(7)

if and only if the regularity condition

(RC2) epi(f∗) + ∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((y∗h)∗)

)
is closed,

is fulfilled.
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Remark 5 : The result proven above can be seen also as the equivalent
characterization by a regularity condition of the stable strong duality statement
for the primal composed convex optimization problem (P ) and another conjugate
dual problem attached to it, which can be seen as a refinement of (D),

(D̄) sup
y∗∈C∗,
z∗∈X∗

{−g∗(y∗)− f∗(z∗)− (y∗h)∗(−z∗)}.

Corollary 3.8: If (RC2) holds, for all x ∈ dom(f) ∩ h−1(dom(g)) one has

∂(f + g ◦ h)(x) = ∂f(x) + ∪
λ∈∂g(h(x))

∂(λh)(x). (8)

Remark 6 : The formula (8) was also given in other papers, like [6], but under
more restrictive regularity conditions of interiority-type which, together with the
assumption that h is continuous at a point of dom(f), imply (7), without being
equivalent to it. The regularity condition we give in order to obtain (8), (RC2), is
equivalent to (7) and it yields (8) without requiring additional continuity hypothe-
ses on h.

4. Special cases

In this section we treat some special choices of the functions f , g and h, redis-
covering older results from the literature, among which also the classical Moreau-
Rockafellar formula.

4.1. Compositions with linear functions

Consider the proper convex lower semicontinuous function f : X → R, the proper
convex lower semicontinuous function g : Y → R and the linear continuous operator
A : X → Y fulfilling A(dom(f)) ∩ dom(g) 6= ∅. Taking h to be A and C = {0}
(therefore C∗ = Y ∗) we see that we are in a special case of the general framework
of this paper. For each y∗ ∈ Y ∗ and any x∗ ∈ X∗ one has (f + (y∗A))∗(x∗) =
f∗(x∗ −A∗y∗). Note also that

(y∗A)∗(x∗) =
{

0, if A∗y∗ = x∗,
+∞, otherwise.

Therefore in this case (3) and (6) collapse into the following result.

Theorem 4.1 : For each x∗ ∈ X∗ there is

(f + g ◦A)∗(x∗) = cl
(

inf
y∗∈Y ∗

{f∗(· −A∗y∗) + g∗(y∗)}
)

(x∗) = cl(f∗�A∗g∗)(x∗).

Proof : The first equality follows directly from Theorem 3.1 (or Theorem 3.5),
by applying the formulae given above. The second equality is a consequence of
Theorem 3.5, which yields

(f + g ◦A)∗(x∗) = cl

(
inf

z∗∈X∗,
y∗∈C∗

{f∗(z∗) + g∗(y∗) + (y∗A)∗(· − z∗)}

)
(x∗).
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For each x∗ ∈ X∗ we have

inf
z∗∈X∗,
y∗∈C∗

{f∗(z∗) + g∗(y∗) + (y∗A)∗(x∗ − z∗)}= inf
z∗∈X∗,y∗∈C∗,
A∗y∗=x∗−z∗

{f∗(z∗) + g∗(y∗)}

= inf
z∗∈X∗

{
f∗(z∗)+ inf

y∗∈C∗,
A∗y∗=x∗−z∗

g∗(y∗)
}

= inf
z∗∈X∗

{f∗(z∗) +A∗g∗(x∗ − z∗)}

= (f∗�A∗g∗)(x∗),

which leads to the desired conclusion. �

In the following consequence of this statement we denote by (A∗ × idR)(epi(g∗))
the image of the set epi(g∗) through the function (A∗ × idR) : Y ∗ × R → X∗ × R,
defined by (A∗ × idR)(y∗, r) = (A∗y∗, r).

Corollary 4.2: It holds

epi((f + g ◦A)∗) = cl
(

epi
(

inf
y∗∈Y ∗

(g∗(y∗) + f∗(· −A∗y∗))
))

= cl
(

epi(f∗) + (A∗ × idR)(epi(g∗))
)

= cl
(

epi(f∗�A∗g∗)
)
.

Proof : The first equality follows directly from Corollary 3.2. Note that
epi(y∗A)∗ = {(A∗y∗)} × R+ ∀y∗ ∈ Y ∗. Thus ∪y∗∈dom(g∗)((0, g∗(y∗)) + epi((y∗A)∗))
= (A∗ × idR)(epi(g∗)) and the second equality follows by Corollary 3.6. For the
third one we use the first equality in Corollary 3.6 and the calculations in the proof
of Theorem 4.1. �

Specializing further A to be the identity operator we have to take X = Y and
we rediscover the following results (cf. [4, 11, 12]), the first of them being known
as the classical Moreau-Rockafellar formula.

Corollary 4.3: If f and g are proper convex lower semicontinuous functions
defined on X with values in R such that dom(f) ∩ dom(g) 6= ∅, then

(a) (f + g)∗ = cl(f∗�g∗),
(b) epi((f + g)∗) = cl(epi(f∗�g∗)) = cl(epi(f∗) + epi(g∗)).

Like in the general case, we turn now our attention to stable strong duality. In
the framework considered in the beginning of the subsection, the primal problem
(P ) turns into

(PA) inf
x∈X
{f(x) + g(A(x))},

while its mentioned duals turn both into

(DA) sup
y∗∈Y ∗

{−f∗(A∗y∗)− g∗(−y∗)},
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which is the classical Fenchel dual problem to (PA). Because of the continuity of
A it follows that in this case the regularity conditions (RC1) and (RC2) collapse
both into

(RCA) epi(f∗) + (A∗ × idR)(epi(g∗)) is closed.

This condition is valid if and only if there is stable strong duality for (PA) and
(DA). Moreover, this regularity condition coincides with the one given in Theorem
3.1 in [4] and then rediscovered in Theorem 5.4 in [1] to equivalently characterize
(f + g ◦A)∗.

4.2. The case g = δ−C

Working in the hypotheses of Section 3 we consider now the function g to be
δ−C , which is proper, convex, lower semicontinuous and C-increasing, while the
feasibility condition becomes h(dom(f)) ∩ (−C) 6= ∅. The conjugate of g is g∗ =
σ−C = δC∗ , thus dom(g∗) = C∗. Let U ⊆ X be nonempty, convex and closed and
take h : X → Y • to be defined as follows

h(x) =
{
w(x), if x ∈ U,
∞Y , otherwise,

where w : X → Y • is a proper, C-convex and C-epi-closed function.
The perturbation functions considered earlier become ΦC

1 (x, y) = f(x) +
δ{(x,y)∈U×Y :w(x)−y∈−C}(x, y) ∀(x, y) ∈ X × Y and, respectively, ΦC

2 (x, y, z) =
f(x + z) + δ{(x,y)∈U×Y :w(x)−y∈−C}(x, y) ∀(x, y, z) ∈ X × Y × X. By construction
ΦC

1 and ΦC
2 are obviously proper and convex. Because w is C-epi-closed and U

is closed, one has that h is C-epi-closed, too. Then it is straightforward that ΦC
1

and ΦC
2 are lower semicontinuous functions. Note that in this case it is not nec-

essary to consider the function h to be star C-lower semicontinuous in order to
be able to apply the theory developed earlier for the case when the perturbation
functions are lower semicontinuous. From Theorem 2.2 one can derive the new
Moreau-Rockafellar-type formulae listed below. Note that if h were star C-lower
semicontinuous they could be obtained from Theorem 3.1 and Theorem 3.5.

Theorem 4.4 : For each x∗ ∈ X∗ there is

sup
x∈U,

w(x)∈−C

{〈x∗, x〉 − f(x)} = (f + δ−C(w))∗U (x∗) = cl
(

inf
y∗∈C∗

(f + (y∗w))∗U
)

(x∗)

= cl
(

inf
y∗∈C∗

f∗�(y∗w)∗U
)

(x∗).

Corollary 4.5: It holds

epi((f + δ−C(w))∗U ) = cl
(

epi
(

inf
y∗∈C∗

(f + (y∗w))∗U
))

= cl
(
∪

y∗∈C∗
epi((f + (y∗w))∗U )

)
= cl

(
∪

y∗∈C∗
epi(f∗�(y∗w)∗U )

)
= cl

(
epi(f∗) + ∪

y∗∈C∗
epi((y∗w)∗U )

)
.
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From these results one can obtain characterizations via epigraphs of the stable
strong duality statements for the problem

(PC) inf
x∈U,

w(x)∈−C

f(x),

and its duals

(DC) sup
y∗∈C∗

{−(f + (y∗w))∗U (0)},

and

(D̄C) sup
y∗∈C∗,
z∗∈X∗

{−f∗(z∗)− (y∗w)∗U (−z∗)}.

Notice that (DC) is actually the Lagrange dual problem to (PC), while (D̄C) is
its Fenchel-Lagrange dual. The regularity conditions used in this paper turn out
to be in this case

(RCC1 ) ∪
y∗∈C∗

epi((f + (y∗w))∗U ) is closed,

and, respectively,

(RCC2 ) epi(f∗) + ∪
y∗∈C∗

epi((y∗w)∗U ) is closed,

which are actually the conditions used in [2] to equivalently characterize the stable
strong duality for (PC) and (DC), respectively for (PC) and (D̄C). Like in this
special case, also in [2] the function w has been supposed to be C-epi-closed.

5. The conjugate of the supremum of infinitely many functions

In this section we discuss the Moreau-Rockafellar representation of the conjugate
of the supremum of infinitely many functions and give formulae of the epigraph of
this conjugate function.

Let T be a possibly infinite index set and let RT be the space of all functions
y : T → R, endowed with the product topology and with the operations being the
usual pointwise ones. For simplicity, denote yt = y(t) ∀y ∈ RT ∀t ∈ T . The dual
space of RT is (RT )∗, the space of generalized finite sequences λ = (λt)t∈T such that
λt ∈ R ∀t ∈ T , and with only finitely many λt different from zero. The positive
cone in R

T is RT+ = {y ∈ RT : yt = y(t) ≥ 0 ∀t ∈ T}, and its dual is the positive
cone in (RT )∗, namely (RT+)∗ = {y∗ = (y∗t )t∈T ∈ (RT )∗ : y∗t ≥ 0 ∀t ∈ T}. Take
g : RT → R, g(y) = supt∈T yt, which is a proper, convex, lower semicontinuous
and R

T
+-increasing function and the proper convex lower semicontinuous functions

ht : X → R, t ∈ T , such that dom
(

supt∈T ht
)
6= ∅. Consider the function

h : X → (RT )•, h(x) =

{
(ht(x))t∈T , if x ∈ ∩

t∈T
dom(ht),

∞RT , otherwise.

One can easily see that h is proper, RT+-convex and R
T
+-epi-closed.
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Note that for all x ∈ X there is

sup
t∈T

ht(x) = sup
S⊆T,
|S|<+∞

sup
y∗s>0∀s∈S,P

s∈S y
∗
s =1

∑
s∈S

y∗shs(x).

For all the finite subsets S of T and for any y∗s > 0 ∀s ∈ S fulfilling
∑

s∈S y
∗
s = 1,

the function x 7→
∑

s∈S y
∗
shs(x) is proper, convex and lower semicontinuous. By

Lemma 2.1 it is equal to its biconjugate, thus for all x ∈ X there is

sup
t∈T

ht(x)= sup
S⊆T,
|S|<+∞

sup
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗∗
(x)=

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗

∗

(x).

Proposition 5.1: The function

η : X∗ → R, η(x∗) = inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗)

is proper and convex.

Proof : Whenever S ⊆ T with S finite and y∗s > 0 ∀s ∈ S with
∑

s∈S y
∗
s = 1, the

function
(∑

s∈S y
∗
shs
)∗ is proper, thus η cannot be identical +∞. Assuming the

existence of some x∗ ∈ X∗ where η(x∗) = −∞, it follows that supt∈T ht is identical
+∞, which contradicts the feasibility hypothesis dom

(
supt∈T ht

)
6= ∅. Therefore

η is proper.
In order to prove its convexity, let λ ∈ [0, 1] and x∗1, x

∗
2 ∈ X∗. What we have to

show is

η(λx∗1 + (1− λ)x∗2) ≤ λη(x∗1) + (1− λ)η(x∗2). (9)

If λ ∈ {0, 1} or η(x∗1) = +∞ or η(x∗2) = +∞, (9) is valid. Let further λ ∈ (0, 1) and
η(x∗1), η(x∗2) ∈ R. Then there are some α, β ∈ R such that η(x∗1) < α and η(x∗2) < β.
Thus there exist the finite subsets S1 and S2 of T and y∗s > 0 ∀s ∈ S1∪S2 such that∑

s∈S1
y∗s = 1,

∑
s∈S2

y∗s = 1,
(∑

s∈S1
y∗shs

)∗(x∗1) < α and
(∑

s∈S2
y∗shs

)∗(x∗2) < β.
Thus

η(λx∗1 + (1− λ)x∗2) ≤
(
λ
∑
s∈S1

y∗shs + (1− λ)
∑
s∈S2

y∗shs

)∗
(λx∗1 + (1− λ)x∗2)

≤
(∑
s∈S1

λy∗shs

)∗
(λx∗1) +

(∑
s∈S2

(1− λ)y∗shs

)∗
((1− λ)x∗2) < λα+ (1− λ)β.

If α converges towards η(x∗1) and β towards η(x∗2), (9) turns out to hold in this
case, too. As α, x∗1 and x∗2 were arbitrarily chosen, it follows that η is convex. �

The function cl(η) is convex and lower semicontinuous, and its properness can
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be proven similarly to the one of η. Applying again Lemma 2.1 one gets

(
sup
t∈T

ht

)∗
= cl

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
 . (10)

Since

⋃
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

epi
((∑

s∈S
y∗shs

)∗)
⊆ epi

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗


⊆ cl


⋃

S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

epi
((∑

s∈S
y∗shs

)∗)
 ,

it follows

epi
((

sup
t∈T

ht

)∗)
= cl

epi

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗



= cl


⋃

S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

epi
((∑

s∈S
y∗shs

)∗)
 .

On the other hand, for all x∗ ∈ X∗ there is

(
sup
t∈T

ht

)∗
(x∗) ≤ inf

y∗∈P
(y∗h)∗(x∗) ≤ inf

S⊆T,|S|<+∞
y∗s>0 ∀s∈SP

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗), (11)

where P = {y∗ ∈ (RT+)∗ :
∑

t∈T y
∗
t = 1}.

As the first inequality in (11) is obvious, we prove only the second one. Let
be x∗ ∈ X∗. If the infimum in the right-hand side of the desired inequality is
equal to +∞ there is nothing to prove. Otherwise, take an arbitrary r ∈ R strictly
greater than this infimum. Thus there is a finite subset S of T and some y∗s > 0
for all s ∈ S with

∑
s∈S y

∗
s = 1 for which (

∑
s∈S y

∗
shs)

∗(x∗) < r. Considering a
ȳ∗ ∈ P which satisfies ȳ∗s = y∗s when s ∈ S and ȳ∗s = 0 otherwise, it follows that
infy∗∈P(y∗h)∗(x∗) ≤ (ȳ∗h)∗(x∗) ≤ (

∑
s∈S y

∗
shs)

∗(x∗) < r. Since r was arbitrarily
chosen, (11) follows.
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14 R.I. Boţ, S.-M. Grad, G. Wanka

By taking (10) and (11) into consideration it yields(
sup
t∈T

ht

)∗
(x∗) = cl

(
inf
y∗∈P

(y∗h)∗
)

(x∗).

On the other hand, we have

∪
y∗∈P

epi(y∗h)∗ ⊆ epi
(

inf
y∗∈P

(y∗h)∗
)
⊆ cl

(
∪

y∗∈P
epi(y∗h)∗

)
.

The relations above lead to

epi
((

sup
t∈T

ht

)∗)
= cl

(
∪

y∗∈P
epi((y∗h)∗)

)
= cl

(
epi
(

inf
y∗∈P

(y∗h)∗
))

. (12)

For every finite subset S of T and all y∗s > 0 ∀s ∈ S with
∑

s∈S y
∗
s = 1, there is

epi
(∑
s∈S

y∗shs

)∗
= cl

(∑
s∈S

epi
(
(y∗shs)

∗)) = cl
(∑
s∈S

y∗s epi
(
h∗s
))

⊆ cl
(

co
(
∪
t∈T

epi(h∗t )
))

,

whence

epi
((

sup
t∈T

ht

)∗)
⊆ cl

(
co
(
∪
t∈T

epi(h∗t )
))

. (13)

Taking an arbitrary element (x∗, r) ∈ co
(
∪t∈T epi(h∗t )

)
, there is a finite sub-

set S of T and some y∗s > 0, s ∈ S with
∑

s∈S y
∗
s = 1 for which (x∗, r) ∈∑

s∈S y
∗
s epi(h∗s) ⊆ epi

((∑
s∈S y

∗
shs
)∗). This yields

(∑
s∈S y

∗
shs
)∗(x∗) ≤ r. For

any ȳ∗ ∈ (RT+)∗ fulfilling
∑

t∈T ȳ
∗
t = 1 which satisfies ȳ∗s = y∗s when s ∈ S and

ȳ∗s = 0 otherwise, there is

(ȳ∗h)∗(x∗) =
(∑
s∈S

y∗shs + δ ∩
s∈T\S

dom(hs)

)∗
(x∗) ≤

(∑
s∈S

y∗shs

)∗
(x∗) ≤ r.

This means that (x∗, r) ∈ epi((ȳ∗h)∗), which yields

co
(
∪
t∈T

epi(h∗t )
)
⊆
⋃
y∗∈P

epi((y∗h)∗). (14)

Consequently,

∪
t∈T

epi(h∗t ) ⊆ epi
(

inf
t∈T

h∗t

)
⊆ cl

(
epi
(

inf
t∈T

h∗t

))
⊆ cl

(
co
(

epi
(

inf
t∈T

h∗t

)))
,

and

cl
(

co
(

epi
(

inf
t∈T

h∗t

)))
= cl

(
co
(
∪
t∈T

epi(h∗t )
))

= epi
(

cl
(

co
(

inf
t∈T

h∗t
)))

.
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Therefore we rediscover the known formulae(
sup
t∈T

ht

)∗
= cl

(
co
(

inf
t∈T

h∗t

))
and, via (12), (13) and (14),

epi
((

sup
t∈T

ht

)∗)
= cl

(
co
(
∪
t∈T

epi(h∗t )
))
.

One can also show that for all x∗ ∈ X∗ there is

inf
y∗∈P

(y∗h)∗(x∗) ≤ inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗).

Let x∗ ∈ X∗. If the infimum in the right-hand side of the inequality above is equal
to +∞ there is nothing to prove. Otherwise, there is some r ∈ R greater than
this infimum. Thus there is a finite subset S of T and some y∗s > 0, s ∈ S with∑

s∈S y
∗
s = 1 for which (

∑
s∈S y

∗
shs)

∗(x∗) < r. Considering a ȳ∗ ∈ P which satisfies
ȳ∗s = y∗s when s ∈ S and ȳ∗s = 0 otherwise, it follows that the infimum in the
left-hand side is less than or equal to (

∑
s∈S y

∗
shs)

∗(x∗). Since r was arbitrarily
chosen, the inequality follows.

Remark 1 : From (12) and (14) one obtains that

(
sup
t∈T

ht

)∗
(x∗) = min

y∗∈P
(y∗h)∗(x∗) = min

S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗) ∀x∗ ∈ X∗

holds if

epi
((

sup
t∈T

ht

)∗)
= co

(
∪
t∈T

epi(h∗t )
)
,

the latter meaning actually that co
(
∪t∈T epi(h∗t )

)
is closed.

6. Discussion and an open problem

We equivalently characterized in this paper the formulae (4) and, respectively,
(7) with regularity conditions involving epigraphs. The discussion will be further
carried on only for the formula (4), because for (7) the things work similarly.

Before proceeding, we need some prerequisites. A set U ⊆ X is said to be closed
regarding the closed subspace Z ⊆ X if U ∩ Z = cl(U) ∩ Z. Note that we always
have

U ∩ Z ⊆ cl(U ∩ Z) ⊆ cl(U) ∩ Z. (15)

In the preliminary section we have introduced two different extensions of lower
semicontinuity to vector functions, namely C-epi-closedness and star C-lower
semicontinuity. It is known that the star C-lower semicontinuous functions are
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always C-epi-closed and next we give an example which shows that the opposite
assertion does not always hold.

Example 6.1 Consider the function

g : R→ (R2)• = R
2 ∪ {∞R2}, g(x) =

{
( 1
x , x), if x > 0,
∞R2 , otherwise.

One can verify that g is R2
+-convex and R2

+-epi-closed, but not star R2
+-lower semi-

continuous. For instance, for λ = (0, 1)T ∈ (R2
+)∗ = R

2
+ one has

((0, 1)T g)(x) =
{
x, if x > 0,
+∞, otherwise,

which is not lower semicontinuous.

In this paper we have shown that (4) is valid if and only if

(RC1) ∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

)
is closed.

The formula (4) was equivalently characterized also in [1], where the as-
sumption of star C-lower semicontinuity considered here for h was relaxed to
C-epi-closedness, with another regularity condition, namely

(RC ′1) {0} × epi(g∗) + ∪
λ∈C∗

{
(a,−λ, r) : (a, r) ∈ epi

((
f + (λh))∗

)}
is closed

regarding the closed subspace X∗ × {0} × R.

Denoting by M the set asked to be closed regarding the closed subspace X∗ ×
{0} × R in (RC ′1), it can be proven that (RC1) is equivalent to saying that M∩
(X∗ × {0} × R) is closed. Using (15), it follows that (RC ′1) implies (RC1).

We noticed that by strengthening the initial topological assumptions on the
function h, namely by considering it star C-lower semicontinuous instead of C-
epi-closed we obtain that (4) is equivalent to a condition that is weaker than the
one which equivalently characterizes (4) in the framework of [1]. Thus, one “loses”
something by restricting the hypotheses, but there is a “gain” in the regularity con-
dition which equivalently characterizes (4). In each of these contexts, the formula
in discussion is the weakest regularity condition known to us that ensures the sub-
differential formula (5). Thus it is up to the user to decide what is more important
in each specific situation: weaker hypotheses or weaker regularity conditions.

A similar discussion can be made also for (7), equivalently characterized in this
paper, where h is taken star C-lower semicontinuous, by (RC2) and in [1] where h
is considered C-epi-closed by the condition

(RC ′2) {0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f∗)
}

+ ∪
λ∈C∗

{
(p,−λ, r) : (p, r) ∈

epi
(
λh
)∗} is closed regarding the closed subspace X∗ × {0} × R.

We conclude this discussion by challenging the reader to provide an example.

Conjecture. Let the separated locally convex spaces X and Y , the latter par-
tially ordered by a closed convex cone C, a proper convex lower semicontinuous
function f : X → R, a proper convex lower semicontinuous C-increasing function
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g : Y → R and a proper C-convex C-epi-closed function h : X → Y • which is
not star C-lower semicontinuous, such that

(
h(dom(f)) + C

)
∩ dom(g) 6= ∅. We

conjecture that it is possible to choose X, Y , f , g and h such that (RC1) is fulfilled,
but (RC ′1) fails.
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Sci. Math. Québec 18 (1994), pp. 119–148.

[7] V. Jeyakumar, W. Song, N. Dinh, and G.M. Lee, Stable strong duality in convex optimization, Applied
Mathematics Report AMR 05/22, University of New South Wales, Sydney, Australia, 2005.

[8] D.T. Luc, Theory of vector optimization, Springer Verlag, Berlin, 1989.
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