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We give a lower semicontinuous type regularity condition and a closedness type one which turn
out to be necessary and sufficient for the fulfillment of two different formulae involving the ε-
subdifferential of a perturbation function, respectively. These regularity conditions prove to be
sufficient also for having formulae for the classical subdifferential of a perturbation function.
Some recently published results concerning ε-subdifferentials are rediscovered as special cases.
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1. Introduction

There are different types of subdifferentials considered in the literature, introduced
mostly in order to extend the classical notion of gradient to nondifferentiable func-
tions. In this paper we work with the classical subdifferential, also known as the
convex subdifferential or the Fenchel subdifferential and with its generalization the
ε-subdifferential.

The main results which we exhibit here concern the way how the ε-subdifferential
of Φ(·, 0) can be written more explicitly, where Φ is a proper convex lower semicon-
tinuous perturbation function of two variables taking extended real values. More
precisely, we give two different formulae for ∂εΦ(·, 0) and we equivalently charac-
terize their fulfillment by means of so-called regularity conditions. One of these
conditions, the weakest one, requires the lower semicontinuity of an infimal value
function. The other one consists in asking a set to be closed and it belongs to the
recently introduced class of closedness type regularity conditions. These regularity
conditions turn out to be sufficient for having two different formulae concerning
the subdifferential of Φ(·, 0) fulfilled, too.

Nevertheless, a discussion on the differences that exist between the two regu-
larity conditions is provided. The closedness type regularity condition is actually
equivalent to the so-called stable strong duality regarding the optimization problem
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(P ) inf
x∈X

Φ(x, 0),

where Φ : X × Y → R and X and Y are separated locally convex vector spaces,
and its conjugate dual

(D) sup
y∗∈Y ∗

−Φ∗(0, y∗),

while the lower semicontinuous type one holds if and only if there is only stable
zero duality gap for the same primal-dual pair of optimization problems.

Recall that perturbation functions are used in convex optimization for stating
basic results in general frameworks and to assign conjugate duals to optimization
problems. By particularizing the optimization problem (P ) and by appropriately
choosing the perturbation function Φ one can obtain or rediscover different state-
ments in duality. When Φ is taken to be a perturbation function for a convex
optimization problem with the objective function consisting in the sum of a convex
function with a composition of convex functions or for a problem with a convex
objective function and both geometric and cone-inequality constraints, the main
statements of the paper deliver interesting particular results, some not known yet,
some recently given in works like [2, 4–9, 11–13, 15].

2. Preliminaries

2.1. Notions

Consider two separated locally convex vector spaces X and Y and their topological
dual spaces X∗ and Y ∗, endowed with the corresponding weak∗ topologies, and
denote by 〈x∗, x〉 = x∗(x) the value of the continuous linear functional x∗ ∈ X∗
at x ∈ X. The nonempty convex cone C ⊆ Y induces on Y the partial ordering
“≤C”, defined by z ≤C y ⇔ y − z ∈ C, when z, y ∈ Y . To Y we attach a greatest
element with respect to “≤C” denoted by∞C which does not belong to Y . Thus we
extend the space Y to Y • = Y ∪ {∞C}. Then for every y ∈ Y • one has y ≤C ∞C

and we consider on Y • the operations y +∞C = ∞C + y = ∞C for y ∈ Y and
t · ∞C = ∞C for t ≥ 0. A function g : Y → R = R ∪ {±∞} is said to be C-
increasing if for y, z ∈ Y such that z ≤C y one has g(z) ≤ g(y). Such a function
can be extended by convention to Y • with the additional value g(∞C) = +∞. The
dual cone of the cone C is C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C}. By convention we
take 〈λ,∞C〉 = +∞ for all λ ∈ C∗. Given a subset U of X, by cl(U), δU and σU
we denote its closure, its indicator function and its support function, respectively.
We use also the projection function PrX : X × Y → X, defined by PrX(x, y) = x
for all (x, y) ∈ X × Y .

Having a function f : X → R we use the classical notations for its domain
dom(f) = {x ∈ X : f(x) < +∞}, its epigraph epi(f) = {(x, r) ∈ X×R : f(x) ≤ r}
and its conjugate function f∗ : X∗ → R, f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}.
We call f proper if f(x) > −∞ for all x ∈ X and dom(f) 6= ∅. For f proper
and ε ≥ 0, if f(x) ∈ R the ε-subdifferential of f at x is ∂εf(x) = {x∗ ∈ X∗ :
f(y)− f(x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ X}, while if f(x) = +∞ we take by convention
∂εf(x) = ∅. The ε-normal cone of a set U ⊆ X at x ∈ X is N ε

U (x) = ∂εδU (x). If
f is proper denote by ∂f(x) = ∂0f(x) the subdifferential of f at x. Regarding a
function and its conjugate we have Young’s inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉 for
all x ∈ X and x∗ ∈ X∗. It can be proven that for x ∈ X, x∗ ∈ X∗ and ε ≥ 0 one
has f(x) + f∗(x∗) ≤ 〈x∗, x〉 + ε if and only if x∗ ∈ ∂εf(x). If 0 ≤ ε ≤ η it holds
∂εf(x) ⊆ ∂ηf(x) and ∩µ>ε∂µf(x) = ∂εf(x) for all x ∈ X.
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Considering for each λ ∈ R the function (λf) : X → R, (λf)(x) = λf(x) for
x ∈ X, note that when λ = 0 we have (0f) = δdom(f). Given the proper functions
fi : X → R, i = 1, . . . , n, their infimal convolution is the function f1� . . .�fn :
X → R, (f1� . . .�fn)(a) = inf

{∑n
i=1 fi(xi) : xi ∈ X, i = 1, . . . , n,

∑n
i=1 xi = a

}
.

The lower semicontinuous hull of f : X → R is the function cl(f) : X → R which
has as epigraph cl(epi(f)). Given a linear continuous mapping A : X → Y , we have
its adjoint A∗ : Y ∗ → X∗ defined by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for (x, y∗) ∈ X×Y ∗. For
a proper function f : X → R we define also the infimal function of f through A as
Af : Y → R, Af(y) = inf

{
f(x) : x ∈ X,Ax = y

}
for y ∈ Y .

Some of the notions given for functions taking values in the extended real space
R can be generalized to vector functions as follows. A vector function h : X → Y •

is said to be proper if its domain dom(h) = {x ∈ X : h(x) ∈ Y } is nonempty and
it is called C-convex if

h(tx+ (1− t)y) ≤C th(x) + (1− t)h(y) ∀x, y ∈ X ∀t ∈ [0, 1].

Lower semicontinuity can be extended to vector functions in different ways. Here
we consider two notions of generalized lower semicontinuity. We say that h is C-
epi-closed if its C-epigraph epiC(h) = {(x, y) ∈ X × Y : y ∈ h(x) + C} is closed,
and h is called star C-lower semicontinuous if the function (λh) : X → R defined
by (λh)(x) = 〈λ, h(x)〉 is lower semicontinuous for all λ ∈ C∗.

Remark 1 Every star C-lower semicontinuous function is also C-epi-closed. The
reverse statement does not hold in general (see [1]).

Given a function of two variables Φ : X × Y → R, its infimal value function is
hΦ : Y → R, defined by hΦ(y) = infx∈X Φ(x, y). When Φ is convex, hΦ is convex,
too.

Having a primal-dual pair of optimization problems we call zero duality gap
the situation when the optimal objective values of the primal and dual problems
coincide. If there is zero duality gap and the dual problem has an optimal solution
we talk about strong duality. When strong duality (zero duality gap) remains valid
for every linear perturbation of the objective function of the primal problem we
say that there is stable strong duality (stable zero duality gap).

2.2. Results

We give now some results needed later in our investigations. Let us mention that
for an attained infimum (supremum) instead of inf (sup) we write min (max).
Let Φ : X × Y → R be a proper convex lower semicontinuous function fulfilling
0 ∈ PrY (dom(Φ)). We begin with a result given in [14] (see also [2]).

Lemma 2.1 For all x∗ ∈ X∗ it holds

(Φ(·, 0))∗(x∗) = cl
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
)

(x∗). (1)

By making use of epigraphs, this statement turns into the following one (cf. [2]).

Lemma 2.2 It holds

epi((Φ(·, 0))∗) = cl
(

epi
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
))

= cl
(
∪

y∗∈Y ∗
epi(Φ∗(·, y∗))

)
.

A consequence of Lemma 2.2 follows (see [2, 7]).
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Lemma 2.3 The set PrX∗×R(epi(Φ∗)) is closed if and only if

(Φ(·, 0))∗(x∗) = min
y∗∈Y ∗

Φ∗(x∗, y∗) ∀x∗ ∈ X∗.

We recall also the following assertion from [15].

Lemma 2.4 For all ε ≥ 0 and all x ∈ X it holds

∂εΦ(·, 0)(x) = ∩
η>0

cl(PrX∗(∂ε+ηΦ(x, 0))). (2)

Remark 2 Formula (2) is given in [15, Theorem 2.6.3] for x ∈ dom Φ(·, 0). With
the conventions we made, it can be extended to the whole space X.

For various choices of Φ one can derive from the lemmata given above different
interesting results. For instance, in [2] there are Moreau-Rockafellar type statements
for different convexity preserving combinations of functions such as the sum of a
convex function with the composition of convex functions, and stable strong duality
statements for optimization problems involving such functions. Considering some
perturbations used there, one can obtain new formulae for the ε-subdifferential of
the sum of a convex function with the composition of convex functions, as seen in
Proposition 2.5 below.

The first particular instance of (P ) we consider is an unconstrained composed
convex optimization problem. Let f : X → R be a proper convex lower semicon-
tinuous function, g : Y → R a proper convex lower semicontinuous C-increasing
function, for which we suppose by convention that g(∞C) = +∞, and h : X → Y •

a proper C-convex star C-lower semicontinuous function. Assume the feasibil-
ity condition

(
h(dom(f))+C

)
∩dom(g) 6= ∅ fulfilled. For the optimization problem

(PC) inf
x∈X
{f(x) + g(h(x))},

we consider the perturbation functions

Φ1 : X × Y → R, Φ1(x, y) = f(x) + g(h(x)− y),

and

Φ2 : X × Y ×X → R, Φ2(x, y, z) = f(x+ z) + g(h(x)− y).

In [2] we have shown that both these perturbation functions are proper, convex and
lower semicontinuous and thus Lemma 2.4 can be employed to deliver the following
statement.

Proposition 2.5 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + g ◦ h)(x) = ∩
η>0

cl

(
∪

ε1,ε2≥0,
ε1+ε2=ε+η

∪
y∗∈C∗∩∂ε2g(h(x))

∂ε1(f + (y∗h))(x)

)

= ∩
η>0

cl

(
∪

ε1,ε2,ε3≥0,
ε1+ε2+ε3=ε+η

∪
y∗∈C∗∩∂ε2g(h(x))

(
∂ε1f(x) + ∂ε3(y∗h)(x)

))
. (3)
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Remark 3 Note that for ε = 0 relation (3) can be simplified to

∂(f + g ◦ h)(x) = ∩
η>0

cl
(

∪
y∗∈C∗∩∂ηg(h(x))

∂η(f + (y∗h))(x)
)

= ∩
η>0

cl
(

∪
y∗∈C∗∩∂ηg(h(x))

(
∂ηf(x) + ∂η(y∗h)(x)

))
.

The second particular instance of (P ) taken into consideration is a constrained
composed convex optimization problem. Let U ⊆ X be a nonempty convex closed
set and consider the proper C-convex C-epi-closed function w : X → Y • such that
the feasibility condition dom(f)∩U ∩w−1(−C) 6= ∅ is satisfied. To the constrained
optimization problem

(PP ) inf
x∈U,

w(x)∈−C

f(x),

we assign the perturbation functions

Φ3 : X × Y → R, Φ3(x, y) = f(x) + δ{(x,y)∈U×Y :w(x)−y∈−C}(x, y),

Φ4 : X × Y ×X → R, Φ4(x, y, z) = f(x+ z) + δ{(x,y)∈U×Y :w(x)−y∈−C}(x, y),

and Φ5 : X × Y ×X ×X → R,

Φ5(x, y, z, t) = f(x+ z) + δ{(x,y)∈X×Y :w(x)−y∈−C}(x, y) + δU (x+ t).

All these perturbation functions are proper, convex and lower semicontinuous (see
[2]). Consequently, from Lemma 2.4 we obtain the following statements.

Proposition 2.6 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + δw−1(−C)∩U )(x)= ∩
η>0

cl

(
∪

y∗∈C∗,
w(x)∈−C

∂ε+η+(y∗w)(x)(f + (y∗w) + δU )(x)

)

= ∩
η>0

cl

(
∪

ε1,ε2≥0,y∗∈C∗,w(x)∈−C,
ε1+ε2=ε+η+(y∗w)(x)

(
∂ε1f(x) + ∂ε2((y∗w) + δU )(x)

))

= ∩
η>0

cl

(
∪

ε1,ε2,ε3≥0,y∗∈C∗,w(x)∈−C,
ε1+ε2+ε3=ε+η+(y∗w)(x)

(
∂ε1f(x) + ∂ε2(y∗w)(x) +N ε3

U (x)
))
.

Finally, we particularize (P ) to be an unconstrained convex optimization prob-
lem. If ϕ : X × Y → R is proper convex lower semicontinuous and A : X → Y is
linear continuous, we can obtain from Lemma 2.4 a formula for ∂εϕ(·, A·)(x), when
ε ≥ 0 and x ∈ X, by attaching the perturbation function

Φ6 : X × Y → R, Φ6(x, y) = ϕ(x,Ax+ y),
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to the unconstrained optimization problem

(Pϕ) inf
x∈X

ϕ(x,Ax).

Proposition 2.7 For all ε ≥ 0 and all x ∈ X it holds

∂εϕ(·, A·)(x) = ∩
η>0

cl
(

PrX∗

{
(x∗ +A∗y∗, y∗) : (x∗, y∗) ∈ ∂ε+ηϕ(x,Ax)

})
.

The results in Proposition 2.5, Proposition 2.6 and Proposition 2.7 can be further
particularized, rediscovering formulae from [11, 12, 15].

A natural question is under which circumstances can the “closures” that appear
in all these formulae be removed. We give some answers in the next section by pro-
viding equivalent characterizations of lower semicontinuous type for these formulae
stated without involving lower semicontinuous hulls.

3. Equivalent lower semicontinuous type characterizations of formulae for
ε-subdifferentials

Unless otherwise specified, the functions and sets considered in this section are
taken as defined in Subsection 2.2.

Theorem 3.1 For all ε ≥ 0 and all x ∈ X it holds

∂εΦ(·, 0)(x) = ∩
η>0

PrX∗(∂ε+ηΦ(x, 0))

if and only if the regularity condition

(LSC) inf
y∗∈Y ∗

Φ∗(·, y∗) is lower semicontinuous,

is fulfilled.

Proof Lemma 2.2 yields that the condition (LSC) is equivalent to
epi((Φ(·, 0))∗) = epi

(
infy∗∈Y ∗ Φ∗(·, y∗)

)
. Note that in general it holds

epi((Φ(·, 0))∗) ⊇ epi
(

infy∗∈Y ∗ Φ∗(·, y∗)
)
, so (LSC) is equivalent to

epi((Φ(·, 0))∗) ⊆ epi
(

infy∗∈Y ∗ Φ∗(·, y∗)
)
, too.

“⇒” Take an arbitrary pair (x∗, r) ∈ epi((Φ(·, 0))∗). This means actually that
(Φ(·, 0))∗(x∗) ≤ r. Let x ∈ dom(Φ(·, 0)) and ε = r + Φ(x, 0) − 〈x∗, x〉 ≥ 0. Then
(Φ(·, 0))∗(x∗) + Φ(x, 0) ≤ 〈x∗, x〉 + ε, i.e. x∗ ∈ ∂εΦ(·, 0)(x). Using the hypothesis,
whenever η > 0 there exists y∗η ∈ Y ∗ for which (x∗, y∗η) ∈ ∂ε+ηΦ(x, 0). Fixing
an η > 0, we get Φ(x, 0) + Φ∗(x∗, y∗η) ≤ 〈x∗, x〉 + ε + η. Consequently, Φ(x, 0) +
infy∗∈Y ∗ Φ∗(x∗, y∗) ≤ 〈x∗, x〉+ε+η for all η > 0. Letting η tend toward 0, it follows
Φ(x, 0) + infy∗∈Y ∗ Φ∗(x∗, y∗) ≤ 〈x∗, x〉+ ε and, replacing ε by r+ Φ(x, 0)− 〈x∗, x〉,
we get infy∗∈Y ∗ Φ∗(x∗, y∗) ≤ r, i.e. (x∗, r) ∈ epi

(
infy∗∈Y ∗ Φ∗(·, y∗)

)
.

“⇐” Let ε ≥ 0. From (2) one can easily deduce that ∩η>0 PrX∗(∂ε+ηΦ(x, 0)) is
a subset of ∂εΦ(·, 0)(x) for all x ∈ X. Note that this inclusion holds in the most
general framework. It remains to show the opposite one.

Let x ∈ X. If Φ(x, 0) = +∞, then ∂εΦ(·, 0)(x) = ∂ε+ηΦ(x, 0) = ∅ for all
η > 0. Assume thus further that Φ(x, 0) ∈ R. For x∗ ∈ ∂εΦ(·, 0)(x), one has
Φ(x, 0) + (Φ(·, 0))∗(x∗) ≤ 〈x∗, x〉 + ε. By (1), the condition (LSC) is equivalent
to (Φ(·, 0))∗(x∗) = infy∗∈Y ∗ Φ∗(·, y∗)(x∗) for all x∗ ∈ X∗. Using this in the previ-
ous inequality, one gets Φ(x, 0) + infy∗∈Y ∗ Φ∗(x∗, y∗) ≤ 〈x∗, x〉 + ε. Since for each
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η > 0 there is a y∗η ∈ Y ∗ for which Φ∗(x∗, y∗η) ≤ infy∗∈Y ∗ Φ∗(·, y∗)(x∗) + η, fix-
ing an η > 0 we obtain Φ(x, 0) + Φ∗(x∗, y∗η) ≤ 〈x∗, x〉 + ε + η, i.e. (x∗, y∗η) ∈
∂ε+ηΦ(x, 0). Consequently, x∗ ∈ PrX∗(∂ε+ηΦ(x, 0)) whenever η > 0. Therefore
x∗ ∈ ∩η>0 PrX∗(∂ε+ηΦ(x, 0)). �

Taking as Φ the six perturbation functions considered in the preliminaries, re-
spectively, we obtain equivalent characterizations of formulae for ε-subdifferentials
of different combinations of convex functions where lower semicontinuous hulls play
no role, as follows.

Proposition 3.2 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + g ◦ h)(x) = ∩
η>0

∪
ε1,ε2≥0,

ε1+ε2=ε+η

∪
y∗∈C∗∩∂ε2g(h(x))

∂ε1(f + (y∗h))(x)

if and only if the regularity condition

(LSCC1 ) inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(·)} is lower semicontinuous,

is fulfilled.

Proof The hypotheses imposed on f , g and h ensure the properness, convexity and
lower semicontinuity of Φ1. Note that Φ1(x, 0) = f(x) + g(h(x)) for all x ∈ X. Let
be ε ≥ 0. Then ∂εΦ1(·, 0)(x) = ∂ε(f + g ◦ h)(x) for all x ∈ X and all ε ≥ 0.

Let us see, for arbitrarily chosen x ∈ X, ε ≥ 0 and η > 0, how can
PrX∗(∂ε+ηΦ1(x, 0)) be written in a simpler way. By definition, x∗ ∈ X∗ belongs
to this set if and only if there exists y∗ ∈ Y ∗ such that Φ1(x, 0) + Φ∗1(x∗, y∗) ≤
〈x∗, x〉+ε+η, i.e. f(x)+g(h(x))+g∗(−y∗)+(f+(−y∗h))∗(x∗) ≤ 〈x∗, x〉+ε+η and
y∗ ∈ −C∗. This can be rewritten as (f(x)+(−y∗h)(x)+(f+(−y∗h))∗(x∗)−〈x∗, x〉)+
(g(h(x))+g∗(−y∗)−(−y∗h)(x)) ≤ ε+η and y∗ ∈ −C∗, which means that there are
some ε1, ε2 ≥ 0 fulfilling ε1+ε2 = ε+η such that x∗ ∈ ∂ε1(f+(−y∗h))(x) and −y∗ ∈
∂ε2g(h(x)) ∩ (−C∗). Thus, x∗ ∈ PrX∗(∂ε+ηΦ1(x, 0)) if and only if there are some
ε1, ε2 ≥ 0 fulfilling ε1+ε2 = ε+η such that x∗ ∈ ∪y∗∈C∗∩∂ε2g(h(x)) ∂ε1(f+(y∗h))(x).
Then

PrX∗(∂ε+ηΦ1(x, 0)) = ∪
ε1,ε2≥0,

ε1+ε2=ε+η

∪
y∗∈C∗∩∂ε2g(h(x))

∂ε1(f + (y∗h))(x). (4)

As (4) holds whenever η > 0, considering in both sides the intersection regarding
all η > 0 and noting that (LSC) turns out to become in this case exactly (LSCC1 ),
the desired equivalence follows by Theorem 3.1. �

Analogously can be proven the following statements, too, with Φi, i ∈ {2, . . . , 6},
as perturbation functions, respectively.

Proposition 3.3 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + g ◦ h)(x) = ∩
η>0

∪
ε1,ε2,ε3≥0,

ε1+ε2+ε3=ε+η

∪
y∗∈C∗∩∂ε2g(h(x))

(
∂ε1f(x) + ∂ε3(y∗h)(x)

)

if and only if the regularity condition

(LSCC2 ) inf
z∗∈X∗,y∗∈C∗

{f∗(z∗) + g∗(y∗) + (y∗h)∗(· − z∗)} is lower semicontinuous,

is fulfilled.
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Proposition 3.4 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + δw−1(−C)∩U )(x) = ∩
η>0

∪
y∗∈C∗,
w(x)∈−C

∂ε+η+(y∗w)(x)(f + (y∗w) + δU )(x)

if and only if the regularity condition

(LSCP1 ) inf
y∗∈C∗

(f + (y∗w) + δU )∗ is lower semicontinuous,

is fulfilled.

Proposition 3.5 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + δw−1(−C)∩U )(x) = ∩
η>0

∪
ε1,ε2≥0,y∗∈C∗,w(x)∈−C,
ε1+ε2=ε+η+(y∗w)(x)

(
∂ε1f(x) + ∂ε2((y∗w) + δU )(x)

)

if and only if the regularity condition

(LSCP2 ) inf
y∗∈C∗

(f∗�((y∗w) + δU )∗) is lower semicontinuous,

is fulfilled.

Proposition 3.6 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + δw−1(−C)∩U )(x)= ∩
η>0

∪
ε1,ε2,ε3≥0,y∗∈C∗,w(x)∈−C,
ε1+ε2+ε3=ε+η+(y∗w)(x)

(
∂ε1f(x) + ∂ε2(y∗w)(x) +N ε3

U (x)
)

if and only if the regularity condition

(LSCP3 ) inf
y∗∈C∗

(f∗�(y∗w)∗�σU ) is lower semicontinuous,

is fulfilled.

Proposition 3.7 For all ε ≥ 0 and all x ∈ X it holds

∂εϕ(·, A·)(x) = ∩
η>0

PrX∗

{
(x∗ +A∗y∗, y∗) : (x∗, y∗) ∈ ∂ε+ηϕ(x,Ax)

}
if and only if the regularity condition

(LSCϕ1 ) inf
y∗∈Y ∗

ϕ∗(· −A∗y∗, y∗) is lower semicontinuous,

is fulfilled.

For the following statement, which can be obtained as a consequence from each
of Proposition 3.2, Proposition 3.3 and Proposition 3.7, let f : X → R and g :
Y → R be proper convex lower semicontinuous functions and A : X → Y a linear
continuous mapping fulfilling the feasibility condition dom(f)∩A−1(dom(g)) 6= ∅.

Corollary 3.8 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + g ◦A)(x) = ∩
η>0

∪
ε1,ε2≥0,

ε1+ε2=ε+η

(
∂ε1f(x) +A∗∂ε2g(Ax)

)
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if and only if the regularity condition

(LSCA) inf
y∗∈Y ∗

{g∗(y∗) + f∗(· −A∗y∗)} is lower semicontinuous,

is fulfilled.

This assertion can be further particularized to the following statement, where
f, g : X → R are proper convex lower semicontinuous functions with their domains
fulfilling dom(f) ∩ dom(g) 6= ∅.

Corollary 3.9 For all ε ≥ 0 and all x ∈ X it holds

∂ε(f + g)(x) = ∩
η>0

∪
ε1,ε2≥0,

ε1+ε2=ε+η

(
∂ε1f(x) + ∂ε2g(x)

)
if and only if the regularity condition

(LSCS) f∗�g∗ is lower semicontinuous,

is fulfilled.

4. Other formulae for ε-subdifferentials and ε-optimality conditions

Unless otherwise specified, the functions and sets considered in this section are
taken as defined in Subsection 2.2 and Section 3, respectively.

From Lemma 2.1 we know that the condition (LSC) is equivalent to
(Φ(·, 0))∗(x∗) = infy∗∈Y ∗ Φ∗(·, y∗)(x∗) for all x∗ ∈ X∗, while the situation when
the infimum in the right-hand side of this equality is for all x∗ ∈ X∗ attained
can be equivalently characterized, via Lemma 2.3, by the validity of the following
closedness type regularity condition

(RC) PrX∗×R(epi(Φ∗)) is closed.

As we have seen in Theorem 3.1, (LSC) is equivalent to a formula for ∂εΦ(·, 0)(x),
with x ∈ X and ε ≥ 0. To the natural question if is it possible to give another
formula, this time equivalent to (RC), for this ε-subdifferential, we answer with
the following statement.

Theorem 4.1 For all ε ≥ 0 and all x ∈ X it holds

∂εΦ(·, 0)(x) = PrX∗(∂εΦ(x, 0)) (5)

if and only if (RC) is fulfilled.

Proof The condition (RC) is equivalent to epi((Φ(·, 0))∗) = ∪y∗∈Y ∗ epi(Φ∗(·, y∗)).
Since in general it holds epi((Φ(·, 0))∗) ⊇ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)), we can notice that
(RC) is actually equivalent to epi((Φ(·, 0))∗) ⊆ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)).

“⇒” Take an arbitrary pair (x∗, r) ∈ epi((Φ(·, 0))∗). This means actually that
(Φ(·, 0))∗(x∗) ≤ r. Let x ∈ dom(Φ(·, 0)) and ε = r + Φ(x, 0) − 〈x∗, x〉 ≥ 0. Then
(Φ(·, 0))∗(x∗)+Φ(x, 0) ≤ 〈x∗, x〉+ε, i.e. x∗ ∈ ∂εΦ(·, 0)(x) = PrX∗(∂εΦ(x, 0)). Thus
there exists y∗ε ∈ Y ∗ for which (x∗, y∗ε) ∈ ∂εΦ(x, 0), i.e. Φ(x, 0) + Φ∗(x∗, y∗ε) ≤
〈x∗, x〉 + ε = 〈x∗, x〉 + r + Φ(x, 0) − 〈x∗, x〉. Consequently, Φ∗(x∗, y∗ε) ≤ r, i.e.
(x∗, r) ∈ epi(Φ∗(·, y∗ε)) ⊆ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)).
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“⇐” Let ε ≥ 0 and x ∈ X. Choose an arbitrary element x∗ ∈ PrX∗(∂εΦ(x, 0)).
Then there exists y∗x∗ ∈ Y ∗ for which (x∗, y∗x∗) ∈ ∂εΦ(x, 0), i.e. Φ(x, 0) +
Φ∗(x∗, y∗x∗) ≤ 〈x∗, x〉 + ε. Since we get from (1) that (Φ(·, 0))∗(x∗) ≤ Φ∗(x∗, y∗x∗),
it follows Φ(x, 0) + (Φ(·, 0))∗(x∗) ≤ 〈x∗, x〉 + ε, i.e. x∗ ∈ ∂εΦ(·, 0)(x). Thus
PrX∗(∂εΦ(x, 0)) ⊆ ∂εΦ(·, 0)(x) and note that this inclusion holds in the most gen-
eral setting.

Now let us check the opposite inclusion. If Φ(x, 0) = +∞, then ∂εΦ(·, 0)(x) =
∂εΦ(x, 0) = ∅. Assume thus further that Φ(x, 0) ∈ R. For x∗ ∈ ∂εΦ(·, 0)(x), one
has Φ(x, 0) + (Φ(·, 0))∗(x∗) ≤ 〈x∗, x〉 + ε. By Lemma 2.3, the condition (RC)
is equivalent to (Φ(·, 0))∗(x∗) = miny∗∈Y ∗ Φ∗(·, y∗)(x∗) for all x∗ ∈ X∗, thus for
every x∗ ∈ X∗ there exists y∗x∗ ∈ Y ∗ for which (Φ(·, 0))∗(x∗) = Φ∗(x∗, y∗x∗). Using
this in the previous inequality, one gets Φ(x, 0) + Φ∗(x∗, y∗x∗) ≤ 〈x∗, x〉 + ε, i.e.
(x∗, y∗x∗) ∈ ∂εΦ(x, 0). Consequently, x∗ ∈ PrX∗(∂εΦ(x, 0)). �

Remark 4 As noted in the beginning of the section, the difference between the
conditions (RC) and (LSC) can be clearer observed by comparing the way these
regularity conditions can be equivalently written as formulae for the conjugate of
Φ(·, 0). The formula equivalent to (LSC) consists of an infimum, while the one
which is equivalent to (RC) means that the same infimum is also attained. Thus it
is clear that (RC) is stronger than (LSC). When Φ is a perturbation function for
a convex optimization problem, (RC) is equivalent to the so-called stable strong
duality, while (LSC) turns out to mean that for the mentioned primal problem and
its conjugate dual obtained by using Φ there is stable zero duality gap. An example
which underlines the difference between these two situations can be found in [5],
for instance. The difference between these two conditions can be seen also when we
equivalently characterize them as formulae for the ε-subdifferential of Φ(·, 0), since
(RC) can be equivalently written also as ∂εΦ(·, 0)(x) = ∩η≥0 PrX∗(∂ε+ηΦ(x, 0)) for
all x ∈ X. Comparing this to the formula given in Theorem 3.1, we see that the
difference consists in the set where η takes values from.

Remark 5 Taking as Φ the six perturbation functions considered in the preliminar-
ies one can obtain equivalent characterizations of the other formulae considered in
Section 3 from which the variable η disappears. In this way we rediscover statements
from [4, 6, 13]. For other choices of the perturbation function one can rediscover
statements from [8, 9], too. We leave these to the interested reader as exercises.

There are different byproducts of the main results in this paper, Theorem 3.1
and Theorem 4.1, some of them listed in the following.

Theorem 4.2 If the regularity condition (LSC) is fulfilled, then for all x ∈ X it
holds

∂Φ(·, 0)(x) = ∩
η>0

PrX∗(∂ηΦ(x, 0)).

Theorem 4.3 If the regularity condition (RC) is fulfilled, then for all x ∈ X it
holds

∂Φ(·, 0)(x) = PrX∗(∂Φ(x, 0)).

Remark 6 Taking Φ to be the perturbation functions Φi, i ∈ {1, . . . , 6}, respec-
tively, new formulae for subdifferentials of convexity preserving combinations of
functions can be obtained from Theorem 4.2 and Theorem 4.3, some of them redis-
covering statements from [2, 5]. The closedness type regularity conditions obtained
in this way guarantee different subdifferential formulae and turn out to be weaker
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than the interiority type regularity conditions considered in the literature for the
same purposes (see for instance [15]). Let us also mention that in [10], without
lower semicontinuity assumptions on the functions involved, stable strong duality
statements are shown to yield special cases of (5).

In [15, Theorem 2.6.2(ii)] it is given a formula for ∂εh∗Φ, when Φ is proper and
convex. Taking Φ to be moreover lower semicontinuous and imposing the feasibil-
ity condition 0 ∈ PrX∗(dom(Φ∗)), noting that h∗Φ = Φ∗(0, ·) we can obtain from
Theorem 3.1 and Theorem 4.1 the following formulae for ∂εh∗Φ.

Proposition 4.4 For all ε ≥ 0 and all y∗ ∈ Y ∗ it holds ∂εh
∗
Φ(y∗) =

∩η>0 PrY (∂ε+ηΦ∗(0, ·)(y∗)) if and only if hΦ is lower semicontinuous.

Proposition 4.5 For all ε ≥ 0 and all y∗ ∈ Y ∗ it holds ∂εh
∗
Φ(y∗) =

PrY (∂εΦ∗(0, ·)(y∗)) if and only if PrY×R(epi(Φ)) is closed.

Concerning the convex optimization problem

(P ) inf
x∈X

Φ(x, 0),

for a fixed ε ≥ 0, an element x̄ ∈ X is said to be an ε-solution to (P ) if
0 ∈ ∂εΦ(·, 0)(x̄). From Theorem 3.1 and Theorem 4.1 we deduce the following
ε-optimality conditions for (P ).

Theorem 4.6

(i) If ε ≥ 0, assuming that the regularity condition (LSC) is fulfilled and that
x̄ ∈ X is an ε-solution to (P ), then for each η > 0 there exists ȳ∗η ∈ Y ∗
such that (0, ȳ∗η) ∈ ∂ε+ηΦ(x̄, 0).

(ii) If ε ≥ 0, x̄ ∈ X and for each η > 0 there exists ȳ∗η ∈ Y ∗ such that (0, ȳ∗η) ∈
∂ε+ηΦ(x̄, 0), then x̄ is an ε-solution to (P ).

Theorem 4.7

(i) If ε ≥ 0, assuming that the regularity condition (RC) is fulfilled and that
x̄ ∈ X is an ε-solution to (P ), then there exists ȳ∗ ∈ Y ∗ such that (0, ȳ∗) ∈
∂εΦ(x̄, 0).

(ii) If x̄ ∈ X and ȳ∗ ∈ Y ∗ such that (0, ȳ∗) ∈ ∂εΦ(x̄, 0) for ε ≥ 0, then x̄ is an
ε-solution to (P ).

Remark 7 In Theorem 4.7 we generalize [4, Theorem 4] and its special cases.
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