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Abstract We give an answer to the Problem 11.6 posed by Stephen Simons in
his book ”From Hahn-Banach to Monotonicity”: Do there exist a nonzero finite
dimensional Banach space and a pair of extended real-valued, proper and convex
functions which is totally Fenchel unstable? The answer is negative.
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1 Introduction

Consider E a nontrivial real Banach space and E∗ its topological dual space. By
〈x∗, x〉 we denote the value of the linear continuous functional x∗ ∈ E∗ at x ∈ E.
The Fenchel-Moreau conjugate of a function f : E → R ∪ {±∞} is the function
f∗ : E∗ → R = R defined by f∗(x∗) = supx∈E{〈x∗, x〉 − f(x)} for all x∗ ∈ E∗.
We denote by dom(f) = {x ∈ E : f(x) < +∞} its domain. We call f proper if
dom(f) 6= ∅ and f(x) > −∞ for all x ∈ E.

Having f, g : E → R two arbitrary proper and convex functions, we say that f
and g satisfy stable Fenchel duality if for all x∗ ∈ E∗, there exists z∗ ∈ E∗ such that

(f + g)∗(x∗) = f∗(x∗ − z∗) + g∗(z∗).

If this property holds just for x∗ = 0, then we obtain the classical Fenchel duality.
In this case we say that f and g satisfy Fenchel duality. The pair f, g is called totally
Fenchel unstable (see [4]) if f and g satisfy Fenchel duality but

y∗, z∗ ∈ E∗ and (f + g)∗(y∗ + z∗) = f∗(y∗) + g∗(z∗) =⇒ y∗ + z∗ = 0.

The weakest generalized interior regularity condition that guarantees stable strong
duality for f and g in case the functions are also lower semicontinuous is the cele-
brated Attouch-Brézis condition (cf. [1]). This condition asks that the cone gener-
ated by dom(f)− dom(g) is a closed linear subspace.
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Obviously, stable Fenchel duality implies Fenchel duality, but the converse is not
true (see the example in [2], pp. 2798-2799 and Example 11.1 in [4]). Nevertheless,
each of these examples, both given in a finite dimensional setting, fails when one
tries to verify total Fenchel unstability.

In the infinite dimensional setting the following example of a pair of proper
and convex functions f, g, which is totally Fenchel unstable, has been proposed in
Example 11.3 in [4]. Let C be a nonempty, bounded, closed and convex subset of E
such that there exists an extreme point x0 of C which is not a support point of C.
Recall that if C is a convex subset of E, then x ∈ C is a support point of C if there
exists x∗ ∈ E∗ \ {0} such that 〈x∗, x〉 = sup〈x∗, C〉. We denote by δD : E → R the
indicator function of a set D ⊆ E defined as

δD(x) =
{

0, if x ∈ D,
+∞, otherwise.

Taking A := x0 − C, B := C − x0, f := δA and g := δB , Simons proved in [4] that
the pair f, g is totally Fenchel unstable. Let us also mention that an example of a
set C and a point x0 with the above mentioned properties was given in the space
`2, following an idea due to Jonathan Borwein (see [4]).

In finite dimensional spaces a similar example cannot be given, as every extreme
point of a convex set is a support point. This fact determined Stephen Simons to
formulate the following open problem (Problem 11.6 in [4]).

Problem Do there exist a nonzero finite dimensional Banach space E and f, g :
E → R proper and convex functions such that the pair f, g is totally Fenchel unsta-
ble?

We show that the answer to this question is negative. This result can be interpreted
as follows:
If two proper and convex functions f, g : Rn → R satisfy Fenchel duality, then there
exists at least one element x∗ ∈ Rn \ {0}, such that f − 〈x∗, ·〉 and g (or f and
g − 〈x∗, ·〉) satisfy Fenchel duality, too.

This article contains two proofs of the result. During the reviewing process
an anonymous referee proposed an alternative and much shorter proof which is
presented at the end of the article in Remark 1. Nevertheless we think that the
original proof is worth to mention because it approaches the problem in a more
geometrical way.

2 The result

We use the following notation. For a function f : E → R we denote by epi(f) =
{(x, r) ∈ E × R : f(x) ≤ r} its epigraph and by f̄ its lower semicontinuous hull of
f , namely the function of which epigraph is the closure of epi(f) in E × R, that
is epi(f̄) = cl(epi(f)). We write ω(E∗, E) for the weak∗ topology on E∗. Further,
when D ⊆ Rn is a nonempty and convex set by 0+D we denote its recession cone.

The following preliminary result (see [2, Theorem 2.1]) is a direct consequence
of the classical Moreau-Rockafellar theorem.

Theorem 1 If f, g : E → R are proper, convex and lower semicontinuous functions
such that dom(f) ∩ dom(g) 6= ∅. Then

epi((f + g)∗) = cl(epi(f∗) + epi(g∗)),

where the closure is taken in the product topology of (E∗, ω(E∗, E))× R.
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Under the hypotheses of Theorem 1 it follows that epi(f∗) + epi(g∗) is closed in the
product topology of (E∗, ω(E∗, E))×R if and only if epi((f+g)∗) = epi(f∗)+epi(g∗).
By [2, Proposition 2.2], this is equivalent to saying that f and g satisfy stable Fenchel
duality.

Of course, for all x∗, y∗ ∈ E∗ it holds

(f + g)∗(x∗) ≤ f∗(x∗ − y∗) + g∗(y∗). (1)

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable if
and only if

∃y∗ ∈ E∗ : (f + g)∗(0) = f∗(−y∗) + g∗(y∗). (2)

∀x∗ ∈ E∗ \ {0},∀y∗ ∈ E∗ : (f + g)∗(x∗) < f∗(x∗ − y∗) + g∗(y∗). (3)

Moreover, if the pair f, g is totally Fenchel unstable one must have that dom(f) ∩
dom(g) 6= ∅. Indeed, if this is not the case, then f + g is identical +∞ and thus
(f + g)∗ is identical −∞. By (2) there exists y∗ ∈ E∗ such that f∗(−y∗) + g∗(y∗) =
−∞. But, f and g being proper we get f∗(−y∗) > −∞ and g∗(y∗) > −∞, a
contradiction.

We give now a geometric characterization of the property that the pair f, g is
totally Fenchel unstable.

Proposition 1 Let f, g : E → R be proper functions such that dom(f)∩ dom(g) 6=
∅. Then the pair f, g is totally Fenchel unstable if and only if

epi((f + g)∗) ∩ ({0} × R) = (epi(f∗) + epi(g∗)) ∩ ({0} × R) (4)

and there is no x∗ ∈ E∗ \ {0} such that

epi((f + g)∗) ∩ ({x∗} × R) = (epi(f∗) + epi(g∗)) ∩ ({x∗} × R). (5)

Proof We want to notice first that we always have epi((f+g)∗) ⊇ epi(f∗)+epi(g∗).
As dom(f) ∩ dom(g) 6= ∅, (f + g)∗ never attains −∞.

”⇒” In case (f + g)∗(0) = +∞, the set epi((f + g)∗) ∩ ({0} × R) is empty
and (4) follows automatically. In case (f + g)∗(0) ∈ R, we consider an arbitrary
element r ∈ R fulfilling (f + g)∗(0) ≤ r. By (2) there exists y∗ ∈ E∗ such that
f∗(−y∗) + g∗(y∗) ≤ r and so

(0, r) = (−y∗, f∗(−y∗)) + (y∗, r − f∗(−y∗)) ∈ (epi(f∗) + epi(g∗)) ∩ ({0} × R).

Also in this case (4) follows.
Assume now that for x∗ ∈ E∗ \ {0} relation (5) is fulfilled. As (3) implies

(f + g)∗(x∗) < +∞, we have (f + g)∗(x∗) ∈ R. In this case (x∗, (f + g)∗(x∗)) ∈
epi((f+g)∗)∩({x∗}×R) and so (x∗, (f+g)∗(x∗)) ∈ epi(f∗)+epi(g∗). Thus there exist
(y∗, s) ∈ epi(f∗) and (z∗, t) ∈ epi(g∗) such that y∗+z∗ = x∗ and s+t = (f+g)∗(x∗).
This means that f∗(y∗) + g∗(z∗) ≤ (f + g)∗(y∗ + z∗) which contradicts (3).

”⇐” We prove first that Fenchel duality holds. If (f + g)∗(0) = +∞ this follows
automatically from (1). If (f + g)∗(0) ∈ R, then (0, (f + g)∗(0)) ∈ epi(f∗) + epi(g∗)
and so there exist (−z∗, s) ∈ epi(f∗) and (z∗, t) ∈ epi(g∗) such that s + t = (f +
g)∗(0). Thus f∗(−z∗) + g∗(z∗) ≤ (f + g)∗(0) and the conclusion follows.

Further assume that there exist y∗, z∗ ∈ E∗ such that y∗ + z∗ 6= 0 and (f +
g)∗(y∗ + z∗) = f∗(y∗) + g∗(z∗). As (5) does not hold with equality, we get (f +
g)∗(y∗ + z∗) ∈ R. For all r ∈ R such that (f + g)∗(y∗ + z∗) ≤ r it holds (y∗ +
z∗, r) ∈ (epi(f∗) + epi(g∗)) ∩ ({y∗ + z∗} × R). This implies that (5) is satisfied for
x∗ = y∗ + z∗ 6= 0, a contradiction. ut

Proposition 2 Let f, g : Rn → R be proper convex functions with int(dom(f̄) ∩
dom(ḡ)) 6= ∅. Then the pair f, g satisfies stable Fenchel duality.
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Proof Let x′ ∈ int(dom(f̄) ∩ dom(ḡ)) ⊆ int(dom(f̄)) ∩ int(dom(ḡ)). We have that
int(dom(f̄)) = ri(dom(f̄)) = ri(cl(dom(f̄))) = ri(cl(dom(f))) = ri(dom(f)) and the
same applies for g. This means that x′ ∈ ri(dom(f)) ∩ ri(dom(g)). For all x∗ ∈ Rn

we have dom(f) = dom(f − 〈x∗, ·〉). By the Fenchel duality theorem [3, Theorem
31.1], there exists some y∗ ∈ Rn such that

−(f + g)∗(x∗) = inf
x∈Rn
{f(x)− 〈x∗, x〉+ g(x)}

= −(f − 〈x∗, ·〉)∗(−y∗)− g∗(y∗)
= −f∗(x∗ − y∗)− g∗(y∗).

ut

We now turn to the main result.

Theorem 2 There are no proper convex functions f, g : Rn → R such that the pair
f, g is totally Fenchel unstable.

Proof We assume the contrary, namely that there exist f, g : Rn → R proper convex
functions such that the pair f, g is totally Fenchel unstable. By (3) it follows that
(f +g)∗(x∗) < +∞ for all x∗ ∈ Rn \{0}. As (f +g)∗ is convex, we get (f +g)∗(0) <
+∞. As noticed above we have dom(f) ∩ dom(g) 6= ∅, hence (f + g)∗(0) > −∞.

As noticed above, dom(f) ∩ dom(g) must be nonempty. Choose some x̄ ∈
dom(f)∩dom(g) ⊆ dom(f̄)∩dom(ḡ) and consider L = aff(dom(f̄)∩dom(ḡ)− x̄) =
lin(dom(f̄) ∩ dom(ḡ) − x̄). As int(dom(f̄) ∩ dom(ḡ)) = ∅, by Proposition 2, the
dimension of L is strictly less than n and this means that the orthogonal space to
L, L⊥ is nonzero. Of course, we have

dom(f) ∩ dom(g) ⊆ dom(f̄) ∩ dom(ḡ) ⊆ L+ x̄ (6)

Theorem 1 applies to f̄ and ḡ and we have f∗ = f̄∗ and g∗ = ḡ∗. Hence

epi((f̄ + ḡ)∗) = cl(epi(f∗) + epi(g∗)). (7)

It follows
epi((f + g)∗) ⊇ epi((f̄ + ḡ)∗) ⊇ epi(f∗) + epi(g∗).

Since the pair f, g is totally Fenchel unstable, by Proposition 1, one has that

epi(f + g)∗ ∩ ({0}×R) = epi((f̄ + ḡ)∗)∩ ({0}×R) = (epi(f∗) + epi(g∗))∩ ({0}×R)

and so (f + g)∗(0) = (f̄ + ḡ)∗(0). Taking an element x∗ ∈ L⊥ \ {0} we obtain

(f + g)∗(x∗) = sup
x∈Rn

{〈x∗, x〉 − f(x)− g(x)}
(6)
= sup

x∈L+x̄
{〈x∗, x〉 − f(x)− g(x)}

= 〈x∗, x̄〉+ (f + g)∗(0)

= 〈x∗, x̄〉+ (f̄ + ḡ)∗(0)
(6)
= (f̄ + ḡ)∗(x∗).

(8)

We distinguish two cases:
(a) If epi(f∗)+epi(g∗) is closed, we obtain from (7) and (8), (x∗, (f +g)∗(x∗)) ∈

epi((f̄ + ḡ)∗) = epi(f∗) + epi(g∗) and so there exist (y∗, s) ∈ epi(f∗) and (z∗, t) ∈
epi(g∗) such that y∗ + z∗ = x∗ 6= 0 and s + t = (f + g)∗(x∗). This means that
f∗(y∗) + g∗(z∗) ≤ (f + g)∗(y∗ + z∗). As y∗ + z∗ = x∗ 6= 0 this contradicts (3).

(b) Otherwise, if epi(f∗) + epi(g∗) is not closed, by [3, Corollary 9.1.2], there
exists a direction of recession of epi(f∗) whose opposite direction is a direction of
recession of epi(g∗). This can be expressed as

∃ (x∗, r) 6= 0 : (x∗, r) ∈ 0+ epi(f∗) ∧ (−x∗,−r) ∈ 0+ epi(g∗),
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where r can be chosen nonnegative. It follows x∗ 6= 0, because otherwise we would
have (0,−r) ∈ 0+ epi(g∗) with r > 0. But g is proper and so g∗ never attains −∞.

Choose some y∗ according to (2). Since (f + g)∗(0), f∗(−y∗), g∗(y∗) ∈ R and as
epi(f∗) and epi(g∗) are nonempty convex sets, by [3, Theorem 8.1], it holds

∀λ ≥ 0 : (−y∗, f∗(−y∗)) + λ · (x∗, r) ∈ epi(f∗)
∀µ ≥ 0 : ( y∗, g∗( y∗)) − µ · (x∗, r) ∈ epi(g∗)

Adding both conditions and taking into account (2) we get

∀γ ∈ R : (0, (f + g)∗(0)) + γ · (x∗, r) ∈ epi(f∗) + epi(g∗). (9)

Let γ = 1 in (9). There exist (u∗, s) ∈ epi(f∗) and (v∗, t) ∈ epi(g∗) such that
u∗ + v∗ = x∗ and s+ t = (f + g)∗(0) + r. It follows that

(f + g)∗(x∗) ≤ f∗(u∗) + g∗(v∗) ≤ s+ t = (f + g)∗(0) + r. (10)

Setting γ = −1 in (9), we obtain analogously

(f + g)∗(−x∗) ≤ (f + g)∗(0)− r. (11)

The conditions (10) and (11) must hold with equality. Indeed, adding both inequal-
ities where one of them is strict, we get a contradiction to the fact that (f + g)∗ is
convex. Hence (f + g)∗(u∗+ v∗) = f∗(u∗) + g∗(v∗). This contradicts (3), because of
u∗ + v∗ = x∗ 6= 0. ut

Remark 1 We want to mention that after the paper was submitted Constantin
Zălinescu provided us an alternative proof for the Problem 11.6 posed by Stephen
Simons in [4].

On the other hand we find it worth mentioning the following proof for Theorem
2 proposed by one of the referees of the paper. Assuming that the pair f, g is totally
Fenchel unstable, as noticed, we have dom(f)∩dom(g) 6= ∅. As follows from the proof
of Proposition 2, in case ri(dom(f))∩ ri(dom(g)) 6= ∅, f and g satisfy stable Fenchel
duality and the conclusion follows. Assume now that ri(dom(f)) ∩ ri(dom(g)) = ∅
and consider an element z in dom(f)∩dom(g) = dom(f + g). By [3, Theorem 31.1]
there exists z∗ ∈ Rn \ {0} such that

〈z∗, x〉 ≤ 〈z∗, y〉, ∀x ∈ dom(f) ∀y ∈ dom(g),

which yields

〈z∗, x〉 ≤ 〈z∗, y〉 = 〈z∗, z〉, ∀x ∈ dom(f) ∀y ∈ dom(f) ∩ dom(g).

Thus

f∗(z∗ − y∗) = sup
x∈dom(f)

{〈z∗ − y∗, x〉 − f(x)}

≤ 〈z∗, z〉+ sup
x∈dom(f)

{〈−y∗, x〉 − f(x)} = 〈z∗, z〉+ f∗(−y∗)

and so, using (5),

(f + g)∗(z∗) = sup
y∈dom(f+g)

{〈z∗, y〉 − (f + g)(y)}

= 〈z∗, z〉+ sup
y∈dom(f+g)

{−(f + g)(y)} = 〈z∗, z〉+ (f + g)∗(0)

= 〈z∗, z〉+ f∗(−y∗) + g∗(y∗) ≥ f∗(z∗ − y∗) + g∗(y∗).

Since (z∗ − y∗) + y∗ = z∗ 6= 0, this contradicts the total Fenchel instability of the
pair f, g.
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1. Attouch. H., Brézis, H.: Duality for the sum of convex functions in general Banach spaces. In:
Barroso, J.A. (ed.) Aspects of Mathematics and its Applications, pp. 125–133. North-Holland
Publishing Company, Amsterdam (1986)
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