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Abstract. In this paper we provide some extension results for n-cyclically mono-
tone operators in reflexive Banach spaces by making use of the Fenchel duality. In
this way we give a positive answer to a question posed by Bauschke and Wang in [4].
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1 Introduction and preliminaries

This paper is motivated by the work of Bauschke and Wang [4], where extension
results for n-cyclically monotone operators in Hilbert spaces are delivered. In that
paper the authors provide a new proof of the main result in Voisei’s article [23],
where refinements of the Debrunner-Flor theorem (cf. [12]) for n-cyclically monotone
operators are obtained, for the proof of which techniques relying on fixed point
results are used. Different to the approaches in [23], Bauschke and Wang make
use of the Fitzpatrick function associated with a n-cyclically monotone operator,
well-studied in [1], and of the convex duality theory. The Fitzpatrick function for
a n-cyclically monotone operator has been introduced and investigated in [1] as an
extension of the one considered by Fitzpatrick in [14] for the study of monotone
operators and which played in the last years an important role in the development
of this field.

Since the main result in [4] is stated in Hilbert spaces and its proof uses in a
determinant manner the characteristics of this framework, the authors of the paper
ask in [4, Remark 3.5 (6)] whether or not is it possible to extend the result to Banach
spaces. In the following we give a positive answer to this question in the setting of
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reflexive Banach spaces. Actually we are able to formulate and prove three extension
results, differing in the hypotheses assumed.

The structure of this work is the following. In the next two subsections of the
first section we introduce some elements of convex analysis as well as the notion
of a n-cyclically monotone operator along with some of its properties, respectively.
The second section is dedicated to the formulation of the extension results, while
in the third one we formulate some conclusions and propose some possible further
research.

1.1 Elements of convex analysis

We start by considering a real separated locally convex space X and its continuous
dual space X∗. The notation 〈x∗, x〉 stands for the value of the linear continuous
functional x∗ ∈ X∗ at x ∈ X. The notation p = 〈·, ·〉 is used for the pairing between
X∗ and X. For a subset C of X we denote by clC, coC and coreC its closure,
convex hull and algebraic interior (or core), respectively. Note that if C is a convex
set, then an element x ∈ X belongs to coreC if and only if

⋃
λ≥0 λ(C − x) = X (see

also [21, 26]).
For a function f : X → R = R ∪ {±∞} we denote by dom f = {x ∈ X : f(x) <

+∞} its domain. We call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X.
For a function f : A×B → R, where A and B are nonempty sets, we denote by f>

the transpose of f , namely the function f> : B × A → R, f>(b, a) = f(a, b) for all
(b, a) ∈ B × A. Here we also introduce the projection operator prA : A × B → A,
prA(a, b) = a for all (a, b) ∈ A×B.

The Fenchel-Moreau (Legendre-Fenchel) conjugate of f is the function f ∗ : X∗ →
R defined by

f ∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} ∀x∗ ∈ X∗.

We mention here some important properties of a conjugate function. First of all, we
have the so-called Young-Fenchel inequality

f ∗(x∗) + f(x) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗.

If f is proper, then f is convex and lower semicontinuous if and only if f ∗∗ = f
(see [13, 26]).

For C ⊆ X a given set we denote by δC : X → R, defined by

δC(x) =

{
0, if x ∈ C,
+∞, otherwise

its indicator function and by σC : X∗ → R, defined by σC(x∗) = δ∗C(x∗), its support
function. The barrier cone of C is the set barC := domσC and one has barC =
bar cl coC.

Given a linear continuous operator A : X → Y (Y is another separated locally
convex space), we denote by Im(A) its image-set Im(A) = {Ax : x ∈ X} and

2



by A∗ its adjoint operator A∗ : Y ∗ → X∗, given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 ∀y∗ ∈
Y ∗ ∀x ∈ X. For a function h : X → Y and a set D ⊆ Y we use the notation
h−1(D) = {x ∈ X : h(x) ∈ D}. Having f, g : X → R two functions we consider
also their infimal convolution, which is the function denoted by f�g : X → R,
f�g(x) = infu∈X{f(u)+g(x−u)} for all x ∈ X. We say that the infimal convolution
is exact at x ∈ X if the infimum in its definition is attained. Moreover, f�g is said
to be exact if it is exact at every x ∈ X. When an infimum or a supremum is
attained we write min and max instead of inf, respectively, sup.

Let us recall in the following the classical Fenchel duality result to which we will
refer several times in the next section.

Theorem 1 (Fenchel-Rockafellar duality, [21], [26, Corollary 2.8.5]) Let X and Y
be separated locally convex spaces, A : X → Y a linear and continuous operator and
f : X → R and g : Y → R be two proper and convex functions such that one of the
following regularity conditions is fulfilled:

(RC1) ∃x0 ∈ dom f ∩ A−1(dom g) such that g is continuous at Ax0;

(RC2) X, Y are Fréchet spaces, f and g are lower semicontinuous and
0 ∈ core

(
dom g − A(dom f)

)
.

Then
inf
x∈X
{f(x) + g(Ax)} = max

y∗∈Y ∗
{−f ∗(−A∗y∗)− g∗(y∗)}.

Remark 1 Let us notice that instead of the core, one can use in the above duality
result other generalized interiority notions, like the intrinsic core, or the strong quasi
relative interior. We refer to [6, 9, 15, 25, 26] for further considerations concerning
generalized interior-type regularity conditions ensuring the above duality result. We
remark that in case X, Y are Fréchet spaces, f and g are proper, convex and lower
semicontinuous then (RC1)⇒ (RC2).

Consider in the following that (X, ‖ · ‖) is a real normed space. We say that
f : X → R is coercive if lim‖x‖→+∞ f(x) = +∞. It is obvious that f is coercive if and
only if all level sets [f ≤ λ] := {x ∈ X : f(x) ≤ λ}, λ ∈ R, are bounded. It follows
by [19, Theorem 7A(a)] that if f is a proper, convex, lower semicontinuous and
coercive function, then f ∗ is finite and continuous at 0 (see also [26, Exercise 2.41]).
The function f : X → R is said to be strongly coercive if lim‖x‖→+∞ f(x)/‖x‖ = +∞.
In view of [26, Lemma 3.6.1], if f is a proper, convex, lower semicontinuous and
strongly coercive function, then dom f ∗ = X∗. In this case f ∗ is continuous on X∗

with respect to the strong topology. This is a direct consequence of [13, Corollary
2.5], by noticing that the function f ∗ is lower semicontinuous with respect to the
strong topology of X∗, since it is lower semicontinuous with respect to the weak∗

topology of X∗.
Having an operator B : X → X∗ we call it coercive (strongly coercive) if x 7→

〈Bx, x〉 is a coercive (strongly coercive) function (see, for instance, [27]).
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1.2 n-cyclically monotone operators

We recall in this subsection some basic facts regarding n-cyclically monotone op-
erators. Consider in the following a real Banach space (X, ‖ · ‖) with correspond-
ing dual space X∗. For a set-valued operator S : X ⇒ X∗ we use the notations
G(S) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ S(x)}, D(S) := prXG(S) = {x ∈ X : S(x) 6= ∅}
and R(S) := prX∗G(S) = ∪{S(x) : x ∈ D(S)} for its graph, domain, respectively,
range. The operator S is said to be n-monotone (or n-cyclically monotone), where
n ∈ N, n ≥ 2, if

n∑
i=1

〈s∗i , si+1 − si〉 ≤ 0 ∀(si, s∗i ) ∈ G(S) with sn+1 = s1.

Let us notice that 2-monotonicity is nothing else than the classical monotonicity,
that is 〈x∗−y∗, x−y〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ G(S). The operator S is cyclically
monotone if S is n-cyclically monotone for all n ∈ {2, 3, ...}. The multifunction S
is maximal n-monotone if S is n-monotone and no proper extension (in the sense of
inclusion of graphs) of S is n-monotone. Let us note that S is maximal 2-monotone
exactly when S is maximal monotone (we refer to [18,22] for more on this classical
notion). One of the important results concerning cyclically monotone operators
is due to Rockafellar, who proved that maximal cyclically monotone operators in
Banach spaces are exactly the subdifferential operators of proper, convex and lower
semicontinuous functions (cf. [20, Theorem B]).

Further, let us consider the Fitzpatrick function of order n associated with S
(cf. [1]), FS,n : X ×X∗ → R, which plays an significant role in the next section:

FS,n(x, x∗) = sup
(si,s

∗
i )∈G(S)

i=1,n−1

{
n−2∑
i=1

〈s∗i , si+1 − si〉+ 〈s∗n−1, x− sn−1〉+ 〈x∗, s1〉

}
.

For n = 2 we obtain the classical Fitzpatrick function introduced and investigated
in [14], FS,2 : X ×X∗ → R,

FS,2(x, x
∗) = sup{〈x∗, s〉+ 〈s∗, x〉 − 〈s∗, s〉 : (s, s∗) ∈ G(S)}.

The Fitzpatrick function plays an indisputable role in the modern monotone operator
theory due to the fact that it links the duality results in convex analysis with the
property of maximal monotonicity for operators. We refer to [1, 3, 4, 7, 8, 10, 11, 16,
17,22,24] for more details concerning this fact.

Let us recall in the following some results regarding n-monotone operators.

Proposition 2 (cf. [1, Proposition 2.7]) Let S : X ⇒ X∗ be n-monotone for some
n ∈ {2, 3, ...}, (x, x∗) ∈ X × X∗ and let us define T : X ⇒ X∗ via G(T ) =
G(S) ∪ {(x, x∗)}. Then

T is n-monotone⇔ FS,n(x, x∗) ≤ 〈x∗, x〉. (1)
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The following result was proved in [4] in the setting of Hilbert spaces. By using
the same techniques one can show that it remains valid in the framework of reflexive
Banach spaces.

Proposition 3 (cf. [4, Proposition 2.6]) Let X be a reflexive Banach space and
S : X ⇒ X∗ be a given multifunction. Then

coG(S) ⊆ domF ∗>S,2 ⊆ cl coG(S) ⊆ cl coD(S)× cl coR(S) (2)

and

∀n ∈ {3, 4, ...} coD(S)× coR(S) ⊆ domF ∗>S,n ⊆ cl coD(S)× cl coR(S). (3)

Remark 2 (see also [4, Remark 2.9]) Let S : X ⇒ X∗ be a multifunction, w∗ ∈ X∗
and define S ′ : X ⇒ X∗ by S ′(x) = −w∗ + S(x) for all x ∈ X. One can prove that
S ′ is n-monotone if and only if S is n-monotone. Further, FS′,n(x, x∗) = FS,n(x, x∗+
w∗)− 〈w∗, x〉 and F ∗S′,n(x∗, x) = F ∗S,n(x∗ + w∗, x)− 〈w∗, x〉 for all (x, x∗) ∈ X ×X∗.
Hence, p ≤ F ∗S′,n ⇔ p ≤ F ∗S,n.

2 Extension results

We extend in this section to the setting of reflexive Banach spaces the convex-
analytical approach used by Bauschke and Wang in [4] for obtaining extension results
for n-monotone operators.

Throughout this section X is a reflexive Banach space.

Theorem 4 Let S : X ⇒ X∗ be n-monotone for some n ∈ {2, 3, ...}. Suppose that
G(S) 6= ∅ and

p ≤ F ∗S,n. (4)

Consider a linear, monotone and strongly coercive operator B : X → X∗. Then
for every w∗ ∈ X∗ there exists x ∈ cl coD(S) such that {(x,w∗ − Bx)} ∪ G(S) is
n-monotone.

Proof. As B : X → X∗ is linear and monotone, B is necessarily continuous
(cf. [27, Proposition 26.4]). We denote C := cl coD(S) and prove first the result in
case w∗ = 0. Applying Proposition 2, it is enough to show that there exists x ∈ C
such that FS,n(x,−Bx) ≤ 〈−Bx, x〉, or, equivalently

min
x∈X
{FS,n(x,−Bx) + 〈Bx, x〉+ δC(x)} ≤ 0,

which is nothing else than

max
x∈X
{−FS,n(Ax)− f(x)} ≥ 0, (5)
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where A : X → X ×X∗ and f : X → R are defined by Ax = (x,−Bx) and f(x) =
〈Bx, x〉+ δC(x) for all x ∈ X, respectively. Obviously, A is a linear and continuous
operator and its adjoint operator is A∗ : X∗ × X → X∗, A∗(x∗, x) = x∗ − B∗x for
all (x∗, x) ∈ X∗ ×X. In the hypotheses we work, the function f is proper, convex,
lower semicontinuous and strongly coercive. This means that f ∗ is continuous on
X∗ with respect to its strong topology (see subsection 1.1). By using the duality
result Theorem 1 (notice that (RC1) is fulfilled) and taking into account that X is
reflexive, we get that

inf
(x∗,x)∈X∗×X

{F ∗S,n(x∗, x) + f ∗(−A∗(x∗, x))} = max
x∈X
{−FS,n(Ax)− f(x)}, (6)

hence, in order to show that (5) holds, we only have to prove that

inf
(x,x∗)∈X×X∗

{F ∗S,n(x∗, x) + f ∗(B∗x− x∗)} ≥ 0. (7)

In view of Proposition 3 it remains to show that

F ∗S,n(x∗, x) + f ∗(B∗x− x∗) ≥ 0 ∀(x, x∗) ∈ C ×X∗. (8)

Take an arbitrary (x, x∗) ∈ C ×X∗. Then it holds (cf. (4))

F ∗S,n(x∗, x) + f ∗(B∗x− x∗) ≥ 〈x∗, x〉+ sup
y∈C
{〈B∗x− x∗, y〉 − 〈By, y〉}

≥ 〈x∗, x〉+ 〈B∗x− x∗, x〉 − 〈Bx, x〉
= 0.

Since (x, x∗) ∈ C × X∗ is arbitrary chosen, the inequality (8) is fulfilled and the
conclusion holds for w∗ = 0.

Assume now that w∗ ∈ X∗ is arbitrary. Consider the operator S ′ : X ⇒ X∗

defined by S ′(x) = −w∗ + S(x) for all x ∈ X. By Remark 2, the inequality (4)
holds for S ′, too. Since D(S ′) = D(S), the above considerations provide a point
(x,−Bx) ∈ C ×X∗ such that {(x,−Bx)} ∪G(S ′) is n-monotone, which is nothing
else than {(x,w∗ −Bx)} ∪G(S) is n-monotone. �

Remark 3 (i) We refer to [4, Corollary 2.8] for conditions which ensure the inequal-
ity (4). Let us notice that in case n = 2, the inequality (4) is automatically fulfilled
(cf. [24, Proposition 3.2(v)]).

(ii) In the particular case when X is a Hilbert space and B : X → X is the iden-
tity operator, the above theorem becomes the extension result proved by Bauschke
and Wang in [4, Theorem 3.2].

(iii) One can notice that every linear and strongly monotone operator B : X →
X∗ fulfills the hypotheses of the above theorem. Recall that an operator B : X → X∗

is said to be strongly monotone if there is a constant c > 0 such that for all x, y ∈ X
it holds 〈Bx−By, x− y〉 ≥ c‖x− y‖2 (see, for instance, [27]).
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In the above proof the strong coercivity of the operator B delivers the continuity
of the function f ∗ on the whole space X∗ and thus the Fenchel duality result is
applicable. Let us note that in order to apply this duality result, it is enough to
have a point (x∗0, x0) ∈ dom(F ∗S,n) such that f ∗ is finite and continuous at B∗x0−x∗0
(see Theorem 1). This observation allows us to weaken the strong coercivity of B.
The price we pay for that is the need to impose a further condition in order to
achieve a similar extension result concerning n-monotone operators.

Theorem 5 Let S : X ⇒ X∗ be n-monotone for some n ∈ {2, 3, ...}. Suppose that
G(S) 6= ∅ and

p ≤ F ∗S,n.

Consider a linear, monotone and coercive operator B : X → X∗. Then for every
w∗ ∈ X∗ which fulfills the relation

(0, w∗) ∈ dom(F ∗>S,n)−G(B∗) (9)

there exists x ∈ cl coD(S) such that {(x,w∗ −Bx)} ∪G(S) is n-monotone.

Proof. We follow the lines of the proof of Theorem 4. Consider the case w∗ = 0,
that is there exists (x∗0, x0) ∈ dom(F ∗S,n) such that x∗0 = B∗x0. With the same
notations as above, the function f is coercive, hence f ∗ is finite and continuous at
0 = B∗x0−x∗0. Hence Fenchel duality can be applied (notice that (RC1) in Theorem
1 is also here fulfilled) and the rest of the proof follows as above.

For the case w∗ ∈ X∗ is arbitrary, consider again the operator S ′ : X ⇒ X∗

defined by S ′(x) = −w∗ + S(x) for all x ∈ X. One can prove that dom(F ∗>S′,n) =

dom(F ∗>S,n)− (0, w∗) (see Remark 2) and the conclusion follows. �

Remark 4 The condition (9) can be replaced by the following one (cf. Proposition
3)

(0, w∗) ∈ coG(S)−G(B∗). (10)

In the above results we have imposed conditions on B in order to obtain some
continuity properties of the function f ∗, which are further used for being able to
apply the Fenchel duality result. In the following we would like to notice that one
can also use the interior-type regularity conditions in order to ensure the strong
duality result in (6). In this case, instead of the coercivity of B, we guarantee that

0 ∈ core(dom f ∗ + A∗(domF ∗S,n))

(the notations are the ones from the proof of Theorem 4). Let us define the function
h : X → R, by h(x) = 〈Bx, x〉 for all x ∈ X, where B : X → X∗ is a linear and
monotone operator. Let us notice that under these hypotheses

dom f ∗ = domh∗ + domσC = domh∗ + barC

7



(since f ∗ = h∗�σC , see [26, Theorem 2.8.7]) and

Im(B +B∗) ⊆ domh∗.

We obtain the following extension result (the details of the proof rely on applying
Theorem 1; thus one has to guarantee (RC2) in order to get (6)).

Theorem 6 Let S : X ⇒ X∗ be n-monotone for some n ∈ {2, 3, ...}. Suppose that
G(S) 6= ∅ and

p ≤ F ∗S,n.

Consider a linear and monotone operator B : X → X∗. Then for every

w∗ ∈ core
(
{x∗ −B∗x : (x∗, x) ∈ domF ∗S,n}+ Im(B +B∗) + barD(S)

)
(11)

there exists x ∈ cl coD(S) such that {(x,w∗ −Bx)} ∪G(S) is n-monotone.

Remark 5 (i) By making use of Proposition 3, in the condition (11) one can write
coG(S) in place of domF ∗>S,n and the extension theorem remains valid. In view of
the same result, for n ≥ 3, we have coR(S) × coD(S) ⊆ domF ∗S,n and one gets a
similar statement for those

w∗ ∈ core
(

coR(S)−B∗(coD(S)) + Im(B +B∗) + barD(S)
)
. (12)

(ii) Different to Theorem 4 and Theorem 5 the above theorem allows the formu-
lation of an extension result even if B = 0. In this situation, the conditions (11)
and (12) become

w∗ ∈ core
(
prX∗(domF ∗S,n) + barD(S)

)
(13)

and, respectively,
w∗ ∈ core

(
coR(S) + barD(S)

)
. (14)

Finally, let us observe that (14) implies (13) (cf. Proposition 3). This means that
in case B = 0, for all w∗ ∈ core

(
coR(S) + barD(S)

)
there exists x ∈ cl coD(S)

such that {(x,w∗)} ∪G(S) is n-monotone.

3 Conclusions and further research

We give in this paper a positive answer to Bauschke and Wang’s question (see [4,
Remark 3.5(6)]) concerning whether the convex-analytical approach they propose to
obtain extension results for n-monotone operators can be extended to the framework
of reflexive Banach spaces. We obtain three extension results that rely on the same
technique.

We remark that the linear and monotone operator B : X → X∗ was used in
order to make this extension possible. It could be a topic for further research trying
to find out if the same technique can be adapted to the case B : X ⇒ X∗ is a
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monotone linear relation. Let us recall that B is said to be linear relation if G(B)
is a linear subspace of X ×X∗. The adjoint of B, also denoted by B∗, is defined by

G(B∗) = {(x, x∗) ∈ X ×X∗ : (x∗,−x) ∈ (G(B))⊥},

where for any subset C of a topological vector space Y with continuous dual space
Y ∗, C⊥ is the annihilator of C, defined as usual by C⊥ := {y∗ ∈ Y ∗ : 〈y∗, c〉 =
0 ∀c ∈ C}. In case B is a monotone linear relation the function qB : X → R,

qB(x) =

{
1
2
〈Bx, x〉, if x ∈ D(B),

+∞, otherwise,

is single-valued and convex (cf. [5, Proposition 2.3]). It would be interesting to
know if 2qB can be used instead of x 7→ 〈Bx, x〉 (see the proof of Theorem 4) in
order to obtain similar extension results for n-monotone operators, this time when B
is a monotone linear relation. For more on monotone linear relations we refer to [2,5].

Acknowledgements. The authors are thankful to an anonymous reviewer for
valuable remarks which improved the quality of the paper.
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