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Abstract

Convergence rates results for Tikhonov regularization of nonlinear ill-posed op-

erator equations in abstract function spaces require the handling of both smoothness

conditions imposed on the solution and structural conditions expressing the charac-

ter of nonlinearity. Recently, the distinguished role of variational inequalities holding

on some level sets was outlined for obtaining convergence rates results. When lower

rates are expected such inequalities combine the smoothness properties of solution

and forward operator in a sophisticated manner. In this paper, using a Banach space

setting we are going to extend the variational inequality approach from Hölder rates

to more general rates including the case of logarithmic convergence rates.
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1 Introduction

With the monograph [8] Charles Groetsch presented an extremely well-readable in-
troduction to the theory of Tikhonov regularization of ill-posed operator equations in
Hilbert spaces. For linear ill-posed problems in that book the ingredients and conditions
for obtaining convergence rates, the role of source conditions and the phenomenon of sat-
uration are outlined. The ill-posedness of a linear operator equation describing an inverse
problem with ‘smoothing’ forward operator in Hilbert spaces corresponds with the fact
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that the Moore-Penrose inverse of the forward operator is unbounded and only densely
defined on the image space. In that sense, solving linear ill-posed problems based on
noisy data can be considered as the application of that unbounded operator to such data
elements. For further theoretic extensions we refer to the recent monograph [9]. In 1989
Engl, Kunisch, and Neubauer published a seminal paper [5] on convergence rates re-
sults for the Tikhonov regularization of nonlinear ill-posed problems in the Hilbert space
setting (see also [4, Chapter 10]). After the turn of the millennium, motivated by spe-
cific applications, for example in imaging, there occurred numerous publications on the
Banach space treatment of linear and nonlinear operator equations including convergence
rates results (see, e.g., [1, 7, 20, 23, 24, 27]). Initiated by the paper [2] of Burger and
Osher Bregman distances were systematically exploited for evaluating the regularization
error. Because of a completely different methodology for obtaining convergence rates in
(generalized) Tikhonov regularization one can distinguish between low rate results up to
Bregman errors of order O(δ) for the noise level δ > 0 and enhanced rate results up to the
Bregman saturation order O(δ4/3). Recently, in the papers [13, 16], moreover in [6, 12], in
the thesis [22] and in the monograph [25] by Scherzer et al. the distinguished role of
variational inequalities for proving low rate convergence rates of Hölder type was worked
out. This paper tries to extend the variational inequality approach to obtain more general
Bregman rates of form O(ϕ(δ)) with concave index functions ϕ. This includes the case of
logarithmic convergence rates (see the papers [17, 18] by Hohage and Kaltenbacher).

The paper is organized as follows: In Section 2 we present for a nonlinear ill-posed
problem in Banach spaces a general setting of Tikhonov type variational regularization
with convex stabilizing penalty functional and a misfit functional built by a strictly con-
vex index function of the residual norm. A linear combination of both functionals with
some positive regularization parameter as multiplier forms the Tikhonov functional. This
functional is to be minimized for obtaining stable approximate solutions of the nonlinear
ill-posed problem under consideration. The standing assumptions of the setting and as-
sertions on weak convergence and level sets are also outlined in Section 2. The subsequent
Section 3 discusses structural conditions on the nonlinearity of the problem and source
conditions as well as approximate source conditions imposed on the solution. The first
main result, yielding an extension of the variational inequality approach from convergence
rates results of Hölder type to results for general convex index functions, is formulated
and proven as Theorem 4.3 in Section 4. As an essential ingredient the proof applies the
generalization (4.12) of Young’s inequality. The second main result of the paper is given
in the concluding Section 5 by the couple of Theorems 5.1 and 5.2, that provide suffi-
cient conditions for obtaining the general variational inequalities required in Theorem 4.3.
The canonical source condition for low rates in Banach spaces and distance functions for
measuring its violation form the basis for that conditions.

2 Problem setting and assumptions

In this paper, ill-posed operator equations

F (x) = y (2.1)
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are under consideration, where the operators F : D(F ) ⊆ X → Y with domain D(F ) are
mapping between real Banach spaces X and Y , respectively. For some noise level δ ≥ 0
let yδ denote noisy data of the exact right-hand side y = y0 ∈ F (D(F )) with

‖yδ − y‖Y ≤ δ . (2.2)

Based on that data we consider stable approximate solutions xδα as minimizers of the
(generalized) Tikhonov type functional

T δα(x) := ψ(‖F (x) − yδ‖Y ) + αΩ(x) (2.3)

with a misfit function ψ : [0,∞) → [0,∞) and a penalty functional Ω : D(Ω) ⊆ X →
[0,∞). The set of admissible elements for the minimization of (2.3) is the intersection
D := D(F ) ∩ D(Ω) of the occurring domains.

Index functions play a central role in our considerations. Originally coming from the
theory of variable Hilbert scales and expressing the function-valued index of such a scale
element (see [10, 14]), we use this concept as follows:

Definition 2.1 We call a real function η : [0,∞) → [0,∞) (and also its restriction to
any segment [0, c] (0 < c < ∞)) index function if it is continuous and strictly increasing
with η(0) = 0.

Note that for index functions η, η1, η2 also the inverse function η−1 and the antideriva-

tive Θ(s) :=
s
∫

0

η(t)dt are index functions, furthermore also all positive linear combinations

λ1η1 + λ2η2 (λ1, λ2 ≥ 0, λ2
1 + λ2

2 > 0) and compositions η1 ◦ η2.

Throughout this paper we make the following assumptions:

Assumption 2.2

1. X and Y are Banach spaces with topological duals X∗ and Y ∗, respectively, where
‖ · ‖X, ‖ · ‖Y and 〈·, ·〉X∗,X and 〈·, ·〉Y ∗,Y denote the associated norms and dual
pairings. In X and Y we consider in addition to the strong convergence → based
on norms the weak convergence ⇀ based on the weak topology.

2. F : D(F ) ⊆ X → Y is weakly-weakly sequentially continuous and D(F ) is weakly
sequentially closed, i.e.,

xk ⇀ x in X with xk ∈ D(F ) =⇒ x ∈ D(F ) and F (xk) ⇀ F (x) in Y.

3. The set D(Ω) is convex and the functional Ω is convex and weakly sequentially lower
semi-continuous.

4. The domain D := D(F ) ∩ D(Ω) is non-empty.

5. For every α > 0, c ≥ 0, and for the exact right-hand side y = y0 of (2.1), the sets

Mα(c) :=
{

x ∈ D : T 0
α(x) ≤ c

}

(2.4)

are weakly sequentially pre-compact in the following sense: every sequence {xk}∞k=1

in Mα(c) has a subsequence, which is weakly convergent in X to some element in
X.
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6. ψ : [0,∞) → [0,∞) is an index function with the property that there exist numbers
ā = ā(ψ) > 0, b̄ = b̄(ψ) > 0 fulfilling

ψ(u+ v) ≤ ā ψ(u) + b̄ ψ(v) for all u, v ∈ [0,∞). (2.5)

One should notice that item 6 in Assumption 2.2 is fulfilled in case ψ : [0,∞) → [0,∞)
is a p-homogeneous (with p > 0) and convex index function. We recall that ψ is said to
be p-homogeneous (with p > 0) whenever we have ψ(tx) = tpψ(x) for all x ∈ [0,∞) and
all t ≥ 0.

Under the stated assumptions existence and stability of regularized solutions xδα can
be shown in the lines of the proof of [25, Theorems 3.22 and 3.23] (see also [13, Section
3]).

For the convex functional Ω with subdifferential ∂Ω regularization errors in a Banach
space setting are frequently measured by means of Bregman distances

Dξ(x̃, x) := Ω(x̃) − Ω(x) − 〈ξ, x̃− x〉X∗,X , x̃ ∈ D(Ω) ⊆ X ,

at x ∈ D(Ω) ⊆ X and ξ ∈ ∂Ω(x) ⊆ X∗. The set

DB(Ω) := {x ∈ D(Ω) : ∂Ω(x) 6= ∅}
is called Bregman domain. An element x† ∈ D is called an Ω-minimizing solution to (2.1)
if

Ω(x†) = min {Ω(x) : F (x) = y, x ∈ D} <∞ .

Such Ω-minimizing solutions exist under Assumption 2.2 if (2.1) has a solution x† in D.
This can be shown in analogy to the proof of [25, Lemma 3.2].

We close this section by proving that the regularized solutions associated with data
possessing a sufficiently small noise level δ belong to a level set like the one in (2.4), pro-
vided that the regularization parameters α = α(δ) are chosen such that weak convergence
to Ω-minimizing solutions x† is enforced.

Proposition 2.3 Consider an a priori choice α = α(δ) > 0, 0 < δ < ∞, for the
regularization parameter in (2.3) depending on the noise level δ such that

α(δ) → 0 and
ψ(δ)

α(δ)
→ 0. (2.6)

Provided that (2.1) has a solution x† in D then under Assumption 2.2 every sequence
{xn}∞n=1 := {xα(δn)}δn}∞n=1 of regularized solutions corresponding to a sequence {yδn}∞n=1

of data with limn→∞ δn = 0 has a subsequence {xnk
}∞k=1, which is weakly convergent in X,

i.e. xnk
⇀ x† and its limit x† is an Ω-minimizing solution of (2.1) with

Ω(x†) = limk→∞ Ω(xnk
).

For given αmax > 0, let x† denote an Ω-minimizing solution of (2.1). If we set

ρ = αmax(1 + Ω(x†)), (2.7)

then we have x† ∈ Mαmax
(ρ) and there exists some δmax > 0 such that

xδα(δ) ∈ Mαmax
(ρ) for all 0 < δ ≤ δmax. (2.8)
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Proof: The first part of the result can be proved in the same manner as [25, Theorem
3.26]. Here the properties of the index function ψ play a determinant role.

We come now to the second part of the above statement and consider an αmax > 0.
Because of (2.6) there exists some δmax > 0 such that α(δ) ≤ αmax and ψ(δ)

α(δ)
≤ min{1

2
, 1

2b̄
}

for all 0 < δ ≤ δmax. In the following we write for simplicity α instead of α(δ).

For all 0 < δ ≤ δmax, by (2.5), we have

T 0
αmax

(xδα) = ψ(‖F (xδα) − y‖Y ) + αmaxΩ(xδα) ≤ āψ(‖F (xδα) − yδ‖Y ) + b̄ψ(δ) + αmaxΩ(xδα)

= ā[ψ(‖F (xδα) − yδ‖Y ) + αΩ(xδα)] + b̄ψ(δ) + (αmax − āα)Ω(xδα)

≤ āT δα(x
†) + b̄ψ(δ) + (αmax − āα)Ω(xδα) ≤ (ā+ b̄)ψ(δ) + āαΩ(x†) + (αmax − āα)Ω(xδα).

On the other hand, from T δα(x
δ
α) ≤ T δα(x

†) it yields Ω(xδα) ≤ ψ(δ)
α

+ Ω(x†). Consequently,

T 0
αmax

(xδα) ≤ (ā+ b̄)ψ(δ) + āαΩ(x†) +
(αmax

α
− ā

)

ψ(δ) + (αmax − āα)Ω(x†)

= b̄ψ(δ) +
αmax

α
ψ(δ) + αmaxΩ(x†) ≤ αmax(1 + Ω(x†)) = ρ.

3 Source conditions and structural conditions of non-

linearity for the Banach space setting

There are two ingredients influencing the convergence rates for Tikhonov regularized so-
lutions in the case of nonlinear ill-posed problems. On the one hand, the solution smooth-
ness, if possible expressed by source conditions for x†, plays an important role. On the
other hand, the structure of nonlinearity of F in a neighborhood of x† must be in line
with the solution smoothness in order to obtain a certain rate. In this context, we are
going to restrict the situation a little bit more as follows:

Assumption 3.1

1. F,Ω,D, X and Y satisfy the Assumption 2.2.

2. Let x† ∈ D be an Ω-minimizing solution of (2.1).

3. The operator F is Gâteaux differentiable in x† with the Gâteaux derivative
F ′(x†) ∈ L(X, Y ) (L(X, Y ) denotes the space of bounded linear operators from X
to Y ).

4. The functional Ω is Gâteaux differentiable in x† with the Gâteaux derivative
ξ = Ω′(x†) ∈ X∗, i.e., x† ∈ DB(Ω) and the subdifferential ∂Ω(x†) = {ξ} is a
singleton.
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In the case of Hilbert spaces X and Y by spectral theory one can consider bounded
linear operators η(F ′(x†)∗F ′(x†)) ∈ L(X,X) for any index function η based on the fact
that with the Hilbert space adjoint F ′(x†)∗ ∈ L(Y,X) of F ′(x†) ∈ L(X, Y ) the operators
F ′(x†)∗F ′(x†) ∈ L(X,X) are non-negative and self-adjoint and this property carries over
to the operators η(F ′(x†)∗F ′(x†)). For Banach spaces X and Y , however, only the Banach
space adjoint F ′(x†)∗ ∈ L(Y ∗, X∗) of F ′(x†) is available, but F ′(x†)∗F ′(x†) and hence
η(F ′(x†)∗F ′(x†)) are not well-defined. In contrast to the Hilbert space setting, where
generalized source conditions

ξ = η(F ′(x†)∗F ′(x†))v, v ∈ X , (3.1)

can be exploited for arbitrary index functions η, in our setting only the source condition

ξ = F ′(x†)∗w, w ∈ Y ∗ , (3.2)

expressing a medium smoothness of ξ, has a canonical character. We will consider this as
an upper benchmark source condition, here accepting that only low and medium conver-
gence rates for the regularized solutions are under consideration. For expressing higher
solution smoothness with respect to the stabilizing functional Ω duality mappings can
be helpful admitting enhanced convergence rates. For such kind of results we refer for
example to the papers [11, 20, 21], meanwhile noticing that the higher source conditions
used there seem to be a little bit artificial. Searching for low rate results in Banach spaces,
with solution smoothness limited by (3.2), our main drawback is the non-existence of gen-
eralized source conditions (3.1) with concave index functions η such that

√
t = O(η(t))

as t→ 0. This class of index functions includes for 0 < ν ≤ 1/2 the monomials

η(t) = tν (t ≥ 0) (3.3)

and for all µ > 0 the family of logarithmic functions

η(t) =

{

0 (t = 0)

[log(1/t)]−µ (0 < t ≤ e−µ−1)
. (3.4)

Since Schock’s paper [26] we know that convergence rates for regularized solutions can be
arbitrarily low. This corresponds with arbitrarily weak solution smoothness. For example
the very low multiple logarithmic rates for associated generalized source conditions with
index function η(t) = log log ... log(1/t) really occur in applications of the Hilbert space
theory.

One way of compensating the Banach space drawback of missing generalized source
conditions consists in applying the method of approximate source conditions (see [3, 12])
whenever ξ fails to satisfy the benchmark source condition (3.2) for every w ∈ Y . This
method is based on the utilization of the obviously non-increasing distance function
d : [0,∞) → [0,∞) defined as

d(R) := inf{‖ξ − F ′(x†)∗w‖X∗ : w ∈ Y ∗, ‖w‖Y ∗ ≤ R} (R ≥ 0) . (3.5)

We notice that this function is continuous, because it is convex. The latter is a consequence
of the convexity of the function

Ξ(R,w) =

{

‖ξ − F ′(x†)∗w‖X∗ , if ‖w‖Y ∗ ≤ R,
∞, otherwise,
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which implies the convexity of its corresponding infimal value function d(R) = inf
w∈Y ∗

Ξ(R,w).

The desired limit condition
lim
R→∞

d(R) = 0 (3.6)

is fulfilled if and only if ξ ∈ R(F ′(x†)∗)
‖·‖X∗

. By a separation theorem one can prove that
the latter is guaranteed provided F ′(x†)∗∗ is injective. For A ∈ L(X, Y ) we denote by
A∗∗ ∈ L(X∗∗, Y ∗∗), defined by 〈A∗∗x∗∗, y∗〉Y ∗∗,Y ∗ = 〈x∗∗, A∗y∗〉X∗∗,X∗ for x∗∗ ∈ X∗∗ and
y∗ ∈ Y ∗, its bi-adjoint operator. In reflexive Banach spaces X and Y this means assuming
that F ′(x†) is injective.

The following lemma will be used in order to guarantee that the distance function
defined in (3.5) strictly decreases to zero as R→ ∞.

Lemma 3.2 Let X, Y be reflexive Banach spaces and A ∈ L(X, Y ) an injective operator.
For ξ ∈ X∗ we assume that ξ /∈ R(A∗). Then the distance function d : [0,+∞) →
(0,+∞), defined by

d(R) = inf{‖ξ − A∗w‖X∗ : w ∈ Y ∗, ‖w‖Y ∗ ≤ R},

is strictly decreasing and satisfies the limit condition (3.6).

Proof: The limit condition (3.6) follows from ξ ∈ R(A∗)
‖·‖X∗

, which is a consequence of
the injectivity of A when X and Y are reflexive Banach spaces. We still have to show the
strict decay of d(R) with respect to R. First let us notice that for all R ≥ 0 there exists
w̄ ∈ Y ∗, ‖w̄‖Y ∗ ≤ R, such that d(R) = ‖ξ − A∗w̄‖X∗ . This is because of the fact that
the dual norm function is weak∗ lower semicontinuous and the unit ball in Y ∗ is weak∗

compact (Theorem of Alaoglu-Bourbaki).

Let R ≥ 0. Next we prove that if we have for w̄ ∈ Y ∗, ‖w̄‖Y ∗ ≤ R, the equation
d(R) = ‖ξ − A∗w̄‖X∗ , then one necessarily must have ‖w̄‖Y ∗ = R. In case R = 0, this
fact is obvious. Suppose now that R > 0. Indeed, in this case w̄ is an optimal solution of
the convex optimization problems

inf
‖w‖Y ∗−R≤0

‖ξ − A∗w‖X∗ .

As the Slater constraint qualification is fulfilled (for w′ = 0 we have ‖w′‖Y ∗ − R < 0),
there exists a Lagrange multiplier λ̄ ≥ 0 such that (see, for instance, [29, Theorem 2.9.2])

λ̄(‖w̄‖Y ∗ −R) = 0

and
0 ∈ ∂(‖ξ − A∗(·)‖X∗ + λ̄(‖ · ‖Y ∗ −R))(w̄).

If we prove that λ̄ > 0, then the assertion follows. We assume the contrary. This means
that

0 ∈ ∂(‖ξ − A∗(·)‖X∗)(w̄).

Next we evaluate the above subdifferential. Let L : X∗ → R, L(w) = ‖ξ +w‖X∗ . Since L
is continuous, by [29, Theorem 2.8.2] we have that

∂(‖ξ − A∗(·)‖X∗)(w̄) = ∂(L ◦ (−A∗))(w̄) = −A(∂L(−A∗w̄)).
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As A is injective,
0 ∈ ∂L(−A∗w̄) = ∂‖ · ‖X∗(ξ −A∗w̄). (3.7)

For the subdifferential of the norm we have the following expressions

∂‖ · ‖X∗(v) = {u ∈ X : ‖u‖X ≤ 1}, if v = 0,

while
∂‖ · ‖X∗(v) = {u ∈ X : ‖u‖X = 1, 〈v, u〉X∗,X = ‖v‖X∗}, if v 6= 0.

By (3.7) it follows that only the first situation is possible. Consequently, ξ − A∗w̄ = 0.
But this is a contradiction to ξ /∈ R(A∗). Thus λ̄ > 0 and, so, ‖w̄‖Y ∗ = R.

Let us prove now that d is strictly decreasing. To this aim take R1, R2 ∈ [0,+∞) such
that 0 ≤ R1 < R2. Then d(R1) ≥ d(R2). Assume that d(R1) = d(R2). Then there exists
w1, w2 ∈ Y ∗, ‖w1‖Y ∗ = R1, ‖w2‖Y ∗ = R2, such that d(R1) = d(R2) = ‖ξ − A∗w1‖X∗ =
‖ξ−A∗w2‖X∗ . As ‖w1‖Y ∗ < R2, this leads to a contradiction to the above considerations.
Consequently, d(R1) > d(R2) and this concludes the proof.

Let us mention that the speed of the decay of d(R) → 0 as R → ∞ under the condition

ξ ∈ R(F ′(x†)∗)
‖·‖X∗ \R(F ′(x†)∗) expresses for the element ξ the degree of violation of (3.2)

and thus it can be handled as a replacement information for the missing index function η
from (3.1) in the Banach space setting.

As an adaption of the local degree of nonlinearity introduced for a Hilbert space
setting in [15, Definition 1] to the Banach space situation with Bregman distance in [16,
Definition 3.2] it has been suggested a definition, which attains here under Assumption 3.1
the form:

Definition 3.3 Let 0 ≤ c1, c2 ≤ 1 and 0 < c1 + c2 ≤ 1. We define F to be nonlinear of
degree (c1, c2) at x† for the Bregman distance Dξ(·, x†) of Ω with ξ = Ω′(x†) if there is a
constant K > 0 such that

∥

∥F (x) − F (x†) − F ′(x†)(x− x†)
∥

∥

Y
≤ K

∥

∥F (x) − F (x†)
∥

∥

c1

Y
Dξ(x, x

†) c2 (3.8)

for all x ∈ Mαmax
(ρ).

In [12] it was shown that the method of approximate source conditions yields conver-
gence rates for Tikhonov regularized solutions xδα minimizing (2.3) with misfit function
ψ(t) = tp (p > 1) whenever we have c1 > 0 in the degree of nonlinearity, even if ξ fails to
satisfy the benchmark source condition (3.2). The corresponding rates depend on the dis-
tance function (3.5). If c1 > 0 and the source condition (3.2) holds, then one even obtains
Hölder convergence rates with Hölder exponents κ = c1

1−c2
(see [16]). If the nonlinearity

of F at x† is such that (3.8) can only be satisfied for c1 = 0, then rate results are only
known if, additionally, c2 = 1 and (3.2) under the smallness condition K‖w‖Y ∗ < 1 is
valid (see [25]). As already mentioned in [18] for the Hilbert space setting, there are no
rate assertions for c1 = 0 and c2 = 1, if ξ fails to satisfy the benchmark source condition
(3.2). We even conjecture that convergence rate results, in principle, cannot be proven
whenever the structure of nonlinearity of F at x† is too rough and moreover ξ fails to
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satisfy the benchmark source condition (3.2). But Definition 3.3, with focus on powers
with exponents c1 and c2, seems to be inappropriate for characterizing that roughness
clear enough. Precisely, we will introduce and analyze in this paper a weaker condition
for the structure of nonlinearity as

∥

∥F ′(x†)(x− x†)
∥

∥

Y
≤ C σ(

∥

∥F (x) − F (x†)
∥

∥

Y
) (3.9)

for all x ∈ Mαmax
(ρ) with some constant C > 0 and some index function σ. We will

exploit this new condition in Section 5 by using variational inequalities as main tool. In
this context, let us note that the validity of (3.9) for σ(t) = tc1 and 0 < c1 ≤ 1 implies
with the triangle inequality that we have

∥

∥F (x) − F (x†) − F ′(x†)(x− x†)
∥

∥

Y
≤

∥

∥F ′(x†)(x− x†)
∥

∥

Y
+

∥

∥F (x) − F (x†)
∥

∥

Y

≤ C
∥

∥F (x) − F (x†)
∥

∥

c1

Y
+

∥

∥F (x) − F (x†)
∥

∥

Y
≤ K

∥

∥F (x) − F (x†)
∥

∥

c1

Y

on the associated level sets, fact that shows a degree (c1, 0) of nonlinearity. As the
condition (3.9) is typical for low order convergence rates, concave index functions σ are of
main interest in this context. The concept of roughness mentioned in the conjecture above
can be rendered more precisely now. We conjecture that the structure of nonlinearity of F
at x† is too rough if there is no index function σ such that (3.9) is valid. The considerations
in Section 5 will assume that (3.9) is satisfied for some index function σ. This situation
characterizes a boundary layer between the case c1 > 0 well-discussed in the literature
and the case of too much roughness for the structure of nonlinearity. We will prove in the
sequel that for the boundary layer situations convergence rates results still do exist. It is
future work to exhibit examples for which the structural condition (3.9) is just typical.

4 Variational inequalities and convergence rates

In recent publications (see [12, 13, 16, 25]) variational inequalities of the form

〈

ξ, x† − x
〉

X∗,X
≤ β1Dξ(x, x

†) + β2

∥

∥F (x) − F (x†)
∥

∥

κ

Y
for all x ∈ Mαmax

(ρ) (4.1)

with two multipliers 0 ≤ β1 < 1, β2 > 0 and an exponent κ > 0 have been exploited for
obtaining convergence rates in Tikhonov regularization in Banach spaces, where in the
functional (2.3) to be minimized the strictly convex misfit function ψ(t) = tp (p > 1) was
used. We repeat in our context the Proposition 3.3 from [16]:

Proposition 4.1 Set ψ(t) := tp (p > 1) in (2.3) and assume that F,Ω,D, X, Y, x†
and ξ satisfy the Assumption 3.1. If there exist constants 0 ≤ β1 < 1, β2 > 0, and
0 < κ ≤ 1 such that the variational inequality (4.1) holds with ρ from (2.7), then we have
the convergence rate

Dξ(x
δ
α(δ), x

†) = O (δκ) as δ → 0 (4.2)

for an a priori parameter choice α(δ) ≍ δp−κ.
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The proof of this proposition is based on the inequality T δα(x
δ
α) ≤ T δα(x

†) that holds for
all regularized solutions xδα and on the variant

a b ≤ ap1 +
bp2

p1
p2/p1p2

(a, b ≥ 0, p1, p2 > 1 with
1

p1
+

1

p1
= 1) (4.3)

of Young’s inequality. Note that due to Proposition 4.3 in [16] the case κ > 1 is not of
interest, since (4.1) with κ > 1 implies the singular case ξ = 0.

For obtaining more general low order convergence rates we change (4.1) as follows:
We assume that there holds a variational inequality

〈

ξ, x† − x
〉

X∗,X
≤ β1Dξ(x, x

†) + β2 ϕ(
∥

∥F (x) − F (x†)
∥

∥

Y
) for all x ∈ Mαmax

(ρ)

(4.4)
with two multipliers 0 ≤ β1 < 1, β2 > 0 and an index function ϕ.

As outlined comprehensively in [16] for the monomial case ϕ(t) = tκ (0 < κ ≤ 1)
we have a variational inequality (4.4) if and only if the interplay between the solution
smoothness expressed by conditions imposed on ξ and the structural condition for the
nonlinearity of F at x† is appropriate. The most clearly represented assertion in this
context was formulated for ϕ(t) = t (see [7], [22, Section 1.6] and [25, Section 3.2]), where
the variational inequality (4.4) and the canonical source condition (3.2) are equivalent.
On the other hand, in order to obtain (3.2) from (4.4), it is sufficient to guarantee the
existence of a constant Ĉ > 0 such that ϕ(t) ≤ Ĉ t for all t in a right neighborhood of
zero. In this and in the following section, however, we focus on concave index functions ϕ
in (4.4), which in general do not imply (3.2), and their correspondence with the functions
ψ in the misfit functional of (2.3) and σ in the structural condition (3.9).

Assumption 4.2 Regarding the functions ψ from (2.3) and ϕ from (4.4) we make the
following assumptions:

1. ψ and ϕ are index functions which are twice differentiable on the interior of their
domains.

2. ψ is strictly convex with lim
s→0+

ψ′(s) = 0 and ϕ is concave.

Under Assumption 4.2 we can define another index function f as follows:

f(0) = 0 and f(s) =

[

ψ′

ϕ′
◦ ϕ−1

]

(s) when s > 0. (4.5)

Let us first show that f is well-defined, by proving that ϕ′(s) > 0 when s > 0. Indeed,
suppose that there exists s̄ > 0 in the interior of the domain of ϕ such that ϕ′(s̄) = 0.
Take t > s̄. By the concavity assumption one has

0 = ϕ′(s̄)(t− s̄) ≥ ϕ(t) − ϕ(s̄),

which contradicts the fact that ϕ is strictly increasing.

By employing similar arguments, since ψ is convex, whenever s > 0 one has that
ψ′(s) > 0 and so f(s) > 0.
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In the following we prove that f is an index function. For showing the strict mono-
tonicity of f take 0 < s1 < s2. Then ϕ−1(s1) < ϕ−1(s2). As ψ is strictly convex, ψ′ is
strictly increasing and so 0 < ψ′(ϕ−1(s1)) < ψ′(ϕ−1(s2)). On the other hand, since ϕ is
concave, ϕ′ is non-increasing, consequently, ϕ′(ϕ−1(s1)) ≥ ϕ′(ϕ−1(s2)) > 0. From here
one has f(s1) < f(s2).

As the continuity of f on (0,+∞) is automatically satisfied, one only needs to show
that lim

s→0+
f(s) = 0. But, this limit condition is a consequence of lim

s→0+
ψ′(s) = 0 and of

the monotonicity of [ϕ−1]′, taking into account that we can write f in the form

f(s) = ψ′(ϕ−1(s))[ϕ−1]′(s) (s > 0) .

Hence f is an index function and so is the antiderivative

H(s) :=

s
∫

0

f(τ)dτ . (4.6)

For s > 0 it follows from (4.5) that ψ(s) =
ϕ(s)
∫

0

f(t)dt + C. As ψ(0) = 0, this yields

C = 0 and consequently

ψ(s) = H(ϕ(s)) =

ϕ(s)
∫

0

f(t)dt .

Now aspects of the interplay between ψ, ϕ, f and H can be written in different manner
by the equations

ψ = H ◦ ϕ, H = ψ ◦ ϕ−1

and
f(s) = [ψ ◦ ϕ−1]′(s) (s > 0),

where the last equation yields (4.5) by differentiation and use of the chain rule. Further,
let

G(s) :=

s
∫

0

f−1(τ)dτ (4.7)

be the antiderivative of the inverse function to f .

Now we are ready to present the main convergence rate result of this paper:

Theorem 4.3 Assume that F,Ω,D, X, Y, x†, ξ and ψ satisfy Assumption 3.1 and assume
that ψ and ϕ satisfy Assumption 4.2 which ensures the existence of an index function f
defined by (4.5). Let there exist constants 0 ≤ β1 < 1, β2 > 0, such that the variational
inequality (4.4) holds with ρ from (2.7). Then we have the convergence rate of Tikhonov
regularized solutions

Dξ(x
δ
α(δ), x

†) = O(ϕ(δ)) as δ → 0 (4.8)

for an a priori parameter choice

α(δ) =
1

āβ2
f(ϕ(δ)) , (4.9)

where the constant ā is from (2.5).
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Proof: Throughout this proof ā and b̄ are the constants introduced in formula (2.5).
For all α > 0 regularized solutions xδα minimizing (2.3) have to satisfy the inequality
T δα(x

δ
α) ≤ T δα(x

†). Using the definition of the Bregman distance this implies for the noise
model (2.2) the estimate

ψ(
∥

∥F (xδα) − yδ
∥

∥

Y
) + αDξ(x

δ
α, x

†) ≤ ψ(δ) + α
(

Ω(x†) − Ω(xδα) +Dξ(x
δ
α, x

†)
)

. (4.10)

Moreover, from the variational inequality (4.4) we obtain that

Ω(x†) − Ω(xδα) +Dξ(x
δ
α, x

†) = −
〈

ξ, xδα − x†
〉

X∗,X

≤ β1 Dξ(x
δ
α, x

†) + β2 ϕ(
∥

∥F (xδα) − F (x†)
∥

∥

Y
).

Therefore from (4.10) it follows that

ψ(‖F (xδα) − yδ‖Y ) + αDξ(x
δ
α, x

†) ≤ ψ(δ) + αβ1Dξ(x
δ
α, x

†) + αβ2ϕ(‖F (xδα) − F (x†)‖Y )

(4.11)

= ψ(δ) + αβ1Dξ(x
δ
α, x

†) +
1

ā
(αāβ2)ϕ(‖F (xδα) − F (x†)‖Y ) .

Using the generalization of Young’s inequality

a b ≤
a

∫

0

f(t)dt+

b
∫

0

f−1(τ)dτ (a, b ≥ 0) (4.12)

(see, for instance, [19]) with the index function f we obtain for sufficiently small α > 0

(αāβ2)ϕ(‖F (xδα) − F (x†)‖Y ) ≤
ϕ(‖F (xδ

α)−F (x†)‖Y )
∫

0

f(t)dt+

αāβ2
∫

0

f−1(τ)dτ

(4.13)

= H(ϕ(‖F (xδα) − F (x†)‖Y ) +G(αāβ2) = ψ(‖F (xδα) − F (x†)‖Y ) +G(αāβ2).

From (4.11) and (4.13) it follows that

ψ(‖F (xδα) − yδ‖Y ) + αDξ(x
δ
α, x

†)

≤ ψ(δ) + αβ1Dξ(x
δ
α, x

†) +
1

ā
ψ(‖F (xδα) − F (x†)‖Y ) +

1

ā
G(αāβ2)

≤ ψ(δ) + αβ1Dξ(x
δ
α, x

†) + ψ(‖F (xδα) − yδ‖Y ) +
b̄

ā
ψ(δ) +

1

ā
G(αāβ2).

Consequently,

Dξ(x
δ
α, x

†) ≤ 1

(1 − β1)ā

(ā + b̄)ψ(δ) +G(αāβ2)

α
, (4.14)

for sufficiently small α > 0.

Next we prove that we obtain for α(δ) := 1
āβ2

f(ϕ(δ)) the estimate

(ā + b̄)ψ(δ) +G(α(δ)āβ2)

α(δ)
≤ (ā+ b̄+ 1)āβ2ϕ(δ) (4.15)
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for sufficiently small δ > 0. Indeed, (4.15) is equivalent to

(ā+ b̄+ 1)āβ2ϕ(δ)α(δ) − (ā+ b̄)ψ(δ) −G(α(δ)āβ2) ≥ 0 (4.16)

for sufficiently small δ > 0. Let

K(δ) := (ā+ b̄+1)āβ2ϕ(δ)α(δ)−(ā+ b̄)ψ(δ)−G(α(δ)āβ2) (δ > 0), K(0) := lim
δ→0+

K(δ) .

Regarding lim
δ→0+

α(δ) = 0 for (4.9) one has K(0) = 0. We prove that K ′(δ) > 0, for

sufficiently small δ > 0, and this will have as consequence the fact that K(δ) > K(0) = 0,
for sufficiently small δ > 0. Indeed, one has for sufficiently small δ > 0

K ′(δ) = (ā+ b̄+ 1)ϕ′(δ)f(ϕ(δ)) + (ā+ b̄+ 1)ϕ(δ)f ′(ϕ(δ))ϕ′(δ)

−(ā + b̄)ϕ′(δ)f(ϕ(δ)) − f−1(f(ϕ(δ)))f ′(ϕ(δ))ϕ′(δ)

= ϕ′(δ)f(ϕ(δ)) + (ā+ b̄)ϕ(δ)f ′(ϕ(δ))ϕ′(δ) > 0,

since by construction f has a positive derivative f ′(s) for all s > 0. Thus (4.15) holds
and this yields the estimate

Dξ(x
δ
α(δ), x

†) ≤ c0ϕ(δ)

for sufficiently small δ > 0 and some constant c0 > 0.

Example 4.4 We conclude this section with the example situation of monomials (power
functions) ϕ(t) = tκ (0 < κ ≤ 1) and ψ(t) = tp (p > 1) discussed in [16] for which
Proposition 4.1 was repeated above. Then our assumptions are satisfied and we have

H(t) = tp/κ, f(t) =
p

κ
t(p−κ)/κ, G(t) ∼ tp/(p−κ), α(δ) ∼ δp−κ, Dξ(x

δ
α(δ), x

†) = O(δκ) .

We should mention here that α(δ) ∼ G−1(ψ(δ)) for the example with monomials.
Hence the regularization parameter is chosen such that both terms in the numerator of
the second fraction in (4.14) are equilibrated up to constant. Such equilibration yields
frequently order optimal convergence rates in regularization.

Furthermore, we would like to notice that one comes to the same conclusion also in
the case 0 < κ < p ≤ 1 discussed in [6]. The reason therefore lays in the fact that f
remains an index function and, consequently, Theorem 4.3 is still applicable, even if in
this situation ψ fails to be strictly convex. In fact, in order to obtain the convergence rate
(4.8) in Theorem 4.3 one needs only to guarantee that the function f defined as in (4.5)
is an index function which is differentiable on the interior of its domain. This happens
when Assumption 4.2 is satisfied, but can be the case also in other settings.

5 Variational inequalities based on canonical source con-

ditions and approximate source conditions

In this section we are going to formulate sufficient conditions for variational inequalities
(4.4) when only some weak structural assumption of the form (3.9) on the nonlinearity of
F with concave index function σ is imposed.
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Theorem 5.1 Assume that F,Ω,D, X, Y, x†, ξ and ψ satisfy the Assumption 3.1.
Let ξ satisfy the canonical source condition (3.2) and the structural condition (3.9) with
some index function σ and some constant C > 0 for all x ∈ Mαmax

(ρ). Then a variational
inequality (4.4) holds with two multipliers 0 ≤ β1 < 1, β2 > 0 and with the index function
ϕ = σ.

Proof: Owing to (3.2) and (3.9) we can estimate for all x ∈ Mαmax
(ρ) as

〈

ξ, x† − x
〉

X∗,X
=

〈

F ′(x†)∗w, x† − x
〉

X∗,X
=

〈

w, F ′(x†)(x† − x)
〉

Y ∗,Y

≤ ‖w‖Y ∗

∥

∥F ′(x†)(x− x†)
∥

∥

Y
≤ C ‖w‖Y ∗σ(

∥

∥F (x) − F (x†)
∥

∥

Y
) .

This, however, yields the variational inequality (4.4) with β1 = 0 < 1, β2 = C ‖w‖Y ∗ and
with ϕ = σ, where σ is the index function from (3.9). This proves the theorem.

Theorem 5.2 Assume that X, Y are reflexive Banach spaces, F,Ω,D, X, Y, x†, ξ and ψ
satisfy the Assumption 3.1, and F ′(x†) is an injective operator. Let ξ /∈ R(F ′(x†)∗).
Moreover, assume that the structural condition (3.9) is fulfilled with some index function
σ and some constant C > 0 for all x ∈ Mαmax

(ρ) and that the Bregman distance is locally
q-coercive with 2 ≤ q <∞, i.e. there is some constant cq > 0 such that

Dξ(x, x
†) ≥ cq

∥

∥x− x†
∥

∥

q

X
(5.1)

holds for all x ∈ Mαmax
(ρ). Then a variational inequality (4.4) holds for all

x ∈ Mαmax
(ρ) with two multipliers 0 ≤ β1 < 1, β2 > 0 and with the index function

ϕ(0) = 0, ϕ(t) = [d (Ψ−1(σ(t)))]
q∗

(t > 0), where 1
q

+ 1
q∗

= 1 and Ψ : (0,∞) → (0,∞),

Ψ(R) := d(R)q∗

R
.

Proof: Instead of (3.2) we have here for all R > 0 the equations ξ = F ′(x†)∗wR + rR
with ‖wR‖Y ∗ ≤ R and ‖rR‖X∗ = d(R). By using (3.9) we get for all x ∈ Mαmax

(ρ) the
following estimate
〈

ξ, x† − x
〉

X∗,X
=

〈

F ′(x†)∗wR + rR, x
† − x

〉

X∗,X
=

〈

wR, F
′(x†)(x† − x)

〉

Y ∗,Y
+

〈

rR, x
† − x

〉

X∗,X

≤ R
∥

∥F ′(x†)(x− x†)
∥

∥

Y
+ d(R)

∥

∥x− x†
∥

∥ ≤ RC σ(
∥

∥F (x) − F (x†)
∥

∥

Y
) + d(R)

∥

∥x− x†
∥

∥ .

Now for q and q∗ adjoint exponents with 1/q + 1/q∗ = 1 the inequality
〈

ξ, x† − x
〉

X∗,X
≤ RC σ(

∥

∥F (x) − F (x†)
∥

∥

Y
) + c−1/q

q d(R)Dξ(x, x
†)1/q

obtained from (5.1) can be further handled by using Young’s inequality in the standard
form

a b ≤ ap1

p1
+
bp2

p2
(a, b ≥ 0, p1, p2 > 1 with

1

p1
+

1

p1
= 1)

when setting a := Dξ(x, x
†), b := c

−1/q
q d(R), p1 := q, p2 := q∗. In that way we derive for

all R > 0

〈

ξ, x† − x
〉

X∗,X
≤ RC σ(

∥

∥F (x) − F (x†)
∥

∥

Y
) +

1

q
Dξ(x, x

†) +
c
−q∗/q
q

q∗
d(R)q

∗

.
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The continuity of d carries over to the auxiliary function Ψ : (0,∞) → (0,∞), Ψ(R) =
d(R)q∗

R
, which is continuous and strictly decreasing, and which fulfills limR→0 Ψ(R) = ∞

and limR→∞ Ψ(R) = 0. Its inverse Ψ−1 : (0,∞) → (0,∞) is also continuous and strictly
decreasing and for all t > 0 the equation Ψ(R) = σ(t) has a uniquely determined solution
R > 0. Note that for rates results only sufficiently small t > 0 are of interest. Setting
R := Ψ−1

(

σ(
∥

∥F (x) − F (x†)
∥

∥

Y
)
)

we get some constant Ĉ > 0 such that the variational
inequality

〈

ξ, x† − x
〉

X∗,X
≤ 1

q
Dξ(x, x

†) + Ĉ
[

d
(

Ψ−1(σ(
∥

∥F (x) − F (x†)
∥

∥

Y
))

)]q∗

holds for all x ∈ Mαmax
(ρ). Now the function defined by ζ(s) := d ◦ Ψ−1 ◦ σ(s) when

s > 0 with extension ζ(0) := 0 is an index function. Namely, ζ is continuous on (0,∞),
since d is continuous. Moreover, the limit limR→∞ d(R) = 0 implies limt→0 ζ(t) = 0 and
this ensures the continuity of ζ in 0. On the other hand, by Lemma 3.2 one has that d is
strictly decreasing. Thus ζ is strictly increasing, and hence an index function.

Because of 0 < 1
q
< 1 this proves the theorem, since ϕ := ζq

∗

, namely ϕ(0) = 0 and

ϕ(t) = [d (Ψ−1(σ(t)))]
q∗

when t > 0, is an index function, too.

Remark 5.3 One can easily see that the rate function [d ◦ Ψ−1 ◦ σ]
q∗

(t) in the variational
inequality of Theorem 5.2 tends to zero as t→ 0 slower than the associated rate function
σ(t) in the variational inequality of Theorem 5.1. Namely, taking into account the one-to-

one correspondence between large R > 0 and small t via Ψ(R) = σ(t) and Ψ(R) = d(R)q∗

R

we have for the quotient function

σ(t)

[d (Ψ−1(σ(t)))]q
∗ =

Ψ(R)

d(R)q∗
=

1

R
→ 0 as R → ∞, resp. t→ 0 .

As a consequence the situation of approximate source conditions occurring in Theorem 5.2
leads to lower convergence rates of Tikhonov regularization obtained from Theorem 4.3
than the situation of canonical source conditions that appears in Theorem 5.1.

Example 5.4 Concerning logarithmic rates, as an example, we are going to conclude
the paper with a brief study that outlines the specific potential of variational inequalities
(4.4) for extracting both solution smoothness of ξ and nonlinearity conditions on F at x†

in one index function ϕ which determines the convergence rate. Let in this example with
some C > 0

ϕ(t) =

{

0 (t = 0)

C [log(1/t)]−µ (0 < t ≤ e−µ−1)
(5.2)

hold. By Theorem 4.3 we immediately derive for all µ > 0 the logarithmic convergence
rate

Dξ(x
δ
α(δ), x

†) = O
(

[log(1/δ)]−µ
)

as δ → 0 , (5.3)

which is slower than every power rate (4.2) for any κ > 0. Now the function (5.2) with
slow decay to zero as t → 0 can be a consequence of two completely different causes
characterized by the following two situations (I) and (II), respectively:
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(I) Let σ = ϕ, i.e., a very weak logarithmic structural condition (3.9) is valid, and
assume that the canonical source condition (3.2) holds, which expresses in our con-
text the strong smoothness assumption on the solution. Then by Theorem 5.1 in
connection with Theorem 4.3 we obtain the logarithmic convergence rate (5.3).

(II) Let σ(t) = t, i.e., a structural condition (3.9) is satisfied, which is the strongest in
our sense. However, the canonical source condition (3.2) is strongly violated, which
is expressed by a logarithmic decay

d(R) = (logR)−ν

of the corresponding distance function for some ν > 0 and all sufficiently large
R > R > 0. However, since we have for all such R and for ε > 0 a constant K > 0
with

Ψ(R) =
1

R(logR)νq∗
≥ K

R1+ε
,

this implies Ψ−1(t) ≥ K̂t−1/(1+ε) for some constant K̂ > 0 and sufficiently small
t > 0. Hence, by Theorem 5.2 the function ϕ in (4.4) attains the form (5.2) with
µ = νq∗.
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