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Abstract. In this note we correct and improve a zero duality gap result in extended monotropic

programming given by Bertsekas in [1].
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1 Introduction and preliminaries

In this paper we deal with the extended monotropic programming problem (for the origins of which we

refer to [2-3])

(P ) inf
m∑
i=1

fi(xi)

s.t. (x1, ..., xm) ∈ S

and its dual problem

(D) sup
m∑
i=1

−f∗i (x∗i ),

s.t. (x∗1, ..., x
∗
m) ∈ S⊥

where Xi are separated locally convex spaces, fi : Xi → R are proper and convex functions, i = 1, ...,m,

and S ⊆
∏m
i=1Xi is a linear closed subspace such that

∏m
i=1 dom fi ∩ S 6= ∅.

The same primal-dual pair has been recently investigated by Bertsekas in [1] in the case Xi =

Rni , ni ≥ 1, i = 1, ...,m. In [1, Proposition 4.1], under the supplementary assumption that the

functions fi are lower semicontinuous on dom fi, a zero duality gap result is stated for (P ) and (D),

provided that for every (x1, ..., xm) ∈
∏m
i=1 dom fi ∩ S and every ε > 0 the set

T (x, ε) := S⊥ +
m∏
i=1

∂εfi(xi)

is closed. The proof of this statement, which represents the main result in that article, applies in an

ingenious way the ε-descent method.

In this note we furnish first an example which shows that this zero duality gap statement is false and

indicate the place where the error occurs. This will be the topic of the forthcoming section. In Section

3 we prove that under alternative, still weak, topological assumptions for the functions fi, i = 1, ...,m,

the zero duality gap statement in discussion turns out to be true and use to this aim some convex
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analysis specific techniques based on subdifferential calculus, whereby a determinant role is played by

a generalization of the Hiriart-Urruty–Phelps formula. Recall that by zero duality gap we name the

situation when v(P ) = v(D), where v(P ) and v(D) denote the optimal objective values of the primal

and dual problem, respectively.

In the following we introduce and recall some notions and results in order to make the paper

self-contained. Having a separated locally convex vector space X, we denote by X∗ its topological

dual space and assume throughout the paper that this is endowed with the weak∗ topology. By

〈x∗, x〉 = x∗(x) we denote the value of the continuous linear functional x∗ ∈ X∗ at x ∈ X. Given a

subset U of X, by cl(U) we denote its closure. By δU : X → R = R∪ {±∞}, defined by δU (x) = 0 for

x ∈ U and δU (x) = +∞, otherwise, we denote its indicator function, while by σU : X∗ → R, defined

by σU (x∗) = supx∈U 〈x∗, x〉, its support function. We call a set K ⊆ X cone if for all λ ≥ 0 and all

k ∈ K one has λk ∈ K. For a given cone K ⊆ X we denote by K∗ = {x∗ ∈ X∗ : 〈x∗, k〉 ≥ 0 ∀k ∈ K}

its dual cone and for S ⊆ X a linear subspace we denote by S⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0 ∀x ∈ S} its

orthogonal space. For U, V ⊆ X two given sets, the projection operator prU : U × V → U is defined as

prU (u, v) = u for all (u, v) ∈ U × V .

Having a function f : X → R we use the classical notations for its domain dom f = {x ∈ X :

f(x) < +∞}, its epigraph epi f = {(x, r) ∈ X×R : f(x) ≤ r} and its conjugate function f∗ : X∗ → R,

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}. Regarding a function and its conjugate we have the Young-

Fenchel inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉 for all x ∈ X and x∗ ∈ X∗. We call f proper if f(x) > −∞

for all x ∈ X and dom f 6= ∅.
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For ε ≥ 0, if f(x) ∈ R the ε-subdifferential of f at x is

∂εf(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε ∀y ∈ X},

while if f(x) = ±∞ we take by convention ∂εf(x) := ∅. We denote by ∂f(x) := ∂0f(x) the (convex)

subdifferential of f at x. The ε-subdifferential of f at x is always a convex and closed set. If f is a

proper function, then for x ∈ dom f , x∗ ∈ X∗ and ε ≥ 0 one has

f(x) + f∗(x∗) ≤ 〈x∗, x〉+ ε⇔ x∗ ∈ ∂εf(x)⇒ x ∈ ∂εf∗(x∗).

If 0 ≤ ε ≤ η it holds ∂εf(x) ⊆ ∂ηf(x) and ∩µ>ε∂µf(x) = ∂εf(x) for all x ∈ X. Assuming that f is a

proper and convex function and x ∈ dom f , then (see, for instance, [4, Theorem 2.4.4(iii)]) f is lower

semicontinuous at x if and only if ∂εf(x) 6= ∅ for all ε > 0. Therefore, if f∗(x∗) ∈ R and ε > 0 one has

∂εf
∗(x∗) 6= ∅.

If K is a nonempty cone, then δ∗K = σK = δ−K∗ and ∂εδK(0) = −K∗ for all ε ≥ 0, while, if S is a

nonempty linear subspace, then δ∗S = σS = δS⊥ and ∂εδS(x) = S⊥ for all ε ≥ 0 and all x ∈ S.

The lower semicontinuous hull of f : X → R is the function cl f : X → R which has as epigraph

cl(epi f). One always has that dom f ⊆ dom(cl f) ⊆ cl(dom f) and f∗ = (cl f)∗. Assuming that f is

convex, f∗ is proper if and only if cl f is proper, the latter being a sufficient condition for f∗∗ = cl f .

Given the proper functions f, g : X → R, their infimal convolution is the function f�g : X → R ,

(f�g)(x) = inf{f(x−y) + g(y) : y ∈ X}. If f, g : X → R are proper, convex and lower semicontinuous

functions with dom f ∩ dom g 6= ∅, then one has the Moreau-Rockafellar formula (f + g)∗ = cl(f∗�g∗)

(see [5]). For the convex analysis notions and results introduced in this section we refer to [4,6].

We would like to close this section by pointing out that, for g :
∏m
i=1Xi → R, g(x1, ..., xm) =
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∑m
i=1 fi(xi), the primal problem (P ) can be equivalently written as

inf
x=(x1,...,xm)∈

mQ
i=1

Xi

[g(x) + δS(x)] = −(g + δS)∗(0).

Its Fenchel dual problem is

sup
x∗=(x∗1 ,...,x

∗
m)∈

mQ
i=1

X∗i

[−g∗(x∗)− δ∗S(−x∗)] = −(g∗�δ∗S)(0)

and, since for x∗ = (x∗1, ..., x
∗
m) ∈

∏m
i=1X

∗
i one has g∗(x∗1,

. .., x∗m) =
∑m
i=1 f

∗
i (x∗i ), this is further

equivalent to

sup
(x∗1 ,..,x

∗
m)∈S⊥

−
m∑
i=1

f∗i (x∗i ),

being nothing else than the dual problem (D). Thus one can notice that for the primal-dual pair in

discussion we always have weak duality, i.e. v(P ) ≥ v(D).

2 Examples

In the beginning of this section we give the announced example, which shows that under the hypotheses

considered in [1] the duality statement [1, Proposition 4.1] may fail.

Example 2.1 Consider the convex set C = {0}×[3,∞)∪int(R2
+) and define the functions f1 : R2 →

R by f1(u, v) = v+δC(u, v) and f2 : R→ R, f2(w) = δR−(w). We are in the case m = 2, n1 = 2, n2 = 1.

We further take S = {(u, v, w) ∈ R3 : u = w}, which is a linear subspace of R3 and show that the

assumptions of [1, Proposition 4.1] are fulfilled. The functions f1, f2 are proper and convex, f1 is lower

semicontinuous on dom f1 = C, f2 is lower semicontinuous (on R) and the feasible set of the primal

problem is (dom f1 × dom f2) ∩ S = {0} × [3,∞)× {0}.
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Next we prove that for all ε > 0 and all a ≥ 3, the set T ((0, a, 0), ε) = S⊥ + ∂εf1(0, a)× ∂εf2(0) is

closed. Let us fix some arbitrary elements ε > 0 and a ≥ 3. One can easily see that S⊥ = {(x∗, 0,−x∗) :

x∗ ∈ R} and ∂εf2(0) = R+. We claim that

∂εf1(0, a) = R− ×
[
1− ε

a
, 1
]
. (1)

According to the definition of the ε-subdifferential, an element (u∗, v∗) belongs to ∂εf1(0, a) if and only

if

v − a ≥ u∗u+ v∗(v − a)− ε ∀(u, v) ∈ C. (2)

We show first that R− × [1− ε/a, 1] ⊆ ∂εf2(0, a). Take u∗ ≤ 0 and v∗ ∈ [1− ε/a, 1]. Then for each

(u, v) ∈ C we get

u∗u+ v∗(v − a)− ε ≤ u∗u+ v∗v − a+ ε− ε = u∗u+ (v∗ − 1)v + v − a ≤ v − a,

hence (u∗, v∗) ∈ ∂εf2(0, a). For the opposite inclusion, take an arbitrary element (u∗, v∗) ∈ ∂εf2(0, a).

One can easily derive from (2) that

v − a ≥ u∗u+ v∗(v − a)− ε ∀(u, v) ∈ R2
+. (3)

From here one has that u∗ ≤ 0. By taking u := 0 in (3) we obtain

(v∗ − 1)(v − a) ≤ ε ∀v ≥ 0, (4)

thus v∗ ≤ 1. For v := 0 in (4) we get a(v∗ − 1) ≥ −ε, that is v∗ ≥ 1 − ε/a. In conclusion, (1) holds.

As a consequence we get

T ((0, a, 0), ε) = {(x∗, 0,−x∗) : x∗ ∈ R}+ R− ×
[
1− ε

a
, 1
]
× R+ = R×

[
1− ε

a
, 1
]
× R,
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which is a closed set. Hence all the hypotheses of [1, Proposition 4.1] are fulfilled.

However, there is a nonzero duality gap between the primal-dual pair (P )− (D). Indeed,

v(P ) = inf
(u,v,w)∈S

{f1(u, v) + f2(w)} = inf
(u,v,w)∈{0}×[3,∞)×{0}

v = 3,

while,

v(D) = sup
(u∗,v∗,w∗)∈S⊥

{−f∗1 (u∗, v∗)− f∗2 (w∗)} = sup
u∗∈R
{−f∗1 (u∗, 0)− f∗2 (−u∗)}

= sup
u∗≤0

{
− sup

(u,v)∈C
{u∗u− v}

}
= 0.

Consequently, v(D) < v(P ), although the assumptions of [1, Proposition 4.1] are fulfilled.

Let us point out in the following where the error that occurred in [1] comes from. The author

claims that the formula σ∂εf(x) = f ′ε(x, ·) is valid, where f is a proper and convex function which is

lower semicontinuous on dom f , x ∈ dom f and ε > 0 (cf. [1, Section 3], see [1, relation (15)]). Here

f ′ε(x, y) = infα>0(f(x+αy)−f(x)+ε)/α denotes the ε-directional derivative of f at x in the direction

y ∈ X. He decisively uses this formula in his argumentation, however, this formula holds in case f is

proper, convex and lower semicontinuous (on the whole space) (see [4, Theorem 2.4.11] and [7, page

220]). Otherwise it can fail, as the following example shows.

Example 2.2 Consider X a separated locally convex space and K ⊆ X a nonempty convex cone

which is not closed and define f = δK . The function f is proper, convex and lower semicontinuous

on dom f = K. Take u ∈ cl(K) \ K and ε > 0. One can easily show that f ′ε(0, u) = +∞ and

∂εf(0) = −K∗, hence σ∂εf(0)(u) = δcl(K)(u) = 0 < f ′ε(0, u).

One of the main ingredients of the ε-descent method, on which the proof of the duality result [1,

Proposition 4.1] relies, is [1, Proposition 3.1]. In its proof the formula discussed above is used, too. Let
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us recall this result: if fi : Rn → R are proper and convex functions, i = 1, ...,m, and x ∈
⋂m
i=1 dom fi

is a vector such that fi(x) = (cl fi)(x) for all i = 1, ...,m, then for all ε > 0 the inclusion

∂ε(f1 + ...+ fm)(x) ⊆ cl
(
∂εf1(x) + ...+ ∂εfm(x)

)

holds. We show in the following example that this is not always the case.

Example 2.3 Take m = n = 2, K = int(R2
+) ∪ {(0, 0)}, S = R × {0} and define the functions

f1 = δK and f2 = δS , which are proper and convex functions such that dom f1 ∩ dom f2 = {(0, 0)}.

The vector x = (0, 0) satisfies the property fi(0, 0) = (cl fi)(0, 0), i = 1, 2. Take an arbitrary ε > 0.

One can show that f1 + f2 = δ{(0,0)}, hence

∂ε(f1 + f2)(0, 0) = R2.

Further, ∂εf1(0, 0) = −K∗ = −R2
+ and ∂εf2(0, 0) = S⊥ = {0} × R, thus

cl
(
∂εf1(0, 0) + ∂εf2(0, 0)

)
= R− × R.

Thus the assertion of [1, Proposition 3.1] does not hold in this particular case.

Finally, let us mention that the results stated in [1] in finite dimensional spaces become valid if the

functions fi, i = 1, ...,m, are assumed to be proper, convex and lower semicontinuous on the whole

space. In the next section we prove, by using a different technique than in [1], that these results remain

true in a more general context and under weaker assumptions.
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3 Zero duality gap in extended monotropic programming

For the beginning we provide a generalization of the Hiriart-Urruty–Phelps formula (see [8, Theorem

2.1] and [4, Corollary 2.6.7]). We refer the reader to [9, Theorem 13], [10, Proposition 2] and [11,

Theorem 4] for other generalizations of this result. The proof of the following theorem is an adaptation

of the one given in [8, Theorem 2.1].

Theorem 3.1 Let X be a separated locally convex space and f, g : X → R two convex functions

such that cl f and cl g are proper and the following equality holds

cl(f + g) = cl f + cl g. (5)

Then for all x ∈ X and all ε ≥ 0 we have

∂ε(f + g)(x) =
⋂
η>0

cl

 ⋃
ε1,ε2≥0

ε1+ε2=ε+η

(
∂ε1f(x) + ∂ε2g(x)

) . (6)

Proof. Take x ∈ X and ε ≥ 0. The inclusion ” ⊇ ” is always true (even in the case when (5) is

not fulfilled), since
⋃

ε1,ε2≥0
ε1+ε2=ε+η

(
∂ε1f(x) + ∂ε2g(x)

)
⊆ ∂ε+η(f + g)(x). Take now an arbitrary element

x∗0 ∈ ∂ε(f + g)(x). This is equivalent to

(f + g)∗(x∗0) + (f + g)(x) ≤ 〈x∗0, x〉+ ε. (7)

We apply the Moreau-Rockafellar formula to the proper, convex and lower semicontinuous functions

cl f and cl g and obtain (by using (5))

(f + g)∗ =
(

cl(f + g)
)∗ = (cl f + cl g)∗ = cl

(
(cl f)∗�(cl g)∗

)
= cl(f∗�g∗). (8)
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Thus by (7) and (8) it holds (clφ)(x∗0) ≤ r, where φ : X∗ → R is defined by φ(x∗) = (f∗�g∗)(x∗) −

〈x∗, x〉 and r := ε− (f + g)(x) ∈ R. Let us fix an arbitrary η > 0. The condition (clφ)(x∗0) ≤ r implies

that

x∗0 ∈ cl
(
{x∗ ∈ X∗ : φ(x∗) ≤ r + η/2}

)
. (9)

Let us show that for x∗ ∈ X∗ we have

{x∗ ∈ X∗ : φ(x∗) ≤ r + η/2} ⊆
⋃

ε1,ε2≥0
ε1+ε2=ε+η

(
∂ε1f(x) + ∂ε2g(x)

)
. (10)

Indeed, if x∗ ∈ X∗ satisfies φ(x∗)− r ≤ η/2, then

inf
x∗1 ,x

∗
2∈X

∗

x∗1+x∗2=x∗

{
f∗(x∗1) + f(x)− 〈x∗1, x〉+ g∗(x∗2) + g(x)− 〈x∗2, x〉

}
< ε+ η, (11)

hence there exist x∗1, x
∗
2 ∈ X∗, x∗1 + x∗2 = x∗, such that

f∗(x∗1) + f(x)− 〈x∗1, x〉+ g∗(x∗2) + g(x)− 〈x∗2, x〉 < ε+ η. (12)

We define ε1 := f∗(x∗1) + f(x) − 〈x∗1, x〉 and ε2 := ε + η −
(
f∗(x∗1) + f(x) − 〈x∗1, x〉

)
. By using the

Young-Fenchel inequality and (12) we easily derive that ε1, ε2 ≥ 0, ε1 + ε2 = ε+ η, x∗1 ∈ ∂ε1f(x) and

x∗2 ∈ ∂ε2g(x), hence (10) holds. Combining (9) and (10) we get the desired conclusion. �

Remark 3.1 (i) Let us notice that the condition (5) is automatically fulfilled if we assume that f

and g are lower semicontinuous.

(ii) If f (or g) is finite and continuous at x0 ∈ dom f ∩ dom g, then (5) holds (cf. [9, Lemma 15]).

(iii) Let us mention that the condition (5) was used also by other authors (see [9,12-13]) in order

to generalize duality results or subdifferential formulae for convex functions which are not necessarily

lower semicontinuous (see also [10-11] for some nonconvex versions of these results).
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The formula of the ε-subdifferential of the infimal convolution of two functions, given in the propo-

sition below, will play a decisive role in the proof of the main result of this section.

Proposition 3.1 (cf. [4, Corollary 2.6.6]) Let X be a separated locally convex space and f1, f2 :

X → R two proper and convex functions for which

∃x∗ ∈ X∗,∃α ∈ R,∀x ∈ X,∀i ∈ {1, 2} : fi(x) ≥ 〈x∗, x〉+ α. (13)

If (f1�f2)(x) ∈ R and ε ≥ 0, then

∂ε(f1�f2)(x) =
⋂
η>0

⋃
y∈X,ε1,ε2≥0
ε1+ε2=ε+η

(
∂ε1f1(x− y) ∩ ∂ε2f2(y)

)
. (14)

Remark 3.2 One can easily show that condition (13) in the above statement is nothing else than

dom f∗1 ∩ dom f∗2 6= ∅.

Next we present the main result of the paper, which is a zero duality gap theorem for extended

monotropic programming problems in infinite dimensional spaces stated under weak topological as-

sumptions.

Theorem 3.2 Let Xi be separated locally convex spaces, fi : Xi → R proper and convex functions,

i = 1, ...,m, S ⊆
∏m
i=1Xi a linear closed subspace such that

∏m
i=1 dom fi ∩S 6= ∅ and g :

∏m
i=1Xi → R

defined by g(x1, ..., xm) =
∑m
i=1 fi(xi). Suppose further that cl fi, i = 1, ...,m, are proper functions

and g(x) = (cl g)(x) for all x ∈ dom(cl g) ∩ S. If for all (x1, ..., xm) ∈
∏m
i=1 dom fi ∩ S and all ε > 0

the set

S⊥ +
m∏
i=1

∂εfi(xi)

is closed, then v(P ) = v(D).
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Proof. If v(P ) = −∞, then v(P ) = v(D) holds by weak duality, therefore we consider in the following

the case v(P ) ∈ R (that v(P ) < +∞ is guaranteed by the feasibility assumption). By the hypotheses

one has that (cl g)(x1, ..., xm) =
∑m
i=1(cl fi)(xi) for all (x1, ..., xm) ∈

∏m
i=1Xi, thus cl g is a proper

function. Let us show now that

cl(δS + g) = δS + cl g. (15)

The inequality ”≥” is always fulfilled, hence it is enough to prove that cl(δS + g)(x) ≤ (δS + cl g)(x)

for all x ∈ dom(cl g) ∩ S. Taking an arbitrary x ∈ dom(cl g) ∩ S we have

cl(δS + g)(x) ≤ (δS + g)(x) = g(x) = (δS + cl g)(x) ≤ cl(δS + g)(x),

thus (15) holds. The following inclusions (which can be proved by using the Young-Fenchel inequality)

will be useful in what follows

∂εg(x1, ..., xm) ⊆
m∏
i=1

∂εfi(xi) ⊆ ∂mεg(x1, ..., xm) ∀(x1, ..., xm) ∈
m∏
i=1

Xi ∀ε ≥ 0. (16)

We prove next that (δ∗S�g∗)(0) ∈ R and ∂ε(δ∗S�g∗)(0) 6= ∅ for all ε > 0.

Take an arbitrary ε > 0. Since (δS + g)∗(0) = −v(P ) ∈ R, we get ∂ε/m(δS + g)∗(0) 6= ∅. Let us

choose an arbitrary x ∈ ∂ε/m(δS + g)∗(0). Thus

(δS + g)∗(0) + (δS + g)∗∗(x) ≤ ε/m.

Since cl(δS + g) is a proper function, we get

(δS + g)∗(0) + cl(δS + g)(x) ≤ ε/m,

which implies

(δS + g)∗(0) + δS(x) + (cl g)(x) ≤ ε/m,
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hence x ∈ dom(cl g) ∩ S. Consequently, (cl g)(x) = g(x), x ∈ dom g ∩ S and

(δS + g)∗(0) + δS(x) + g(x) ≤ ε/m,

which is nothing else than 0 ∈ ∂ε/m(δS + g)(x). Take an arbitrary η > 0. We further apply Theorem

3.1 and obtain

∂ε/m(δS + g)(x) ⊆ cl

 ⋃
ε1,ε2≥0

ε1+ε2=(ε+η)/m

(
∂ε1δS(x) + ∂ε2g(x)

) .

Since for ε1 ≥ 0 we have ∂ε1δS(x) = S⊥, we get

∂ε/m(δS + g)(x) ⊆ cl

 ⋃
ε2≥0

ε2≤(ε+η)/m

(
S⊥ + ∂ε2g(x)

) = cl
(
S⊥ + ∂(ε+η)/mg(x)

)
.

If we consider x = (x1, ..., xm), where xi ∈ Xi, i = 1, ...,m, by (16) we have

cl
(
S⊥ + ∂(ε+η)/mg(x)

)
⊆ cl

(
S⊥ +

m∏
i=1

∂(ε+η)/mfi(xi)
)

= S⊥ +
m∏
i=1

∂(ε+η)/mfi(xi) ⊆ S⊥ + ∂ε+ηg(x),

where we used the fact that the set S⊥ +
∏m
i=1 ∂(ε+η)/mfi(xi) is closed. All together it follows that

0 ∈ S⊥ + ∂ε+ηg(x). Hence there exists y∗0 ∈ ∂ε+ηg(x) such that −y∗0 ∈ S⊥. Thus −y∗0 ∈ ∂δS(x) and

y∗0 ∈ ∂ε+ηg(x) and from here we deduce that x ∈ ∂(δ∗S)(−y∗0) ∩ ∂ε+ηg∗(y∗0). Hence 0 = −y∗0 + y∗0 ∈

dom δ∗S + dom g∗ = dom(δ∗S�g∗) and (since η > 0 is arbitrary)

x ∈
⋂
η>0

⋃
y∗,ε1,ε2≥0
ε1+ε2=ε+η

(
∂ε1δ

∗
S(−y∗) ∩ ∂ε2g∗(y∗)

)
.

As dom(cl g)∩S 6= ∅, the condition (13) (applied for f1 = δ∗S and f2 = g∗) is fulfilled (see also Remark

3.2). The situation (δ∗S�g∗)(0) = −∞, which would imply that (δ∗S�g∗)∗ = δS +cl g is identically +∞,

is not possible. Therefore, (δ∗S�g∗)(0) ∈ R and by Proposition 3.1 we get x ∈ ∂ε(δ∗S�g∗)(0).
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Hence ∂ε(δ∗S�g∗)(0) 6= ∅ for all ε > 0. As δ∗S�g∗ is a proper and convex function and 0 ∈

dom(δ∗S�g∗), this implies that δ∗S�g∗ is lower semicontinuous at 0. As in (8) (relation (15) holds) it

follows that (δS + g)∗(0) = (δ∗S�g∗)(0) or, equivalently, v(P ) = v(D) and the proof is complete. �

Remark 3.3 (i) Let us notice that in case the functions cl fi, i = 1, ...,m, are proper, the condition

g(x) = (cl g)(x) for all x ∈ dom(cl g) ∩ S is satisfied if we assume that for all i = 1, ...,m, fi(xi) =

(cl fi)(xi) for all xi ∈ dom(cl fi) ∩ prXi
S.

(ii) If the functions fi are lower semicontinuous on Xi, i = 1, ...,m, then the topological assumptions

in Theorem 3.2, namely that cl fi are proper for i = 1, ...,m, and g(x) = (cl g)(x) for all x ∈ dom(cl g)∩S

are obviously fulfilled.

(iii) We refer to [1, Section 4.1] for conditions which guarantee that for all (x1, ..., xm) ∈
∏m
i=1 dom fi

∩S and all ε > 0 the set S⊥ +
∏m
i=1 ∂εfi(xi) is closed.

Acknowledgments. The authors are grateful to an anonymous reviewer for his/her remarks.
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