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Abstract. Considering a general vector optimization problem, we attach to
it by means of perturbation theory new vector duals. When the primal problem
and the perturbation function are particularized different vector dual problems
are obtained. In the special case of a constrained vector optimization problem
the classical Wolfe and Mond-Weir duals to the latter, respectively, can be ob-
tained from the general ones by using the Lagrange perturbation.
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1 Introduction and preliminaries

The already classical duality concepts due to Wolfe and, respectively, Mond
and Weir, were considered first in the scalar case, but soon they were extended
for vector optimization problems, too. Thus, a flourishing literature dealing
with this topic appeared, developing mainly in the differential case by means of
various generalized convexity notions. This is a direction we do not embrace in
this paper where we embed the Wolfe and Mond-Weir duality concepts in two
classes of vector optimization problems defined via perturbations, respectively,
extending thus the investigations performed in the scalar case in [1]. Even if
most of the literature on vector Wolfe duality and vector Mond-Weir duality
is done in finitely dimensional spaces, we work here in the very general setting
of separated locally convex vector spaces. However, when the framework is
particularized to the classical one from the literature we rediscover as special
cases of the vector duals we introduce here the classical vector Wolfe and Mond-
Weir dual problems.

Consider two separated locally convex vector spaces X and Y and their
topological dual spaces X* and Y*, respectively, endowed with the correspond-
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ing weak* topologies, and denote by (z*,z) = x*(x) the value at z € X of the
linear continuous functional z* € X*. A cone K C X is a nonempty subset
of X which fulfills AK C K for all A > 0. A cone K C X is said to be non-
trivial if K # {0} and K # X and pointed if K N (—K) = {0}. On Y we
consider the partial ordering “<s” induced by the convex cone C' C Y, defined
by z Scy < y—z € C when z,y € Y. We use also the notation z <¢ y to write
more compact that z <o y and 2z # y, where 2,y € Y. To Y we attach a great-
est element with respect to “<¢”, which does not belong to Y, denoted by coc
and let Y* = YU{ooc}. Then for any y € Y'® one has y <¢ ooc and we consider
on Y* the operations y + coc = cog +y = oco¢ for all y € Y and ¢ - coc = co¢
for all t > 0. The dual cone of C' is C* = {y* € Y* : (y*,y) > 0 Vy € C}. By
convention, (v*,00¢) = +oo for all v* € C*. Given a subset U of X, by cl(U),
lin(U), aff(U), cone(U), ri(U), dim(U), éy and oy we denote its closure, linear
hull, affine hull, conical hull, relative interior, dimension, indicator function
and support function, respectively. Moreover, if U is convex its strong quasi
relative interior is sqri(U) = {z € U : cone(U — ) is a closed linear subspace}.
In vector optimization it is often used also the quasi interior of the dual cone
of K, K** := {a* € K* : (z*,2) > 0 for all z € K\{0}}. Note that in the
literature it is a common practice to name the set from above like this and
in [2, Proposition 2.1.1] and the comments following it one can find justifica-
tory explanations. We consider also the projection function Prx : X xY — X,
defined by Prx(z,y) = z for all (z,y) € X x Y.

Having a function f : X — R we use the classical notations for domain
dom f = {z € X : f(z) < 400}, epigraph epi f = {(z,r) € X xR : f(x) <r},
lower semicontinuous hull f : X — R and conjugate function f* : X* — R,
[ (x*) = sup{(z*,z) — f(x) : x € X}. We call f proper if f(z) > —oo for all
x € X and dom f # (). For f proper, if f(x) € R the (convex) subdifferential
of fat zis df(z) = {z* € X*: f(y) — f(x) > (¥, y — x) Yy € X}, while
if f(x) = +o0o we take by convention df(x) = (). Note that for U C X we
have for all x € U that 96y (z) = Ny(x), the latter being the normal cone
of U at x. Between a function and its conjugate there is the Young-Fenchel
inequality f*(x*) + f(x) > (a*,z) for all x € X and z* € X*. This inequality
is fulfilled as equality if and only if 2* € 0f(z). Considering for each A € R the
function A\f : X — R, (\f)(z) = M\f(x) for z € X, note that when A = 0 we
take 0f = dqom f. Given a linear continuous mapping A : X — Y, we have its
adjoint A* : Y* — X* given by (A*y*,x) = (y*, Ax) for any (z,y*) € X x Y.
For a vector function h : X — Y*® one has

- h is proper if its domain domh = {z € X : h(z) € Y} is nonempty,
- his C-conver if h(tx+(1—t)y) <c th(z)+(1—t)h(y) Vz,y € X Vt € [0,1],

- h is C-epi-closed if C' is closed and its C-epigraph epich = {(z,y) €
X xY :y € h(x)+C} is closed,

- h is C-lower semicontinuous if for every x € X, each neighborhood W
of zero in Y and for any b € Y satisfying b <¢ h(z), there exists a
neighborhood U of z in X such that A(U) Cb+ W +Y U {+ooc}.



Consider also, for v* € C* the function (v*h) : X — R defined by (v*h)(z) =
(v*,h(x)), v € X. One can show that if h is C-lower semicontinuous then
(v*h) is lower semicontinuous whenever v* € C*\{0}. Moreover, if C is closed,
then every C-lower semicontinuous vector function is also C-epi-closed, but,
as [2, Example 2.2.6] shows, not all C-epi-closed vector functions are C-lower
semicontinuous.

The vector optimization problems we consider in this paper consist of vector-
minimizing and vector-maximizing a vector function with respect to the partial
ordering induced in the image space of the vector function by a pointed convex
cone. As notions of solutions for vector optimization problems we rely on the
classical efficient and properly efficient solutions, the latter considered with
respect to the linear scalarization. For an exhaustive review of the proper
efficiency notions considered in the literature and the relations between them
we refer to [2, Section 2.4].

2 General Wolfe and Mond-Weir type duals via per-
turbations

Let X, Y and V be separated locally convex vector spaces, with V partially
ordered by the nontrivial pointed convex cone K C V. Let F': X — V*® be a
proper vector function and consider the general vector-minimization problem

PVG Min F'(x).

(PVG) Mip F(2)
The solution concepts we consider for this vector optimization problem are

the following ones.

Definition 1. An element Z € X is said to be an efficient solution to the
vector optimization problem (PVG) if Z € dom F and for all € dom F' from
F(z) <k F(z) follows F(z) = F(x).

Definition 2. An element z € X is said to be a properly efficient solu-
tion to the vector optimization problem (PVG) if there exists v* € K** such
that (v*F)(z) < (v*F)(x) for all x € X. The set of all properly efficient solu-
tions to (PV Q) is called the proper efficiency set of (PVG), being denoted by
PE(PVG). Denote also by PMin(PV G) the set Uyepgpra)F (7).

Remark 1. Every properly efficient solution to (PVG) belongs to dom F’
and it is also an efficient solution to the same vector optimization problem.

Consider now the vector perturbation function ® : X x Y — V*® which
fulfills ®(z,0) = F(x) for all x € X. We call Y the perturbation space and its
elements perturbation variables. Then 0 € Pry(dom @) and thus & is proper.
The primal vector optimization problem introduced above can be reformulated
as



(PVG) lg/gr(l O (z,0).

Inspired by the way conjugate dual problems are attached to a given primal
problem via perturbations in the scalar case and by the investigations from [1],
where we embedded the classical Wolfe and Mond-Weir duality concepts into
classes of scalar dual problems obtained via perturbation theory, incorporat-
ing also ideas from different papers on Wolfe and Mond-Weir vector duality
like [4,6,11,12,15,17], we attach to (PV Q) the following vector dual problems
with respect to properly efficient solutions

(DV Gw) Max  h$(v*, 4%, u,y,7),
(v*,y* uy,r)EBS,
where

BS, = {(U*, v u,y,r) € KXY  x X xY x (K\{0}):(0,y*) € 8(v*<1>)(u,y)}

and (", y)
* * y 7y

hﬁ/(v 'Y ,u,y,r) = (I)(uv y) - <U*,’I“>
and, respectively,
(DVG) Max  h§, (v*,y*,u),

(v*»y*ru)esgf M
where
B = {0y w) € KO x V" x X 1 (0,57) € 0(v"®)(w,0) |

and

h§r (", 5", u) = (u,0).

Remark 2. Fixing r € K\{0}, we can construct, starting from (DVGy),
another dual problem to (PVG), namely

(DVGwr) Max i (U5, 4%, u, ),
(U* 72/* ,U,y) EB%T
where

BG,. = {(v*,y*,u,y) EROXY* x X xY : (0,y%) € 00" ®)(u, y), (v*, 1) = 1}

and
hGT(U*ay*>u7y) = q>(u7y) - <y*,y>7"

In this way one introduces a whole family of vector duals to (PVG).
For these vector-maximization problems we consider efficient solutions, de-
fined below for (DV Gy ) and analogously for the others.

Definition 3. An element (v*,y*, u,y,7) € BVGV is said to be an efficient so-
lution to the vector optimization problem (DV Gy ) if (v*,y*, u,y,7) € dom hgv
and for all (v*,y*, u,y,r) € BI?V from hﬁ,(?‘)*,y*,ﬂ, y,7) Sk hﬁ,(v*,y*,u,y,r)



follows h$, (v*,9*,@,9,7) = h§ (v*,y*,u,y,7). The set of all efficient solu-
tions to (DV Gy ) is called the efficiency set of (DVGw ), being denoted by
E(DV Gy ). Denote also by Max(DV Gyy) the set U(U*7y*7u7y7r)eg(DVGW)h%(’U*,
y*,u,y,r), called the mazimal set of the problem (DV Gy ).

From the way the vector duals are defined above one can obtain the following
results involving the images of their feasible sets via their objective functions.

Proposition 1. It holds

WGBS < i (B = i (B).
reK\{0}

Proof. Take (v*,y*,u) € B]%. Then v* € K*O and there exists r €
K\{0} such that (v*,r) = 1. Thus (v*,y*,u,0) € BS,. and h§,. (v*,y*,u,0) =
hS, (v*, y*,u) = ®(u,0) = F(u).

Let now r € K\{0} and (v*,y*,u,y) € Bﬁ,r. It is obvious that (v*, y*, u, y,r)
€ BI(/;V and h%(v*,y*,u, Y, 1) = hgvr(v*,y*,u,y) = ®(u,y) — (y*,y)r.

Finally, if (v*, y*,u,y,7) € BS,, then taking s = (1/(v*,7))r € K\{0}, it fol-
lows (v*,s) =1 and, consequently, (v*,y*, u,y) € BVGVS. Moreover, hﬁ,(v*,y*, u,
yvr) = h%s(v*7y*au7y) = (I)(U,y) - <y*,y>8 0

A situation where the inclusion from Proposition 1 is strictly fulfilled will
be given later in Example 2.

Remark 3. Tt is a simple verification to show that if (v*, y*, u,y,7), (v*, y*, u,
y,7) € By, such that (y*,y) # 0 and A, (v*,y*, u,y,7) = hy, (v*, y*, u,y,7) € K,
then r = 7.

Let us prove now that for the just introduced dual problems there is weak
duality.

Theorem 1. There are no x € X and (v*,y*,u,y,r) € BVGV such that
F(IL‘) <K h%(v*ay*aua y,T).

Proof. Assume to the contrary that there exist x € X and (v*,y*, u,y,r)
€ BY, fulfilling F(z) <g h§ (v*,y*, u,y,7). Then x € dom F and it follows

<v*, (1) — izfir _ ®(a, 0)> > 0. (1)

On the other hand, from the feasibility of (v*,y*,u,y,r) to (DV Gw), it follows
(v*®)(z,0) — (v*®)(u,y) > (y*,0 — y), from which
* (") * < Wy
O(u,y) — —® < - -
<U ; (va) <’U*,T>T (.’E,O) = <y 7y> v, <’U*,’I">r

This leads to a contradiction to the strict inequality proven above. O




By making use of Theorem 1 and Proposition 1, one can prove also the fol-
lowing two weak duality statements involving the other vector duals to (PVG)
introduced above.

Theorem 2. There are no x € X and (v*,y*,u) € BS; such that F(z) <k
hG * ok
(vt Yt ).

Theorem 3. Let r € K\{0}. Then there are no x € X and (v*,y*,u,y) €
B, such that F(x) <g hG. (v, y*, u, y).

One of the directions in which both Wolfe and Mond-Weir duality concepts
were developed is towards introducing dual problems for which strong duality
holds without asking the fulfillment of a regularity condition (see [7,14,16]).
Having the following results, (DV Gjs) can be considered as such a vector dual
problem to (PVG).

Proposition 2. One always has B, = E(DVGy) and h§(BS;) = Max
(DVGy) € PMin(PVG).

Proof. If B](\;/[ = () there is nothing to prove. Assume thus that there
is some (v*,y*,u) € B§,. Then (v*®)*(0,y*) + (v*®)(u,0) = 0, which im-
plies (v*®)(u,0) = infyex yey [(vV*P®)(z,y) — (¥*,y)] < infrex(v*®)(x,0). Con-
sequently, v € PE(PVG) and ®(u,0) = F(u) is a value taken by the ob-
jective functions of both (PVG) and (DVGjps). Assuming that (v*,y*,u) ¢
E(DVGyy), a contradiction is immediately obtained by employing Theorem 2.
Consequently, By, = £(DVG)y) and using that u € PE(PVG) we obtain also
that h$ (BS;) = Max(DVGy) € PMin(PVG). O

Two immediate consequences of this assertion follow.

0,7) € BY,, then (v*,7*,4,0,7) € E(DVGw),

Corollary 1. If (v*, 4", u,
= h%( ", 1,0 7')

u € PE(PVG) and F(u)

Proof. If (v*,y*,u,0,7) € BG, then it can be immediately verified that
( ) = B (0%, 7%, 4, 0 7) and (0%, 9*, %) € BY,. By Proposition 2 it follows that
(0%, %, u) € E(DVGyr) and, consequently, u € PE(PVG). Knowing these, the
efficiency of (v*,7*,4,0,7) to (DV Gy ) follows by employing Theorem 1. [
LU, 0,0) € BG,r, then (v%,5%,4,0,7) €

Corollary 2. Let 7 € K\{0}. If (v*,5*,q,
7), u € PE(PVG) and F(u )—hG( TR

5(DVGW), (17*’ y*,u, 0) € 6(DVGW
u,0,7) = b, (v*, 5%, 4,0).

Next we give some results involving the maximal sets of the vector duals
introduced above. Combining Proposition 1 and Proposition 2, we obtain the
following statement.



Proposition 3. It holds

h§r(BS;) = Max(DVGy) € Max(DVGw) € | Max(DVGyr).
reK\{0}

Proof. From Proposition 1 and Proposition 2 it is known that h§,(B$;) =
Max(DV G ) € PMin(PVG)NAS, (BS,). On the other hand, Theorem 1 yields
that PMin(PVG) N h§,(BS,) € Max(DV Gy ) and the first inclusion is proven.

To demonstrate the second one, let d € Max(DVGyy). This means that
there exists (0%, y*,u,y,7) € E(DVGw) such that h%’{,(f;*,gj*,ﬂ, y,7) = d. Tak-
ing 5 = (1/(v*,7))7, we obtain that (0*,7*,,y) € BGs and h$; . (v, §*, 4, §) =
d. Assuming that (0%, 4", @, y) were not efficient to (DV Gyys) would bring, via
Proposition 1, a contradiction to the efficiency of (v*, 5*, @, y,7) to (DVGw).O

Now we turn our attention to strong duality for the vector duals introduced
in this paper. As usual in convex optimization, we consider regularity conditions
that ensure the disappearance of the duality gap. Following [2], we introduce
four types of regularity conditions, namely a classical one involving continuity

(RCY) | 32’ € X such that (2/,0) € dom® and ®(2,-) is continuous at 0,
a weak interiority type one

(RCS) | X and Y are Fréchet spaces, ® is C-lower semicontinuous
and 0 € sqri(Pry (dom ®)),

another interiority type one which works in finitely dimensional spaces
(RCP) | dim(lin(Pry(dom®))) < 400 and 0 € ri(Pry (dom ®)),
and finally a closedness type one

(RC?) | @ is C-lower semicontinuous and Pryx g (epi(v*®)*) is
closed in the topology w(X*, X) x R for all v* € K*0.

Theorem 4. Let 7 € K\{0}. Assume that ® is a K-convex function
and one of the reqularity conditions (RC?), i € {1,2,3,4}, is fulfilled. If T €
PE(PVQ), then there exist v* € K* and y* € Y* such that (v*,5*,Z,0,7) €
E(DVGw), (v,y",%,0) € E(DVGwr), (v*,y",z) € E(DVGy) and F(z) =
K (0%, 5%, 2,0,7) = B, (0%, 9%, 2,0) = h§ (0", 7%, 7).

Proof. Since 7 € PE(PVG), there exists v* € K*¥ such that (v*, F(7)) <
(v*, F(x)) forallz € X. As7 € K\{0} assuming that (v*,7) = 1 does not imply
losing the generality. From [2] it is known that each of the regularity conditions
(RC®), i € {1,2,3,4}, ensures the stability of the scalar optimization problem

inf (0°® 0

Inf (57®)(z,0),
i.e. there exists y* € Y™ such that infyex(v*®)(z,0) = —(v*®)* (0, —g*).
This relation and the inequality regarding the proper efficiency of T yield



(0*®)(z,0) + (v*®)*(0,7*) = 0, which is nothing but (0,5*) € 9(v*®)(z,0).
Then (v*,7*,z) € BY, and, moreover, (v*,7*,%,0) € Bg’;ﬁ. The conclusion fol-
lows by using Proposition 2 and Corollary 2. O

Remark 4. In case V =R and K = R, identifying V* with RU{+o0c} and
oog, with +o00, and taking the function F' : X — R proper we rediscover the
Wolfe and Mond-Weir type scalar duality schemes from [1]. More precisely the
problem (PVG) becomes then the general scalar optimization problem (PG)
from the mentioned paper, while the duals (DVGw) and (DVGwr), r > 0,
turn out to coincide with the general scalar Wolfe type dual to (PG), denoted
in [1] (DGw ), and (DV G)y) is nothing but the general scalar Mond-Weir type
dual (DGjs). This sustains the way we named the vector duals introduced in
this paper and the claim that we extend to vector duality the investigations
from the scalar case presented in [1].

In the next sections we consider as special instances of (PVG) the two
main classes of vector optimization problems, namely we work with an uncon-
strained and a constrained vector optimization problem, respectively. To these
problems we attach vector duals that are special cases of (DVGyy), (DVGw)
and (DVGwyr), r > 0, obtained for different choices of the perturbation vector
function ®.

3 Wolfe and Mond-Weir type vector duals for un-
constrained vector optimization problems

Let X, Y and V be separated locally convex vector spaces, with V' partially
ordered by the nontrivial pointed convex cone K C V. Further, let f: X — V*
and g : Y — V* be given proper vector functions and A : X — Y a linear
continuous mapping such that dom f N A~ (dom g) # 0.

The primal unconstrained vector optimization problem we consider is

(PVA) Min[f(z) + g(Ax)].
zeX

We work with properly efficient solutions in the sense of linear scalarization
to (PV A), while for the vector dual we assign to it in this section we consider
efficient solutions. Since (PV A) is a special case of (PV @) obtained by taking
F = f+4+go A, we use the approach developed in the previous section in order
to deal with it via duality. More precisely, for a “good” choice of the vector
perturbation function ® we obtain vector duals to (PV A) which are special
cases of (DVGyr) and (DVGwy).

In order to attach vector dual problems to (PV A), consider the vector
perturbation function

X xY =5V, & (x,y) = f(z) + g(Az +y).

For v* € K*, w € X, y € Y and y* € Y* one has (0,y*) € 9(v*®4)(u,y) if
and only if (v*®4)*(0,y*) 4+ (v*®*)(u,y) = (y*,y). This is further equivalent



to (" f)"(=A%y") + (v*9)"(y") + f(u) + g(Au+y) = (y*,y). Using the Young-
Fenchel inequality, the last equality yields that (0,y*) € 9(v*®4)(u,y) if and
only if y* € d(v*g)(Au + y) and —A*y* € I(v*f)(u). Now we are ready to
formulate the vector duals to (PV A) that are special cases of (DVG)s) and
(DVGw), namely

(DVAW) MaX hAw('U*, y*’ U, y’ ’I")’
(v*?yﬁu,y,r)elgé/

where

Biy = {@*’y*v“ayﬂ") €K xY* x X xY x (K\{0}):

y* € (A*)—l(_a(v*f)(u)) N a(U*g)(Au 4 y)}
and -
hiy (0%, y* u,y, ) = f(u) + g(Au+y) — <Z*’ i) r

and
DV A Max h4 ¥, u),
( M) Wyt (V™)
where

B = {(U*,u) €KV xX:0€ (A) -0 f)(u) — 8(@*9)(AU)}
and
hiy (v, u) = f(u) + g(Au).

We can consider also the particularizations of the family of vector duals
introduced in Remark 2. For each r € K\{0} we have the vector dual

(DVAW’!) MaX hA T (U*7 y*? u’ y)7
(v*y* u,y) B W
where
Bf;lyr = {(v*,y*,u,y) EROXxY*x X xY:(vir)=1,
v € (A) 710" F)(w) N (" g)(Au+ ) |
and

hiy (v, ¥ u,y) = f(u) + g(Au+y) — (¥, y)r.

The propositions, corollaries and theorems from Section 2, as well as Re-
mark 3 and Remark 4 can be particularized for the framework considered in
this section. We give here only the weak and strong duality statements and the
connection to the scalar case.

Theorem 5. There are no x € X and (v*,y*,u,y,r) € B{f‘v such that
f(@) + g(Az) <k hiy (v*, ¥, u,y, 7).



Theorem 6. There are no v € X and (v*,u) € B4, such that f(z) +
g(Az) < hi(v*, u).

Theorem 7. Let r € K\{0}. Then there are no x € X and (v*,y*,u,y) €
B, such that f(z) + g(Ax) < hij (v, y*, u, y).

For strong duality, which follows directly from Theorem 4, besides convex-
ity assumptions which guarantee the K-convexity of the vector perturbation
function we use regularity conditions, too, obtained by particularizing (RC?),
i€{1,2,3,4}, namely

(RC{Y ‘ 32’ € dom f N A~!(dom g) such that g is continuous at Az,

(RC3Y) | X and Y are Fréchet spaces, f and g are C-lower
semicontinuous and 0 € sqri(dom g — A(dom f)),

(RC{;‘) ‘ dim(lin(dom g—A(dom f)))<+oo and ri(A(dom f))Nri(dom g) #0,

and, respectively,

(RC{Y) | f and g are C-lower semicontinuous and epi(v* f)*+(A* xidg)
(epi(v*g)*) is closed in the topology w(X*, X) xR for all v* € K*0,

where (A* x idgr)(epi(v*g)*) = {(z*,r) € X* x R : Jy* € Y such that A*y* =
x* and (y*,r) € epi(v*g)*}.

Theorem 8. Let 7 € K\{0}. Assume that f and g are K-convex vector
functions and one of the regularity conditions (RC#), i € {1,2,3,4}, is ful-
filled. If & € PE(PV A), then there exist v* € K* and §* € Y* such that
(v*, 4%, 7,0,7) € E(DVAw), (v*,5*,%,0) € E(DVAw+), (v5,z) € E(DV Ayy)
and f(Z) + g(AZ) = hi} (v*,§*,2,0,7) = ki), (%, 5%, 7,0) = hi; (v*, Z).

Remark 5. In case V = R and K = R, taking the functions f : X — R
and ¢ : Y — R proper we rediscover the Wolfe and Mond-Weir duality schemes
for unconstrained scalar optimization problems from [1]. More precisely the
problem (PV A) becomes then the unconstrained scalar optimization problem
(PA4) from the mentioned paper, the duals (DV Ay) and (DV Ayr), © > 0,
turn out to coincide with the scalar Wolfe type dual to (P%) denoted (Di},)
and (DV Ayy) is nothing but the Mond-Weir type dual (D4)).

4 Wolfe and Mond-Weir type vector duals for con-
strained vector optimization problems

Let X, Y and V be separated locally convex vector spaces, with Y partially
ordered by the convex cone C C Y and V partially ordered by the nontrivial
pointed convex cone K C V. Consider the nonempty convex set S C X and the
proper vector functions f : X — V*®and g : X — Y'* fulfilling dom fNSNg—*(-
C) # (. Let the primal vector optimization problem with geometric and cone
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constraints

(PVC) Min /@),

where

A={zeS:g(x)e-C}.

We work with properly efficient solutions in the sense of linear scalarization
to it, while for the vector dual we assign to it in this section we consider efficient
solutions. Since (PVC) is a special case of (PVG) obtained by taking

oF, otherwise,

F:X Ve, F(x):{ f(z), ifze A,

we use the approach developed in Section 2 in order to deal with it via duality.

More precisely, for convenient choices of the vector perturbation function ¢ we

obtain vector duals to (PV C') which are special cases of (DVG ) and (DV Gy ).
Consider first the Lagrange type vector perturbation function

(I)CL:XXY—)V.7 (PCL(CC,y>: f(x)v 1fa:€§',g(x)€y—0,
>, otherwise.

Foru € X,y €Y, v* € K**and y* € Y* we have (0, y*) € O(v*®°L)(u, y) if and
only if (0*®%)*(0,y*) + (v* L) (u,y) = (y*,y), Le. (v*f) = (y7g) +85)"(0) +
o (—y*) + flu) + ds(u) + 0 c( (u) —y) = (y*,y). Using that 0%, = dc-,
this can be rewritten as (((v*f) — (y*g) + 65)*(0) + ((v* f) — (y*g) + ds)(uw)) +
(6% c(=y*) +d_c(g(u) —y) — ( *g(u) — )) = 0. Having the Young-Fenchel
inequality and the characterlzatlon of the subdifferential by its equality case, it
follows that (0,y*) € 9(v*®L)(u,y) if and only if 0 € ((v* f) — (y*g) + ds) (u),
y* € —C* and d_¢(g(u) —y) — (—y*,g9(u) — y) = 0. Thus, from (DVGy ) we
obtain the following vector dual to (PVC)

(DVCE) Max  hSE(v*,y* u,y,7),
(U*,y*,u,y,T)GB%L w
where
B = {(U*,y*,u,y,r) ERKOxC*xSxY x (K\{0}):g(u) —y e —C,
(y79) (1) = (5", 1),0 € AW f) + (y79) + 35)(w) }
and )
hCL _ Y,y
(Y uy,r) = f(u)+<v*,r>r7
which can be equivalently rewritten as
(DVCE) Max h(“V;,L (v*, y*, u,r),

C
(v*y* u,r)eByF
where

B = {0y ur) € K0 x O x 8 x (K\{0)) 0 € (0" ) + (u°9) +5) () }
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and .
(" 9(w)
(r,r)
further referred to as the vector Wolfe dual of Lagrange type, while the vector
dual to (PVC) that results from (DVGyy) is

h%(v*ay*auar) = f(u) =+

(DVCE) Max  hif(v",y", u),
(U*vy*ﬂ‘b)elgg}/
where
Bif = {(v*,y*,u) €K™ X C" xS (y"g)(u) > 0, 9(u) € —C,
0 € ((v*f) + (y*g) + 0s)(u)
and

C x %
hyf (0", y* u,r) = f(u).

Note that in the constraints of this dual one can replace (y*g)(u) > 0 by
(y*g)(u) = 0 without altering anything since g(u) € —C and y* € C*. Re-
moving from B} the constraint g(u) € —C, we obtain another vector dual to
(PVC), namely

(DVCALJW) Max o hcﬂ}w(v*,y*, u),
(v*vy*ru)eB]MLW
where

BSE, = {(v*,y*,u) € K*'%C*xS: (y*g)(u) > 0,0 € 8((v*f)+(y*g)+5s)(u)}

and
WSy (0, g% u,r) = fu),

further called the vector Mond-Weir dual of Lagrange type to (PVC). We can
consider also the particularizations of the family of vector duals introduced in
Remark 2. For each r € K'\{0} we have the vector dual

(DVCE,) Max h%r (v*, y*, ),
(v y* ) By
where

BSE = {(v*,y*,u) e K xC*x X : (v*,r) =1,0 € d((v*f) + (v*9g) +(55)(u)}
and
haghs (0" ) = f () + (4", g(u))r.
Remark 6. Due to the way (DVCL..) is constructed it is clear that

h]\Cf (Bff) C hJ\C/ILW(B]%LW). The following example shows that there are situ-
ations when the inclusion is strict.
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Example 1. Let X =R, Y =R, C =Ry, Y* = RU {+o0}, V = R?,
K=R2,5=10,+00), f:R—R? f(z) = (z,2)T, and g : R = RU {+o0},

—z, ifx>0,
g(x) =13 2, if x =0,
400, if x <0.

For v* = (1/2,1/2)T we have 0 € 9((v*f) + (0g) + d5)(0) = (—o0,1] and
(09)(0) = 0, thus (7*,0,0) € BS%,, therefore (0,0)" e hS%, (BSE,). On
the other hand it can be shown that B](\’;IL = (). Consequently, hg’} (B]((}) #
WSy (Bify)

MW\~MW /"

We give also an example where hngr (Bg‘ﬁ)\hff (B](\’}L) # 0, foranr € K\{0},
ie. hJ\C/[L (Bg}) # h% (B‘?VL) in general. Recall that via Proposition 1 one obtains
C C C C C C
that hiyf (Byf') € Urere oy i (Byir) = hay (B ).

Example 2. Let X =R, Y = R?, C = Ri, V =R% K = Ri, Ve =
(R?)* =R?U{oopz }, S =R, f: R — (R?)*,

o) = (i)x if z >0,

OOR? 5 otherwise,

and g : R — R?, g(z) = (z — 1, —z)T. Like in [1, Example 2], it can be shown
that hSF(BSE) = 0, while for » = (1,1)7, one has ((1/2,1/2)7,(2,3)7,1) €
B%/LT, consequently, (-2, —2)7 € h%ﬁ (Bgﬁ) Note that in this case Bffw =0,
too. However, the question whether hCA}W(B](\’}W) is in general a subset of

hCV;} (Bg}) is still open.

Remark 7. Assume that f is a K-convex vector function and g is a C-
convex vector function. Since S is a convex set, it is a simple verification to
see that the vector perturbation function ®°Z is K-convex. Denote further
Axs ={(z,z,z) : © € X}. When one of the following conditions (see [2])

(i) f and g are continuous at a point in dom f Ndomg N S;

(ii) dom fNint(S)Ndomg # @ and f or g is continuous at a point in dom f N
dom g;

(iii) X is a Fréchet space, S is closed, f is K-lower semicontinuous, g is C-lower
semicontinuous and 0 € sqri(dom f x S X dom g — Axs);

(iv) dim(lin(dom f x S x domg — Axs)) < +oo and ri(dom f) N ri(S) N
ri(dom g) # 0;

is satisfied, then, for all v* € K*0 and all y* € C*, it holds

(W' f) + (y79) + bs)(x) = 0(v" ) (x) + O(y"g)(x) + Ns(z) Va € X.
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Consequently, when one of these situations occurs the constraint involving the
subdifferential in (DVCE,), (DVCE,), (DVCE) and (DVCLyy,) can be mod-
ified correspondingly.

Remark 8. If X =R", Y =R™, C =R?, V =R K =R, f =
(fi,oo s f)T :R* = R¥ and g = (g1,...,9m)" : R* — R™, and the func-
tions fi, i =1,...,k, and g;, j = 1,...,m, are convex, then (DVCE..), where
e=(1,..., 1)T € R¥, turns out to be the nondifferentiable vector Wolfe dual
problem mentioned in the literature (see [7,9,16]), while (DVC¥,,.) is the non-
differentiable vector Mond-Weir dual problem to (PV C). In case the functions
fi,i=1,...,k, and gj, j = 1,...,m, are moreover differentiable on S which is
taken to be open and the subdifferentials are replaced by gradients in the con-
straints, (DV CE,,) turns out to be the classical vector Wolfe dual problem from
the literature (see [17] and, for the case r = e, [5,11,12,15]), while (DV O,
is the classical vector Mond-Weir dual problem to (PVC) (cf. [5,6,11,13-15]).

Like in the previous section, the results involving (PV G) and its vector du-
als can be particularized for the problems introduced above, however we give
here only the weak and strong duality statements involving (PV (') and its vec-
tor duals of Lagrange type.

Theorem 9. There are no x € A and (v*,y*,u,r) € Bg} such that
f(@) <k hyF ",y u,r).

Theorem 10. There are no z € A and (v*,y*,u) € BACJL such that
f(z) <k hJ\C/[L(U*,y*,u),

Theorem 11. Let r € K\{0}. Then there are no x € A and (v*,y*,u) €
BI?VLT such that f(x) <k hCV;,LT (v*, y*, u).

Analogously, one can prove also the following weak duality statement in-
volving (PVC) and (DVCE.,).

Theorem 12. There are no x € A and (v*,y*,u) € BAC/[LW such that
f(@) <k By (%7, w).
For strong duality we particularize the regularity conditions (RCP), i €
{1,2,3,4}, obtaining (see [1,2])
(RCE™) ‘ 3z’ € dom f N S such that g(z') € —int(C),
which is the classical Slater constraint qualification extended to the vector case,

(RCQC L) | X and Y are Fréchet spaces, S is closed, f is K-lower
semicontinuous, ¢ is C-epi-closed and
0 € sqri (g(dom f NS Ndomg) + C),

(RCS™) | dim (lin (g(dom f N S Ndom g) 4 C)) < 400 and
0 €ri(g(dom f N SNdomg)+ C),
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and, respectively,

(RCSL) S is closed, f is K-lower semicontinuous, g is C-epi-closed

and |J epi((v*f)+ (y*g) + dg)* is closed in the topology
y*EC*
w(X*, X) x R for all v* € K*V.

Theorem 13. Let 7 € K\{0}. Assume that f is a K-convex vector
function, g is a C'-convexr vector function and one of the regularity conditions
(RCZ-CL), i €{1,2,3,4}, is fulfilled. If ¥ € PE(PVC), then there exist v* € K*°
and §* € C* such that (v*,y*,z,7) € E(DVCE), (v*,y*,z) € EDVCE.)N
E(DVCE) N EDVCYy) and f(Z) = WG, 5%, 2,7) = hyaH(T,75,7) =
hSE(0*, 5, 2) = hShy (0%, 5%, ).

Remark 9. When L € RF*" A € R™*" b € R™ and R” is partially ordered
by the nontrivial pointed closed convex cone K C RF, one can consider the
classical linear vector optimization problem (cf. [8], see also [10])

(PVY Min Lz.

xGRT_f_,

Azx=b
Among the interesting features of this vector optimization problem are the co-
incidence of its efficient and properly efficient solutions and also the fact that
no regularity condition is necessary in order to achieve strong duality. Of in-
terest could be to see how do the vector duals to (PV!) derived from (DVCE),
(DVCE) and (DVCL,), respectively, look like and then to compare them
with the vector duals to (PV') treated in [3].

A second vector perturbation function that can be considered for (PV C) is
the Fenchel type vector perturbation function

X x Y 5V, a0 ()= § ST E A
>, otherwise.

Using it the following vector duals obtained as special cases of (DVGw),
(DVGyp) and (DVGwr), r € K\{0}, can be attached to (PVC)

(DVCE) Max g (0%, u, 7).
(vﬁy*,u,y,r’)éB%p
where
B%F = {(U*,y*,u,y,r) EKOxC*x X xY x (K\{0}) :
y* € 0" f)(u+y) N (~Na(w) }
and Wy
* * y 7y
hgf(v Y ,U,y,?") = f(u+y) - <’U* 7,,) )

further referred to as the wvector Wolfe dual of Fenchel type, the vector Mond-
Weir dual of Fenchel type
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(DVCE) Max, hif (v", ),
(v*,u)GB]CV’IF
where
BSF = {(U*,u) €K x X :0€0(*f)(u) +NA(U)}

and
WSF (" u) = f(u),
and, for r € K\{0},

(DVCE) Max hcvgfr (v, v, u, y),
(v* 5" uy)EBE
where
By = {(v*,y*,u,y) ERY X C* x X xY : (v'r) =1,
y* € (" f)(u+y) N (~Na(w) }
and

W (0", 5" y) = flu+y) = (y7 y)r

Rewriting (PVC) in the form of (PV A) (where g is taken to be 4 and A the
identity operator), one can derive the vector duals of Fenchel type to (PVC)
directly from the vector duals considered in Section 3. Therefore in this case
we do not give again the weak and strong duality statements, since they can be
obtained directly from both the general case and the unconstrained case.

The last vector perturbation function we consider in this section is the
Fenchel-Lagrange type vector perturbation function ®°7L : X x X x Y — V*,

fla+2z2), ifzeSglx)ey—C,

(I)CFL = .
(z,2,y) { ook, otherwise.

For v* € K* y* € Y* 2* € X*, y € Y and z € X, one has (0,z*,y*) €
ODCFL (u, z,y) if and only if u € S, g(u) € y — C and (v*f)*(2*) + (—(y*g) +
65)*(—2") + o_c+(y") + flu+ 2) + 0—c(g(u) —y) + ds(u) = (y",y) + (2", 2),
which is nothing but u € S, g(u) € y — C and

(W) )+ F)(utz) = (" utz)+ ((—(y"9) +0s)" (—2") + (—(y"g) +0s) (u)

—(=2" ) + (62 (~y") + d-c(g(u) —y) — (=¥, 9(u) —y)) = 0.
Consequently, (0,z*,y*) € O®CFL(u,z,y) if and only if u € S, y* € —C*,
g(u) —y € =C, 2" € 9f(u+ 2) N (=0(=(y"g) + d5)(u)) and (y*g)(u) = (y*,y).
Consequently, the vector duals to (PV C) obtained, by making use of the vector
perturbation function ®¢7Z, from the vector duals introduced in Section 2 are

(DVCEFR) Max hSFE (0%, 2%,y 0, 2,9, 7),
(v*,z*,y*,u,z,y,T)EB%FL W
where
B‘%FL = {(v*’z*,y*,u,z,y,r) EKOx X*x(C*x Sx X xY x (K\{0}):
g9(u) —y € =C,(y"g)(u) = (v, y),
2 € v f)(u+2) N (~0((y"9) +05))(w) |
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and . .
(* y) + (2 72>T

h%FL(U*>Z*;y*aU;Zay77") = f(u+ Z) -

(v*,7) ’
which can be equivalently rewritten as
(DVC'{;VL) Max h%}” (v*, 2%, y*, u, z, 1),
(v*,z*,y*,u,z,r)GBSVFL

where

B‘?VFL = {(v*,z*,y*,u,z,r) €KV x X*x(O*x S x X x (K\{0}):

2 € " f)(u+2) N (=0((y*9) +05))(w) }

and

(o) (w) — (=*,2)

(v*,7) ’

which is the vector Wolfe dual of Fenchel-Lagrange type,

h(vj‘}” (0", 2%y u,z,r) = flu+2) +

(DVCEE) Max  hyf* (v, g, u),
(v*,y*,u)EBAC/IFL
where
Bt = {0y u) e K0 x 7 x S (y7g)(u) > 0,9(u) € ~C,
0 € d(v*f)(u) + A((y*g) + d5)(u)
and

h]\C/[FL (U*v vy, u) = f(u)
and, for each r € K'\{0},

(DVCEL) Max . h%ﬁL (v*, 2%, y*, u, 2),
(U*,z*,y*,u,z)EBWI‘;L
where
B‘?VFTL = {(v*,z*,y*,u,z) EROx X*xC*x SxX:{vr)=1,
2 € O ) (u+2) N (~9((y"g) +65))(w) |
and

It (0%, 2"y uy2r) = fut 2) + ((y"9)(u) = (27, 2)r.

Note that in the constraints of (DVCEE) one can replace (y*g)(u) > 0 by
(y*g)(u) = 0 without altering anything. Removing the constraint g(u) € —C
from Bﬁ,“, one obtains from (DV CEL) the vector Mond-Weir dual of Fenchel-

Lagrange type to (PVC)

(DVCEE) Max  KhSEE (0%, y*, ),
(v*,y* u)eBSEL
where

Bﬁ%:{(v*y Y u) EKOXCT XS 1 (yg)(u) 2 0,0€ a(v*f)(U)+3((y*g)+5s)(U)}
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and
C *
hMFv%/(U 7y*7u) = f(u)
Remark 10. Note that h]\CfL(Bf/[F By C hf/[FVf,(B]\C/[FML/) The inclusion is actu-

. . . . . . C C
ally strict, since in the situation presented in Example 1 we have hy /" (B, [*) =
0 and hSEE(BSHE) # 0.

Remark 11. For sufficient conditions to “split” the subdifferentials from the
Fenchel-Lagrange type vector duals, analogous to the ones delivered in Remark
7 for the Lagrange type vector duals, we refer to [2].

The results involving (PV G) and its vector duals can be particularized for
the Fenchel-Lagrange type vector duals, but here we give only the weak and
strong duality statements involving (PVC) and these vector duals.

Theorem 14. There are no x € A and (v*, 2", y*,u,z,r) € BgVFL such that
flx) <k h%}”(v*,z*,y*,u,z,r).

Theorem 15. There are no x € A and (v*,y*,u) € Bf/[FL such that
f(@) <k BSFE (0", y" ).

Theorem 16. Letr € K\{0}. Then there are no x € A and (v*, z*,y*, u, 2)
€ Bg}? such that f(x) <k hgff (v*, 2%, y*, u, 2).

Analogously, one can prove also the following weak duality statement in-
volving (PVC) and (DVCEL,).

Theorem 17. There are no v € A and (v*,y*,u) € BJ(\}FML/ such that
F(x) <k hihE (0 y*,u).
For strong duality, besides some convexity hypotheses which ensure the K-

convexity of the vector perturbation function ®FL we also particularize the
regularity conditions (RCY), i € {1,2,3,4}, obtaining (see [1,2])

(RCICFL) Jd2’ € dom f NS such that f is continuous at z’ and
g(x') € —nt(C),

(RCQC FLy | X and Y are Fréchet spaces, S is closed, f is K-lower
semicontinuous, ¢ is C-epi-closed and
0 € sqri (dom f x C' — epi(_cy(—=g) N (S x Y)),

(RCBCFL) dim (lin (domf x C — epi(,c)(—g) N (S x Z))) < 400 and
0€ri (domf x C' —epi_¢)(—g) N (S x Z))

and, respectively,
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(RCEF Ly S is closed, f is K-lower semicontinuous, g is C-epi-closed
and epi(v*f)* + | epi((z*g) + ds)* is closed in the topology
z*eC*
w(X*, X) x R for every v* € K*.

Theorem 18. Let 7 € K\{0}. Assume that f is a K-convex vector
function, g is a C-convexr vector function and one of the regularity conditions
(RCZ-CFL), i€ {1,2,3,4}, is fulfilled. If z € PE(PVC), then there exist v* €
K*, z* € X*, §* € C* and zZ € X such that (v*,z*,§*,7,2,7) € E(DVCEL),
(v*,z%,y*,2,2) € EDVCLE), (v*,y*,z) € EDVCH) nEDVOEE,) and
f(@) = byt (0", 2,9, 2,5 7) = bt (00, 2,508, 7,) = RGfE(t, gt T) =

)

hSEE (0%, 5%, 7).

Remark 12. In case V = R and K = R, taking the functions f : X — R
and g : X — Y® proper we rediscover the Wolfe and Mond-Weir duality schemes
for constrained scalar optimization problems from [1]. More precisely the prob-
lem (PVC) becomes then the constrained scalar optimization problem (P¢)
from the mentioned paper and the vector duals considered in this section turn
out to be to the duals introduced to (P%) in [1].

Besides the inclusion relations that can be obtained as particularizations
of Proposition 1 and the ones given in Remark 6 and Remark 10, there are
other connections between the images of the feasible sets of the vector duals
to (PVC) introduced in this section through their objective functions. In the
following we prove some of them. First we deal with the vector duals obtained
from (DVGy).

Theorem 19. It holds

(a) WSFH(Byf™) C hSF (Byf ):
(b) hf/[FL (B]?/[FL) C hCA}(BJ?/IL);

(¢) WSHE(BSEE) C hShy (BSAy).

done.

(b) Let (v*,y*,u) € B]C\;FL. Then u € S, v* € K*0, y* € C*, (y*g)(u) > 0
and g(u) € —C and, because 0 € O(v* f)(u) + O((y*g) + 65)(u) € d((v* f)(u) +
)

(y*g) + 8s) (u), it follows that (v*,y*,u) € BYE. As hSFE (v, y*,u) = f(u)
h]\Cf(v*, y*,u), the conclusion follows.
(¢) The proof is analogous to the one in (b). O

The question if similar inclusions are valid for the vector Wolfe type duals is
very natural, but has a negative answer, even if the primal problem is convex.
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The following examples (adapted from the scalar case treated in [1]) demon-
strate this. Fixing r € K\{0}, they can be used also to show the similar facts
for the vector duals obtained as special cases of (DVGyyr).

Example 3. Let X =R%2, Y =R, C =R, V=R% K =R, V* =
R2U{OOR3L},

3< 2, <4, ifz; =0

— T 2, < < > L2 > 1 )

S {(5”1’5“2) CRO0=sms2 2 i e(0,2 [

1 .
fiR? = (R, flan, o) = ( ! ) v o =0

OOR? 5 otherwise,
and g : R? = R, g(x1,22) = 0. Then for v* = (1/2,1/2)7 and any y* € R,
we get (0,0) € d((T*f) + (y*g) + 05)(0,3), thus (3,3)T € ASE(BGE). Trying
to find (v*, 2%, y* u,z,7) € Bg/“ such that (3,3)7 € thFL(Bg,FL) leads to a
contradiction, consequently, h% (B‘?VL) ¢ hg,FL(B%/F B,

Example 4. Let X =R, Y =R, C =R;, V =R* K =R? V* =
R2U{OOR3}, S:R,

1 z, ifx>0
FiR— R, f) =3 \1)7 ’
OO otherwise,
and
-z, if © < 07
g:R—=R, g(z) = { 0, otherwise.

Note that for all v* = (vf,v3)T € int(R?2) and y* > 0 one has

(0" )+ (19) + 85)(w) =0 () = { 1730 Kuo B

Consequently, BI(/’;,L = ). On the other hand it can be shown that ((1/2,1/2)T,
1,1,0,1,(1,1)7) € B‘?VFL, thus (0,0)7 ¢ hgfL (BgVFL). Therefore, thFL (BI?VFL) ¢
hik (ByF)

w Py )

Example 5. Let X =R?2, Y =R, C =R, V=R? K = Ri,

<o <A i —
S:{($17$2)T€R2:0§x1§2 3<xp <4, ifa =0, }7

" 1<ap <4, ifzy €(0,2]

f:R%2 = R2, f(x1,29) = (z2,29)" and g : R? = R, g(z1,x2) = x1. Since, for
v* = (1/2,1/2)T it holds (0,1)T € 9(v*f)(0,3) N (—=N4(0,3)), it follows that
(3,3)7 ¢ thF (B%F) On the other hand, assuming that (3,3)7 ¢ thFL (BI?VFL)
leads to a contradiction, consequently, h%/F (BS,F ) € hCV;fL (BgVF L.
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Example 6. Consider again the situation from Example 1. We have
A = (0,400), Na(u) = {0} for all u € A, (v*f)(u) = {vf + v3} for all
v* = (vi,v3)7 € int(R?) and u € R, thus d(v* f)(u + 2) N (—Na(u)) = 0 for
all w € § and all z € R. Consequently, B‘?VF = (). On the other hand, it
can be shown that ((1/27 1/2)7,0,1,0,1,(1, 1)T) IS hg{L(BI?VFL), thus (0,0)7 ¢
hSFE (BGFY). Therefore, hGFH (BSFE) € hSF (BGF).

Remark 13. One can wonder why we considered in this paper only the clas-
sical vector duality scheme involving properly efficient solutions to the primal
vector optimization problems and efficient solutions to their duals. In the liter-
ature it was unsuccessfully claimed (see [2, Remark 6.2.6]) that vector Wolfe or
Mond-Weir strong vector duality statements could be given from which prop-
erly efficient solutions to the vector duals were obtained. Since these allegations
were not properly proven, we avoided this vector duality scheme from our in-
vestigations. Another possible vector duality scheme involves efficient solutions
to both primal and dual vector optimization problems. Hints regarding its pos-
sible development within our framework can be found in the next section.

5 Conclusions and further challenges

Following our investigations from [1], we propose two new duality schemes for
general vector optimization problems, based on the classical Wolfe and Mond-
Weir duality approaches. Then, particularizing the primal vector optimization
problem to be first unconstrained, then constrained, and carefully choosing the
vector perturbation functions we obtain new vector duals, among which are
rediscovered also the classical nondifferentiable vector Wolfe and Mond-Weir
dual problems. Weak and strong duality statements are given for the primal-
dual pairs of vector problems. Moreover, different inclusion relations involving
the images of the feasible sets of some vector duals through their objective
functions and, respectively, the maximal sets of some vector duals are derived.
We provide also some examples showing that in some cases no inclusion relations
exist,.

Investigations similar to the ones performed in this paper can be made with
respect to weakly efficient solutions, too. We did not include them here since
everything works analogously, the only changes consisting in reformulating the
duals by taking the variable v* to belong to K*\{0} and, for the Wolfe type
vector duals, r € int(K), and in the fact that instead of efficient and properly
efficient solutions we deal then only with weakly efficient solutions.

Another interesting direction of research can be developed starting from the
observation that for a fixed v* € K*° one can show that an element z € X is
efficient to (PV G) if and only if it is an optimal solution of the scalar optimiza-
tion problem

EP inf *F .
(EP) oy Bhyere P
zeX
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Having different scalar duals assigned to this scalar optimization problem,
one can use them to formulate vector optimization dual problems with respect
to efficient solutions to (PVG). More precisely, the strong duality statements
regarding (PVG) and these new vector duals would ask the existence of an
efficient solution to (PV G), besides convexity hypotheses and regularity condi-
tions, in order to obtain efficient solutions to the vector duals.

Starting with the investigations from this paper, different other interesting
problems can be posed. A first one is how can be formulated a dual problem
to (PVG) which becomes (DVC%,,;) in a particular case. Then, one can try
to give weak and strong duality statements for the primal-dual pairs of op-
timization problems considered in this paper when the functions involved are
differentiable on an open set S and the subdifferentials are replaced by gradients
in the duals, by using generalized convexity notions like quasiconvexity, pseudo-
convexity, even invexity. It were interesting to find out how can be obtained via
strong duality an efficient solution to (DV Gyy) for which the variable y needs
not be equal to 0. Do there exist inclusions involving the maximal sets of the
vector duals from Section 4 or it can be proven by counterexamples that such
inclusions do not hold in general? Nevertheless, converse duality for (PVG)
and its duals or for the particular cases studied in this paper, could be investi-
gated, too.
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