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Abstract. In this paper we first provide a general formula of inclusion for the Dini-
Hadamard ε-subdifferential of the difference of two functions and show that it becomes
equality in case the functions are directionally approximately starshaped at a given point
and a weak topological assumption is fulfilled. To this end we give a useful characteriza-
tion of the Dini-Hadamard ε-subdifferential by means of sponges. The achieved results are
employed in the formulation of optimality conditions via the Dini-Hadamard subdifferen-
tial for cone-constrained optimization problems having the difference of two functions as
objective.
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1 Introduction

In this paper we provide a formula for the Dini-Hadamard ε-subdifferential of the dif-
ference of two functions by making use of the star-difference of the Dini-Hadamard ε-
subdifferentials of the functions involved. In this investigation an important role will be
played by a variational description of the Dini-Hadamard ε-subgradients of an arbitrary
function via sponges, a notion introduced by Treiman in [27], which represents the coun-
terpart of a well-known variational description for Fréchet ε-subgradients.

While in the announced subdifferential formula for the difference of two functions one
inclusion follows automatically, in order to guarantee the other one we need some sup-
plementary assumptions on the functions involved. More precisely, we show that in case
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the two functions are directionally approximately starshaped at a given point and a weak
topological assumption is fulfilled, then the opposite inclusion is fulfilled, too. The class of
directionally approximately starshaped functions has been introduced in [22] and contains
the class of approximately starshaped and, consequently, the one of approximately convex
functions (see [3, 20, 21] for more on these classes of functions). We also give a charac-
terization of the directionally approximately starshaped functions by means of sponges
and furnish an example of a function which is directionally approximately starshaped at
a given point, but not approximately starshaped at that point. We also show that the
Fréchet subdifferential and the Dini-Hadamard subdifferential of this function at the point
in discussion do not coincide. The weak topological assumption we use in the main result
is an extension of the gap-continuity introduced by Penot in [24]. The results in this article
extend some assertions given in [1] for approximately starshaped functions via the Fréchet
subdifferential and are motivated by the fact that there exist directionally approximately
starshaped functions for which the statements in [1] do not apply.

Providing handleable subdifferential formulae is a decisive aspect for the formulation
of necessary and sufficient optimality conditions for nonsmooth optimization problems. In
the final part of the paper we deal with a cone-constrained optimization problem having
the difference of two functions as objective and a convex feasible set. For this problem
we investigate the existence of so-called spongiously local ε-blunt minimizers for all ε > 0,
a notion which represents an extension of the local ε-blunt minimizer introduced and
investigated in [1]. To this aim we make use of the formula we give in this article for
the Dini-Hadamard ε-subdifferential of the difference of two functions, but also of some
results originating in the convex optimization. In this way we show how nonsmooth and
convex techniques can successfully interact when characterizing optimality. For related
works with the research done in this article we refer the reader to [28] and to several
papers in [7, 23].

The paper is organized as follows. In Section 2 we introduce some preliminary notions
and results, give the variational description of the Dini-Hadamard ε-subdifferential by
means of sponges and provide a partial result for the Dini-Hadamard ε-subdifferential of
the difference of two functions. In the following section we first introduce the class of
directionally approximately starshaped functions and study its relations with the ones of
approximately starshaped and approximately convex functions. Afterwards we prove the
main result of the paper, the characterization of the directionally approximately starshaped
functions via sponges playing here a determinant role. Finally, we turn our attention to the
formulation of optimality conditions via the Dini-Hadamard subdifferential for a general
cone-constrained optimization problem having the difference of two functions as objective.

2 Preliminaries

Consider a Banach space X and its topological dual space X∗. We denote the open ball
with center x ∈ X and radius δ > 0 in X by B(x, δ), while BX and SX stand for the closed
unit ball and the unit sphere of X, respectively. Having a set C ⊆ X, δC : X → R∪{+∞},
defined by δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise, denotes its indicator function.

Let f : X → R∪{+∞} be a given function. As usual, we denote by dom f = {x ∈ X :
f(x) < +∞} the effective domain of f and by epi f = {(x, α) ∈ X × R : f(x) ≤ α} the
epigraph of f . We make the conventions (+∞) − (+∞) = +∞ and 0(+∞) = +∞. For
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ε ≥ 0 the Fréchet ε-subdifferential (or the analytic ε-subdifferential) of f at x ∈ dom f is
defined by

∂Fε f(x) :=
{
x∗ ∈ X∗ : lim inf

‖h‖→0

f(x+ h)− f(x)− 〈x∗, h〉
‖h‖

≥ −ε
}
,

which means that one has

x∗ ∈ ∂Fε f(x)⇔ for all α > 0 there exists δ > 0 such that for all x ∈ B(x, δ)
f(x)− f(x) ≥ 〈x∗, x− x〉 − (α+ ε)‖x− x‖. (1)

For a systematic study of the Fréchet ε-subdifferential as a building block for the
basic/limiting/Mordukhovich subdifferential in Banach spaces we refer the reader to the
books [16,17] (with the bibliographies and commentaries therein).

The following constructions

d−f(x;h) := lim inf
u→h
t↓0

f(x+ tu)− f(x)
t

= sup
δ>0

inf
u∈B(h,δ)
t∈(0,δ)

f(x+ tu)− f(x)
t

and (see [11,12])

∂−ε f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h) + ε‖h‖ for all h ∈ X}, where ε ≥ 0,

are called the Dini-Hadamard directional derivative of f at x in the direction h ∈ X
and the Dini-Hadamard ε-subdifferential of f at x, respectively. When x 6∈ dom f we set
∂Fε f(x) = ∂−ε f(x) := ∅ for all ε ≥ 0. Note that for x ∈ dom f the function d−f(x; ·) is in
general not convex, while ∂−ε f(x) is always a convex set. Further, we notice that d−f(x; 0)
is either 0 or −∞ (see [14]).

The function f : X → R ∪ {+∞} is said to be calm at x ∈ dom f if there exists c ≥ 0
and δ > 0 such that f(x)− f(x) ≥ −c‖x− x‖ for all x ∈ B(x, δ). For x ∈ dom f one has
(see, for instance, [9]) that f is calm at x if and only if d−f(x; 0) = 0.

For ε = 0, ∂−f(x) := ∂−0 f(x) and ∂F f(x) := ∂F0 f(x) are nothing else than the Dini-
Hadamard subdifferential and the Fréchet subdifferential of f at x, respectively.

For all ε ≥ 0 we have the following inclusion

∂Fε f(x) ⊆ ∂−ε f(x),

which may be in general strict.
To see this in case ε = 0 consider, for instance, the function f : C[0, 1] → R, f(x) =

−‖x‖∞. One has that ∂F f(x) = ∅ for all x ∈ C[0, 1], while ∂−f(x) 6= ∅ when x ∈ SC[0,1] is
chosen such that |x| : [0, 1]→ R, |x|(t) = |x(t)|, attains its maximum at exactly one point of
the interval [0, 1] (see [6, Exercise 8.28]). For a similar example in `1 we refer to [6, Exercise
8.26]. However, when X is finite dimensional, we always have that ∂F f(x) = ∂−f(x) for
all x ∈ X.

The next subdifferential notion we need to recall is the one of G-subdifferential and
we describe in the following the procedure of constructing it (see [13]). To this aim we
consider first the A-subdifferential of f at x ∈ dom f , which is defined via topological
limits as follows

∂Af(x) :=
⋂

L∈F(X)
ε>0

Limsup
x

f−→x

∂−ε (f + δx+L)(x),
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where F(X) denotes the collection of all finite dimensional subspaces of X and Limsup
stands for the topological counterpart of the sequential Painlevé-Kuratowski upper/outer

limit of a set-valued mapping with sequences replaced by nets and where x
f−→x means

x−→x and f(x)−→ f(x). More precisely, for a multivalued mapping F : X ⇒ X∗, we
say that x∗ ∈ Limsupx→x F (x) if for each weak∗-neighborhood U of the origin of X∗ and
for each δ > 0 there exists x ∈ B(x, δ) such that (x∗ + U) ∩ F (x) 6= ∅.

The G-normal cone to a set C ⊆ X at x ∈ C is defined as

NG(C, x) := cl∗
(⋃
λ>0

λ∂Ad(x,C)

)
,

where d(x,C) := infc∈C ‖x − c‖ denotes the distance from x to C and cl∗ stands for the
weak∗-closure of a set in X∗, while the G-subdifferential of f at x ∈ dom f can be defined
now as follows

∂Gf(x) :=
{
x∗ ∈ X∗ : (x∗,−1) ∈ NG(epi f, (x, f(x)))

}
.

When x 6∈ dom f we set ∂Af(x) = ∂Gf(x) := ∅. Thus, by taking into account [13,
Proposition 4.2], we have for all x ∈ X the following relations of inclusion

∂F f(x) ⊆ ∂−f(x) ⊆ ∂Gf(x). (2)

One can notice that when f is a convex function it holds ∂F f(x) = ∂−f(x) = ∂Gf(x) =
∂f(x) for all x ∈ X, where ∂f(x) := {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}, for
x ∈ dom f , and ∂f(x) := ∅, otherwise, denotes the subdifferential of f at x in the sense of
convex analysis.

It is also worth mentioning that both G- and A-subdifferentials reduce to the ba-
sic/limiting/Mordukhovich one whenever X is a finite dimensional space or X is an As-
plund weakly compactly generated (WCG) space and f is locally Lipschitz at the point in
discussion (see [19] and [16, Subsection 3.2.3]).

For f : X → R∪ {+∞}, x ∈ dom f and ε ≥ 0, we define fε : X → R∪ {+∞} as being

fε(x) := f(x) + ε‖x− x‖. (3)

Lemma 2.1 Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then for all
ε ≥ 0 it holds

∂−ε f(x) = ∂−fε(x). (4)

Proof. Because of the equivalence

x∗ ∈ ∂−fε(x)⇔ for all h ∈ X : 〈x∗, h〉 ≤ d−fε(x, h),

it is sufficient to prove only the equality d−fε(x, h) = d−f(x, h)+ε‖h‖ for arbitrary h ∈ X.
Let h ∈ X. Then we have

d−fε(x, h) = lim inf
u→h
t↓0

fε(x+ tu)− fε(x)
t

= lim inf
u→h
t↓0

(
f(x+ tu)− f(x)

t
+ ε‖u‖

)

= lim inf
u→h
t↓0

f(x+ tu)− f(x)
t

+ lim
u→h
t↓0

ε‖u‖

= d−f(x, h) + ε‖h‖,
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which completes the proof. �

Remark 2.1 Let us notice that one can replace in (4) the Dini-Hadamard subdifferential
by the Fréchet one (see, for instance, [1]). Thus, when X is finite dimensional, ∂Fε f(x) =
∂−ε f(x) for all x ∈ X and all ε ≥ 0. On the other hand, in case f is convex, by a
classical subdifferential sum formula provided by the convex analysis, one has ∂−fε(x̄) =
∂f(x̄)+εBX∗ for all ε ≥ 0. Finally, we notice that for the Dini-Hadamard ε-subdifferential
the following monotonicity property holds:

∂−ε1f(x) ⊆ ∂−ε2f(x), (5)

when ε2 ≥ ε1 ≥ 0 and x ∈ X.

The notion that we recall below was introduced by Treiman in [27] and, as we will
prove in Theorem 2.3, it turns out to be very useful for characterizing the Dini-Hadamard
subdifferential.

Definition 2.1 A set S ⊆ X is said to be a sponge around x ∈ X if for all h ∈ X \ {0}
there exist λ > 0 and δ > 0 such that x+ [0, λ] ·B(h, δ) ⊆ S.

Example 2.1 (cf. [27, Example 2.3]) Let f : X → R be a locally Lipschitz and Gâteaux
differentiable function at x ∈ X with x∗ ∈ X∗ its Gâteaux derivative at this point. Then
for all ε > 0 the sets

S1 := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖}

and
S2 := {x ∈ X : f(x)− f(x) ≤ 〈x∗, x− x〉+ ε‖x− x‖}

are sponges around x.

Remark 2.2 Every neighborhood of a point x ∈ X is also a sponge around x, but the
converse is not true (see for instance Example 2.2 below). Nevertheless, when S is a convex
set or X is a finite dimensional space (here one can make use of the fact that the unit
sphere is compact), then every sponge around x is also a neighborhood of x.

The following notion has been introduced in [27], too.

Definition 2.2 Let f : X → R ∪ {+∞} be a given function, x ∈ dom f and ε ≥ 0. We
say that x∗ ∈ X∗ is an Hε-subgradient of f at x if there exists a sponge S around x such
that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖.

The following lemma was inspired by some statements one can find in Treiman’s paper
[27].

Lemma 2.2 Let f : X → R ∪ {+∞} be a given function, x ∈ dom f and ε ≥ 0. The
following statements are true:

(i) If x∗ ∈ ∂−ε f(x), then x∗ is an Hγ-subgradient of f at x for all γ > ε.
(ii) If f is calm at x and x∗ is an Hε-subgradient of f at x, then x∗ ∈ ∂−ε f(x).
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Proof. (i) Let x∗ ∈ ∂−ε f(x) and γ > ε be given. We consider the set

S := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − γ‖x− x‖}

and show in the following that S is a sponge around x, which will complete the proof of the
first statement. To this end, we fix an arbitrary element h ∈ X \ {0}. Since x∗ ∈ ∂−ε f(x),
we obtain

lim inf
u→h
t↓0

f(x+ tu)− f(x)
t

≥ 〈x∗, h〉 − ε‖h‖

> 〈x∗, h〉 −
(
γ + ε

2

)
‖h‖ > 〈x∗, h〉 − γ‖h‖.

Thus there exists δ1 > 0 such that for all u ∈ B(h, δ1)

〈x∗, h〉 −
(
γ + ε

2

)
‖h‖ > 〈x∗, u〉 − γ‖u‖.

On the other hand, using the definition of the limit inferior, there exist δ2 > 0 such that
for all t ∈ (0, δ2) and all u ∈ B(h, δ2) it holds

f(x+ tu)− f(x)
t

> 〈x∗, h〉 −
(
γ + ε

2

)
‖h‖.

Hence, the last two relations above lead to the existence of δ := 1
2 min{δ1, δ2} > 0 such

that for all t ∈ (0, δ] and all u ∈ B(h, δ)

f(x+ tu)− f(x) > 〈x∗, tu〉 − γ‖tu‖.

Now, it is not difficult to see that for all x ∈ x+ [0, δ]B(h, δ) one gets

f(x)− f(x) ≥ 〈x∗, x− x〉 − γ‖x− x‖

and therefore x+ [0, δ]B(h, δ) ∈ S, which means in fact that S is a sponge around x.
(ii) Take x∗ to be an arbitrary Hε-subgradient of f at x. Via Definition 2.2 one gets

the existence of a sponge S around x such that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖.

Let h ∈ X \ {0} be fixed. Then there exist λ > 0 and δ > 0 such that for all t ∈ (0, λ] and
u ∈ B(h, δ), one has x+ tu ∈ S and, consequently,

f(x+ tu)− f(x)
t

≥ 〈x∗, u〉 − ε‖u‖.

Passing now to limit inferior in both sides, we obtain

lim inf
u→h
t↓0

f(x+ tu)− f(x)
t

≥ lim inf
u→h
t↓0

[〈x∗, u〉 − ε‖u‖] = 〈x∗, h〉 − ε‖h‖.

This actually means that for all h ∈ X \ {0}

d−f(x;h) ≥ 〈x∗, h〉 − ε‖h‖. (6)

As f is calm at x, it holds that d−f(x; 0) = 0 and, consequently, x∗ ∈ ∂−ε f(x). �
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Remark 2.3 From the proof of Lemma 2.2 (i) one can easily conclude that whenever
x ∈ dom f , ε ≥ 0, x∗ ∈ ∂−ε f(x) and γ > ε the set

S := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − γ‖x− x‖} (7)

is a sponge around x.

In the following we provide an example of a sponge around a point which is not a
neighborhood of that point.

Example 2.2 We consider again the space C[0, 1] endowed with the supremum norm. Let
x ∈ SC[0,1] be an element in this space with the property that |x| attains its maximum at
exactly one point of the interval [0, 1]. Let further x∗ ∈ X∗ be an element in ∂−(−‖·‖∞)(x),
which, as we have seen, is a nonempty set. As the Fréchet subdifferential of −‖ · ‖∞ at x
is empty, there exists an α > 0 such that for all δ > 0 there is some x ∈ B(x, δ) satisfying

‖x‖∞ − ‖x‖∞ + α‖x− x‖∞ < 〈x∗, x− x〉. (8)

As seen above, the set

S := {x ∈ C[0, 1] : ‖x‖∞ − ‖x‖∞ + α‖x− x‖∞ ≥ 〈x∗, x− x〉} (9)

is a sponge around x (take ε := 0 and γ := α in Remark 2.3). It remains to show that
S is not a neighborhood of x. Supposing the contrary, there must exist a δ̄ > 0 such
that B(x, δ̄) ⊆ S. But this is a contradiction to (8) and, consequently, S fails to be a
neighborhood of x.

Example 2.3 The following examples shows that in the second assertion of Lemma 2.2
one cannot renounce at the hypotheses that f is calm at x. Indeed, take S a sponge
around x ∈ X, which is not a neighborhood of x̄ and define f : X → R as being

f(x) =
{

0, if x ∈ S,
−1, otherwise.

Then, for all ε ≥ 0, 0 is an Hε-subgradient of f at x̄, but f is not calm at x̄ and,
consequently, 0 /∈ ∂−ε f(x).

Example 2.4 Both assertions of Lemma 2.2 have been given by Treiman in [27] without
proof for f a lower semicontinuous function on X and without assuming for (ii) that f
is calm at x̄. The following example, which has been kindly provided to us by Jean-
Paul Penot, shows that even for lower semicontinuous functions one cannot renounce at
the calmness hypotheses in order to get the desired conclusion. Let X be an infinite
dimensional Banach space and a sequence of elements {en}n≥1 on the unit sphere of X
such that ‖en − em‖ > 1/2 for all n,m ≥ 1, n 6= m. Define f : X → R as being
f(x) = −1/2n when n ≥ 1 is such that x = 1/4nen and f(x) = 0, otherwise. The function
f is lower semicontinuous and it fulfills f(x) ≥ f(0) for all x ∈ X \

⋃
n≥1 {1/4nen}. Since

X \
⋃
n≥1 {1/4nen} is a sponge around 0, for all ε ≥ 0, 0 is an Hε-subgradient of f at 0.

On the other hand, as f fails to be calm at 0, 0 cannot be a Dini-Hadamard ε-subgradient
of f at 0.
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Next we provide a variational description of the Dini-Hadamard ε-subdifferential simi-
lar to the one that exists for the Fréchet ε-subdifferential, but by replacing neighborhoods
with sponges.

Theorem 2.3 Let f : X → R∪ {+∞} be an arbitrary function and x ∈ dom f . Then for
all ε ≥ 0 one has

x∗ ∈ ∂−ε f(x)⇔ f is calm at x and ∀α > 0 there exists S a sponge around x such that
∀x ∈ S f(x)− f(x) ≥ 〈x∗, x− x〉 − (α+ ε)‖x− x‖.

(10)

Proof. Consider an ε ≥ 0 fixed.
“⊆” Let x∗ ∈ ∂−ε f(x) and α > 0. Using Lemma 2.2 one obtains the existence of a

sponge S around x such that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α+ ε)‖x− x‖.

Further, from x∗ ∈ ∂−ε f(x) it follows that d−f(x; 0) = 0 and this provides the desired
inclusion.

“⊇” For the reverse inclusion assume that f is calm at x and consider an arbitrary
element x∗ fulfilling the property in the right-hand side of (10). We have to show that

d−f(x;h) ≥ 〈x∗, h〉 − ε‖h‖ ∀h ∈ X. (11)

Let h ∈ X \ {0} be fixed. For all k ∈ N, by taking αk := 1
k , there exists Sk a sponge

around x such that for all x ∈ Sk

f(x)− f(x) ≥ 〈x∗, x− x〉 −
(

1
k

+ ε

)
‖x− x‖.

Thus, for all k ∈ N there exist λk > 0 and δk > 0 such that for all t ∈ (0, λk) and all
u ∈ B(h, δk) one has x+ tu ∈ Sk and

f(x+ tu)− f(x) ≥ 〈x∗, tu〉 −
(

1
k

+ ε

)
‖tu‖,

which imply in turn that

d−f(x;h) = lim inf
u→h
t↓0

f(x+ tu)− f(x)
t

≥

lim inf
u→h
t↓0

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

= 〈x∗, h〉 −
(

1
k

+ ε

)
‖h‖.

Passing now to the limit as k → +∞, we finally obtain that

d−f(x;h) ≥ 〈x∗, h〉 − ε‖h‖.

Noticing that, due to the calmness of f at x, the above inequality is valid also in case
h = 0, the desired conclusion follows. �
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Remark 2.4 By making use of Theorem 2.3 one can easily prove that for ε ≥ 0 the Dini-
Hadamard ε-subdifferential of f : X → R∪ {+∞} at x ∈ dom f can be also characterized
at follows

x∗ ∈ ∂−ε f(x)⇔ f is calm at x and ∀α > 0 ∀u ∈ SX ∃δ > 0 such that
∀s ∈ (0, δ) ∀v ∈ B(u, δ) for x := x+ sv one has
f(x)− f(x) ≥ 〈x∗, x− x〉 − (α+ ε)‖x− x‖.

Further, let f, g : X → R ∪ {+∞} be two arbitrary functions. By using Theorem 2.3
and the fact that the intersection of two sponges around the same point is a sponge around
that point, one can prove that for all ε, η ≥ 0 and all x ∈ dom f ∩ dom g

∂−ε f(x) + ∂−η g(x) ⊆ ∂−ε+η(f + g)(x). (12)

From the conventions made for the Dini-Hadamard ε-subdifferential it follows that (12) is
in fact true for all x ∈ X.

In what follows we give via (12) a formula for the difference of two functions. To this
end we need to introduce the notion of star-difference (also called Pontryagin difference)
of two sets. For A,B ⊆ X the star-difference of A and B is defined as

A
∗
B := {x ∈ X : x+B ⊆ A} =

⋂
b∈B
{A− b}.

This notion has been introduced by Pontryagin in [25] in the context of linear differential
games and has found resonance in different theoretical and practical investigations in the
field of nonsmooth analysis (see, for instance, [1, 2, 5, 8, 10,15,18,26]).

When dealing with the difference of two functions g, h : X → R ∪ {+∞} we assume
throughout this paper that dom g ⊆ domh. This guarantees that the function f = g− h :
X → R ∪ {+∞} is well-defined. Moreover, one can easily verify that g = f + h and
dom f = dom g and, consequently, by making use of (12), we get the following result.

Proposition 2.4 Let g, h : X → R ∪ {+∞} be given functions with dom g ⊆ domh and
f := g − h. Then for all ε, η ≥ 0 and all x ∈ X one has

∂−ε f(x) ⊆ ∂−ε+ηg(x)
∗
∂−η h(x). (13)

Remark 2.5 (a) If for η ≥ 0 and x ∈ X the set ∂−η h(x) is nonempty, then for all ε ≥ 0

∂−ε+ηg(x)
∗
∂−η h(x) ⊆ ∂−ε+ηg(x)− ∂−η h(x).

(b) If x ∈ dom f is a local minimizer of the function f := g − h, then

0 ∈ ∂−g(x)
∗
∂−h(x)

or, equivalently,
∂−h(x) ⊆ ∂−g(x).

(c) Similar characterizations for the difference of two functions to the one in Proposition
2.4 have been given in [1] by means of the Fréchet subdifferential and in [18] by means of
the Mordukhovich (basic/limiting) subdifferential (see [16,17]).
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3 The difference of two directionally approximately star-
shaped functions

In this section we show first of all that for some particular classes of functions one gets
equality in (13). After that, we employ these investigations to the formulation of opti-
mality conditions via the Dini-Hadamard subdifferential for cone-constrained optimization
problems having the difference of two functions as objective.

We start by presenting some generalized convexity notions for functions.

Definition 3.1 Let f : X → R∪{+∞} be a given function and x ∈ dom f . The function
f is said to be

(i) approximately convex at x, if for any ε > 0 there exists δ > 0 such that for every
x, y ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)y + tx) ≤ (1− t)f(y) + tf(x) + εt(1− t)‖x− y‖. (14)

(ii) approximately starshaped at x, if for any ε > 0 there exists δ > 0 such that for
every x ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (15)

(iii) directionally approximately starshaped at x, if for any ε > 0 and any u ∈ SX there
exists δ > 0 such that for every s ∈ (0, δ), every v ∈ B(u, δ) and every t ∈ [0, 1], when
x := x+ sv, one has

f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (16)

The approximately convex functions have been introduced in [20] (see also [3, 21]), while
the approximately starshaped and the directionally approximately starshaped ones have
been object of study in [22].

Remark 3.1 The set of approximately convex functions at a given point x ∈ X is a
convex cone containing the functions which are strictly differentiable at x, being stable
under finite suprema (see [20]). An example of an approximately convex function at every
x ∈ R, which is not convex, is x 7→ |x| − x2.

Remark 3.2 One can easily see that if f is approximately convex at x, then it is ap-
proximately starshaped at x, too. Nevertheless, the reverse implication does not hold.
The following example in this sense has been inspired by [22, Example 6.10]. We define
f : R → R ∪ {+∞} as follows: f(0) = 0, f(x) = 1/(2n + 1)(x − 1/(2n)) + 1/(4n2), for
x ∈ [1/(2n + 1), 1/(2n)], n ≥ 1, f(x) = 1/(2n)x, for x ∈ [1/(2n), 1/(2n − 1)), n ≥ 1,
f(x) = +∞, for x ≥ 1, while for x < 0 we take f(x) = f(−x). Then f is approximately
starshaped at 0, but not approximately convex at 0.

Remark 3.3 By a straightforward calculation one can show that if f is approximately
starshaped at x, then it is directionally approximately starshaped at x, too. In order
to give an example for the failure of the reverse implication we first characterize the
class of directionally approximately starshaped functions by means of sponges. A direct
consequence of Proposition 3.1 will be the fact that, in finite dimensional spaces, the two
classes of functions coincide (see also [22]).
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Proposition 3.1 Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then f
is directionally approximately starshaped at x if and only if for any ε > 0 there exists a
sponge S around x such that for every x ∈ S and every t ∈ [0, 1] one has

f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (17)

Proof. As the sufficiency follows directly from the definition of the sponge, we only prove
the necessity and assume that f is directionally approximately starshaped at x. Let be
ε > 0 fixed. We show that the set

S := {x ∈ X : f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖, ∀t ∈ [0, 1]}

is a sponge around x. To this end, we take an arbitrary h ∈ X \ {0}. Since 1
‖h‖h ∈ SX ,

there exists δ > 0 such that for every s ∈ (0, δ), every v ∈ B
(

1
‖h‖h, δ

)
and every t ∈ [0, 1],

when x := x+ sv, it holds

f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖.

Let be now δ1 := δ
2‖h‖ > 0 and δ2 := δ‖h‖ > 0. For every s1 ∈ (0, δ1] and every

v1 ∈ B(h, δ2) one has s1‖h‖ ∈ (0, δ) and 1
‖h‖v1 ∈ B

(
1
‖h‖h, δ

)
and, in this way, for every

t ∈ [0, 1] and x := x+ s1v1 = x+ s1‖h‖ 1
‖h‖v1 it holds

f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖.

Consequently, x+ [0, δ1]B(h, δ2) ⊆ S, which means that S is a sponge around x and this
leads to the desired conclusion. �

We come now to the announced example of a function which is directionally approxi-
mately starshaped at a point, but fails to be approximately starshaped at that point.

Example 3.1 Let x ∈ X, S ⊆ X be a sponge around x, which is not a neighborhood of
x̄ (see, for instance, Example 2.2), and the function f : X → R,

f(x) =
{

0, if x ∈ S,
−‖x− x‖, otherwise.

The function f is directionally approximately starshaped at x, as for every ε > 0 the
inequality in (17) is fulfilled for all x in the given sponge S and all t ∈ [0, 1]. We show
that f is not approximately starshaped at x by assuming the contrary. This means that
for ε = 1/2 there exists δ > 0 such that for every x ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)x+ tx) ≤ (1− t)f(x) + tf(x) +
1
2
t(1− t)‖x− x‖. (18)

Since S is not a neighborhood of x̄, there exists x ∈ B(x, δ)\S. As S is a sponge around x
and x 6= x, there exists λ ∈ (0, 1) such that x+ [0, λ](x− x) ∈ S. But from (18) it follows
that for all t ∈ (0, λ]

t‖x− x‖ ≤ 1
2
t(1− t)‖x− x‖.

Dividing now by t and passing to the limit as t ↓ 0, we obtain ‖x − x‖ ≤ 0 and hence
x = x, which is impossible. Consequently, f is not approximately starshaped at x.
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Remark 3.4 According to [22, Lemma 26], if f is approximately starshaped at x ∈ dom f ,
then one has ∂F f(x) = ∂−f(x). From the previous example it follows that this is no longer
true if the function is (only) directionally approximately starshaped at x. Indeed, for the
function in Example 3.1 one gets, since f is calm at x, via Theorem 2.3, that 0 ∈ ∂−f(x),
while, by employing the characterization (1), it follows that 0 /∈ ∂F f(x).

We state the following result on directionally approximately starshaped functions with-
out proof, since it is a direct consequence of [22, Lemma 27], whereby the sponge can be
constructed like in (7).

Lemma 3.2 Let the f : X → R ∪ {+∞} be directionally approximately starshaped at
x ∈ dom f . Then for every α > 0 and every ε ≥ 0 there exists a sponge S around x such
that for every x ∈ S one has

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α+ ε)‖x− x‖ ∀x∗ ∈ ∂−ε f(x) (19)
f(x)− f(x) ≥ 〈x∗, x− x〉 − (α+ ε)‖x− x‖ ∀x∗ ∈ ∂−ε f(x). (20)

The notion we introduce next extends the gap-continuity introduced by Penot in [24].

Definition 3.2 A multivalued mapping F : X ⇒ Y between a topological space X and
a metric space Y is said to be spongiously gap-continuous at x ∈ X if for any ε > 0 there
exists a sponge S around x such that for every x ∈ S

gap(F (x), F (x)) < ε,

where for two subsets A and B of Y

gap(A,B) := inf{d(a, b) : a ∈ A, b ∈ B},

with the convention that if one of the sets is empty, then gap(A,B) := +∞.

When defining a gap-continuous mapping one only has to replace in the above definition
the sponge S around x with a neighborhood of x in X. Therefore, every gap-continuous
mapping at a point is spongiously gap-continuous at that point. Every multivalued map-
ping which is either lower semicontinuous or upper semicontinuous at a given point is
gap-continuous (see [24]) and, consequently, spongiously gap-continuous at that point.
On the other hand, it can be shown that F : X ⇒ Y is spongiously gap-continuous at x if
and only if for any ε > 0 there exists a sponge S around x such that for every x ∈ S one
has

F (x) ∩ (F (x) + εBY ) 6= ∅. (21)

When x ∈ X and S ⊆ X is a sponge around x, which is not a neighborhood of x,
then F : X ⇒ R defined by F (x) = {0} for x ∈ S and F (x) = ∅, otherwise, is not
gap-continuous, but spongiously gap-continuous at x.

Proposition 3.3 Let F,G : X ⇒ Y be two multivalued mappings. If F is spongiously
gap-continuous at x ∈ X and there exists a sponge S around x such that F (x) ⊆ G(x) for
all x ∈ S, then G is spongiously gap-continuous at x.
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Proof. Let be ε > 0. Using Definition 3.2 we get a sponge T around x such that for
every x ∈ T

inf{d(x∗, x∗) : x∗ ∈ F (x), x∗ ∈ F (x)} < ε.

The set S ∩ T is a sponge around x, too, and for all x ∈ S ∩ T we have

inf{d(x∗, x∗) : x∗ ∈ G(x), x∗ ∈ G(x)} ≤ inf{d(x∗, x∗) : x∗ ∈ F (x), x∗ ∈ F (x)} < ε,

which concludes the proof. �

Remark 3.5 For f : X → R ∪ {+∞} and x ∈ dom f , via the monotonicity property of
the Dini-Hadamard ε-subdifferential (cf. Remark 2.1), it follows that ∂−η f is spongiously
gap-continuous at x for all η > 0, whenever ∂−f is spongiously gap-continuous at x.

The following result gives a first refinement of the statement in Proposition 2.4 in case
ε = η = 0.

Theorem 3.4 Let g, h : X → R ∪ {+∞} be two directionally approximately starshaped
functions at x ∈ dom g ⊆ domh such that ∂−h is spongiously gap-continuous at x and
f := g − h is calm at x. Then it holds

∂−f(x) = ∂−g(x)
∗
∂−h(x). (22)

Proof. In view of Proposition 2.4 we only have to prove that ∂−g(x)∗∂−h(x) ⊆ ∂−f(x).
To this end take an arbitrary x∗ ∈ ∂−g(x)∗∂−h(x) and fix α > 0. Using Lemma 3.2 and
the fact that ∂−h(x) is spongiously gap-continuous at x, one gets a sponge S around x
such that for all x ∈ S

∃z∗x ∈ ∂−h(x), ∃z∗x ∈ ∂−h(x) such that ‖z∗x − z∗x‖ ≤
α

3
, (23)

〈u∗, x− x〉 ≤ g(x)− g(x) +
α

3
‖x− x‖ ∀u∗ ∈ ∂−g(x) (24)

and
〈v∗, x− x〉 ≤ h(x)− h(x) +

α

3
‖x− x‖ ∀v∗ ∈ ∂−h(x). (25)

Let be now x ∈ S fixed. Taking u∗ := x∗ + z∗x ∈ ∂−g(x) in (24) and v∗ := z∗x ∈ ∂−h(x) in
(25) and adding the two inequalities, we obtain

〈x∗ + z∗x − z∗x, x− x〉 ≤ f(x)− f(x) +
2α
3
‖x− x‖

⇔ 〈x∗, x− x〉 ≤ f(x)− f(x) + 〈z∗x − z∗x, x− x〉+
2α
3
‖x− x‖

and from here, via (23),

〈x∗, x− x〉 ≤ f(x)− f(x) + α‖x− x‖.

By Theorem 2.3 it follows that x∗ ∈ ∂−f(x), which concludes the proof. �
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Remark 3.6 (a) In the hypotheses of Theorem 3.4 one has that 0 ∈ ∂−f(x) if and only
if ∂−h(x) ⊆ ∂−g(x).

(b) If g, h : X → R ∪ {+∞} are convex functions with dom g ⊆ domh, ∂−h is spon-
giously gap-continuous at x ∈ dom g and f := g − h is calm at x, then

∂−f(x) = ∂g(x)
∗
∂h(x).

Theorem 3.4 is the main ingredient for the proof of the following result.

Theorem 3.5 Let g, h : X → R ∪ {+∞} be two directionally approximately starshaped
functions at x ∈ dom g ⊆ domh and f := g − h is calm at x. If for some η ≥ 0 the
multivalued mapping ∂−η h is spongiously gap-continuous at x, then for all ε ≥ 0 it holds

∂−ε f(x) = ∂−ε+ηg(x)
∗
∂−η h(x). (26)

Proof. Let η ≥ 0 be such that ∂−η h is spongiously gap-continuous at x and ε ≥ 0 be
fixed. In view of Proposition 2.4 we only have to prove that ∂−ε+ηg(x)∗∂−η h(x) ⊆ ∂−ε f(x).
To this end we consider an arbitrary x∗ in the set on the left-hand side of the inclusion
above. Taking gε+η, hη : X → R ∪ {+∞} as being gε+η(x) := g(x) + (ε + η)‖x − x‖ and
hη(x) := h(x) + η‖x− x‖, respectively, via Lemma 2.1, it holds x∗ ∈ ∂−gε+η(x)∗∂−hη(x).
The functions gε+η and hη are both directionally approximately starshaped at x, while
∂−hη is spongiously gap-continuous at x. Since fε(x) := f(x)+ε‖x−x‖ = gε+η(x)−hη(x)
for x ∈ X is calm at x, by Theorem 3.4 and taking again into account Lemma 2.1, one
obtains

∂−ε+ηg(x)
∗
∂−η h(x) = ∂−gε+η(x)

∗
∂−hη(x) = ∂−fε(x) = ∂−ε f(x)

and hence the desired conclusion. �

Remark 3.7 (a) One should notice that, in the hypotheses of Theorem 3.5, for all ε ≥ 0
it holds

∂−ε f(x) =
⋂
µ≥0

(
∂−ε+µg(x)

∗
∂−µ h(x)

)
. (27)

(b) As pointed out in Remark 3.5, in order to guarantee that ∂−η h is spongiously gap-
continuous at x for a given η ≥ 0, it is enough to assume that ∂−h is spongiously gap-
continuous at x.

Remark 3.8 For similar results to Theorem 3.4 and Theorem 3.5 expressed by means
of the Fréchet subdifferential we refer to [1, Theorem 1] and [1, Theorem 3], respectively.
There, the functions g and h are assumed to be approximately starshaped at x and the
spongious gap-continuity is replaced by the gap-continuity. The fact that there exist
directionally approximately starshaped functions which are not approximately starshaped
fully motivates the necessity of formulating results like Theorem 3.4 and Theorem 3.5.
Notice that the assumption dom g ⊆ domh seems to be necessary also in [1], in order
to guarantee that the difference function takes values in R ∪ {+∞}, which is the setting
considered in the mentioned article, too.
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The following result is a consequence of Theorem 3.5 and [1, Theorem 3] (see also
Lemma 2.1) and describes a situation for which the Fréchet and Dini-Hadamard subdif-
ferential of the difference of two approximately starshaped functions at a point coincide
(notice the two subdifferentials coincide on approximately starshaped functions, while the
difference of two approximately starshaped functions at a point is not necessarily approx-
imately starshaped at that point).

Corollary 3.6 Let g, h : X → R ∪ {+∞} be two approximately starshaped functions at
x ∈ dom g ⊆ domh with the property that there exists η ≥ 0 such that ∂−η h is gap-
continuous at x and f := g−h is calm at x. Then for all ε ≥ 0 it holds ∂Fε f(x) = ∂−ε f(x).

Two further corollaries of Theorem 3.5 follow.

Corollary 3.7 Let g, h : X → R ∪ {+∞} be two directionally approximately starshaped
functions at x ∈ dom g ⊆ domh such that ∂−h is spongiously gap-continuous at x and
f := g − h is calm at x. Then the following statements are equivalent:

(i) there exists η ≥ 0 such that ∂−η h(x) ⊆ ∂−η g(x);
(ii) 0 ∈ ∂−f(x);
(iii) for all η ≥ 0 ∂−η h(x) ⊆ ∂−η g(x).

Corollary 3.8 Let g, h : X → R∪{+∞} be two given functions, x ∈ dom g ⊆ domh and
f := g − h be calm at x. Then the following assertions are true:

(a) If g is convex, h is directionally approximately starshaped at x and ∂−h is spon-
giously gap-continuous at x, then for all ε ≥ 0 it holds

∂−ε f(x) = (∂g(x) + εBX∗)
∗
∂−h(x).

(b) If g is lower semicontinuous, approximately convex at x, h is directionally approx-
imately starshaped at x and ∂−h is spongiously gap-continuous at x, then for all ε ≥ 0 it
holds

∂−ε f(x) = (∂−g(x) + εBX∗)
∗
∂−h(x).

Proof. (a) The statement follows via Theorem 3.5 and Remark 2.1.
(b) Applying Theorem 3.5 for η = 0, we obtain that ∂−ε f(x) = ∂−ε g(x)∗∂−h(x). Since

the function gε : X → R ∪ {+∞}, gε(x) = g(x) + ε‖x − x‖ is lower semicontinuous and
approximately convex at x, by [20, Theorem 3.6], it follows that (see also Lemma 2.1 and
(2)) ∂−ε g(x) = ∂−gε(x̄) = ∂Ggε(x). On the other hand, since ∂−g(x) = ∂Gg(x) (again,
by [20, Theorem 3.6]), from [13, Corollary 5.6.2] one gets ∂Ggε(x) = ∂Gg(x) + ∂G(ε‖x −
·‖)(x) = ∂−g(x) + εBX∗ and this leads to the desired conclusion. �

In the final part of the paper we employ the above achievements to the formulation of
optimality conditions for a cone-constrained optimization problem having the difference
of two function as objective. To this aim we need the following notion.

Definition 3.3 Let C ⊆ X be a nonempty set, f : X → R ∪ {+∞} be a given function,
x ∈ dom f ∩ C and ε > 0. We say that x is a spongiously local ε-blunt minimizer of f on
the set C if there exists a sponge S around x such that for all x ∈ S ∩ C

f(x) ≥ f(x)− ε‖x− x‖.

In case C = X, we simply call x a spongiously local ε-blunt minimizer of f .
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Remark 3.9 It is worth noticing that the above notion generalizes the one of ε-blunt
minimizer introduced by Amahroq, Penot and Syam in [1]. Although in finite dimensional
spaces the two notions coincide, this is in general not the case. To see this one only needs
to take a look at the Example 3.1. There, x is a spongiously local ε-blunt minimizer of f
for all ε > 0, but not a local ε-blunt minimizer of f for ε ∈ (0, 1).

The following characterization of the Dini-Hadamard subdifferential by means of spon-
giously local ε-blunt minimizers is a direct consequence of Theorem 2.3.

Proposition 3.9 Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then:

0 ∈ ∂−f(x)⇔ f is calm at x and x is a spongiously local ε− blunt minimizer of
f for all ε > 0.

Consider now another Banach space Z and Z∗ its topological dual space. Let C ⊆ X
be a convex and closed set and K ⊆ Z be a nonempty convex and closed cone with
K∗ := {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 for all z ∈ K} its dual cone. Consider a function k : X →
Z which is assumed to be K-convex, meaning that for all x, y ∈ X and all t ∈ [0, 1],
(1− t)k(x) + tk(y)−k((1− t)x+ ty) ∈ K, and K-epi closed, meaning that the K-epigraph
of k, epiK k := {(x, z) ∈ X × Z : z ∈ k(x) + K}, is a closed set. One can notice that
when Z = R and K = R+ the notion of K-epi closedness coincide with the classical
lower semicontinuity. For z∗ ∈ K∗, by (z∗k) : X → R we denote the function defined
by (z∗k)(x) = 〈z∗, k(x)〉. Further, let g, h : X → R ∪ {+∞} be two given functions with
dom g ⊆ domh and f := g − h.

The next result provides optimality conditions for the cone-constrained optimization
problem

(P) inf
x∈A

f(x).

A = {x ∈ C : k(x) ∈ −K}

Theorem 3.10 Let be x ∈ int(dom g) ∩ A. Suppose that g is lower semicontinuous and
approximately convex at x, that f is calm at x and that

⋃
λ>0 λ(k(C) + K) is a closed

linear subspace of Z. Then the following assertions are true:
(a) If x is a spongiously local ε-blunt minimizer of f on A for all ε > 0, then the

following relation holds

∂−h(x) ⊆ ∂−g(x) +
⋃

z∗∈K∗
(z∗k)(x)=0

∂((z∗k) + δC)(x). (28)

(b) Viceversa, if h is directionally approximately starshaped at x, ∂−h is spongiously
gap-continuous at x and (28) holds, then x is a spongiously local ε-blunt minimizer of f
on A for all ε > 0.

Proof. We start by noticing thatA is a convex and closed set. Because
⋃
λ>0 λ(k(C)+K)

is a closed linear subspace of Z, via [4, Theorem 8.6], we have the following representation

N(A, x) = ∂(δ{x∈C:k(x)∈−K})(x) =
⋃

z∗∈K∗
(z∗k)(x)=0

∂((z∗k) + δC)(x)
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for N(A, x), which is the normal cone to A at x in the sense of the convex analysis.
Therefore, relation (28) can be equivalently written as

∂−h(x) ⊆ ∂−g(x) +N(A, x). (29)

On the other hand, taking into consideration that g is lower semicontinuous and ap-
proximately convex at x ∈ int(dom g), in view of [20, Proposition 3.2 and Theorem 3.6],
we have ∂−g(x) = ∂Gg(x), ∂−(g + δA)(x) = ∂G(g + δA)(x) and g is locally Lipschitz
at x. Further, from [13, Corollary 5.6.2] we get ∂G(g + δA)(x) = ∂Gg(x) + ∂δA(x) =
∂−g(x) + N(A, x), which means that, in the hypotheses of the theorem, relation (28) is
nothing else than

∂−h(x) ⊆ ∂−(g + δA)(x). (30)

(a) Assuming that x ∈ A is a spongiously local ε-blunt minimizer of f on A for all ε > 0
means nothing else than that x is a spongiously local ε-blunt minimizer of f + δA for all
ε > 0 or, equivalently, via Proposition 3.9, that 0 ∈ ∂−(f + δA)(x) = ∂−((g+ δA)− h)(x).
From here, by using Proposition 2.4, we obtain relation (30) and this closes the proof of
the first statement.

(b) For proving the second statement we have to notice first that g + δA is approxi-
mately convex at x. Thus, via Theorem 3.4, one has that ∂−((g + δA)− h)(x) = ∂−(g +
δA)(x)∗∂−h(x) and, since (30) is fulfilled, we have 0 ∈ ∂−((g+δA)−h)(x) = ∂−(f+δA)(x).
Taking again into account Proposition 3.9 we obtain that x is a spongiously local ε-blunt
minimizer of f on A for all ε > 0. �

Remark 3.10 For a similar result to Theorem 3.10, given in the particular instance when
K = {0} and k(x) = 0 for all x ∈ X and by means of the Fréchet subdifferential, we refer
to [1, Proposition 6]. In the second statement of that result the authors ask for h to be
approximately starshaped at x with ∂Fh gap-continuous at x and characterize the local ε-
blunt minimizers of f for all ε > 0. To this end they make use of some exact subdifferential
formulae for the limiting subdifferential, but by providing an incorrect argumentation,
since these are valid in Asplund spaces. Nevertheless, the statement in [1, Proposition 6]
is true in Banach spaces, too, and it can be proven in the lines of the proof of Theorem
3.10.
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