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Abstract. In this paper we extend to infinite-dimensional spaces a vector
duality concept recently considered in the literature in connection to the clas-
sical vector minimization linear optimization problem in a finite-dimensional
framework. Weak, strong and converse duality for the vector dual problem in-
troduced with this respect are proven and we also investigate its connections to
some classical vector duals considered in the same framework in the literature.
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1 Introduction and preliminaries

Different vector dual problems have been attached in the literature to the clas-
sical linear vector optimization problem in finite-dimensional spaces and in [2,
Section 5.5] we investigated the connections between them. Worth mentioning
is that for some of these classical vector duals strong duality statements were
available only when a constant vector that appears in the constraints of the
primal problem was taken different to the zero vector. Then, inspired by a
vector dual considered in [3] for the case when the image space of the objective
function of the primal problem is partially ordered by the corresponding non-
negative orthant, we introduced in [1] a new vector dual to the classical linear
vector optimization problem, for the situation when an arbitrary pointed convex
cone partially ordered the mentioned image space, overcoming the drawbacks
of the mentioned duals. We have provided duality assertions for this vector
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dual regardless of the choices of the elements involved and we compared the
image set of this new dual and its set of maximal elements with the others
considered in the literature. The scope of this paper is to extend this vector
dual to infinite-dimensional spaces.

Consider the separated locally convex vector spaces X, Z and V and their
topological dual spaces X∗, Z∗ and, respectively, V ∗, endowed with the cor-
responding weak∗ topologies. Denote by 〈x∗, x〉 = x∗(x) the value at x ∈ X
of the linear continuous functional x∗ ∈ X∗. A nonempty set S ⊆ X is called
cone if λS ⊆ S for all λ ≥ 0. The cone S ⊆ X is said to be nontrivial if
S 6= {0} and S 6= X, and pointed if S ∩ (−S) = {0}. On Z we consider
the partial ordering “5C” induced by the convex cone C ⊆ Z, defined by
z 5C y ⇔ y − z ∈ C when z, y ∈ Z. We use also the notation z ≤C y to write
more compactly that z 5C y and z 6= y, where z, y ∈ Z. The dual cone of C is
C∗ = {y∗ ∈ Z∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C}. Let also V be partially ordered by the
nontrivial pointed convex cone K ⊆ V .

Given a subset U of X, by cl(U), lin(U), cone(U) and ri(U) we denote
its closure, linear hull, conical hull and relative interior (that is the interior
relative to the closure of its affine hull), respectively. Moreover, if U is convex
its strong quasi relative interior is sqri(U) =

{
x ∈ U : cone(U − x) is a closed

linear subspace
}

. The quasi interior of the dual cone of K is K∗0 :=
{
v∗ ∈

K∗ : 〈v∗, v〉 > 0 for all v ∈ K\{0}
}

. If K is closed, then K∗0 = {x∗ ∈ K∗ :
cl(cone(K∗ − x∗)) = X∗}.

With L(X,V ) we denote the set of the linear continuous mappings L :
X → V . Given a linear continuous mapping L ∈ L(X,V ), we have its adjoint
L∗ : V ∗ → X∗ given by 〈L∗v∗, x〉 = 〈v∗, Lx〉 for any (x, v∗) ∈ X × V ∗.

The vector optimization problems we consider in this paper consist of vector-
minimizing or vector-maximizing a vector function with respect to the partial
ordering induced in its image space by a pointed convex cone. As notions
of solutions for vector optimization problems we rely on the classical efficient
and properly efficient solutions, the latter considered with respect to the linear
scalarization.

Let M ⊆ V be a nonempty set. An element v ∈M is said to be a minimal
element of M (regarding the partial ordering induced by K) if there exits no
v ∈ M satisfying v ≤K v. The set of all minimal elements of M is denoted
by Min(M,K). Even if in the literature there are several concepts of proper
minimality for a given set, we deal here only with the properly minimal ele-
ments of a set in the sense of linear scalarization. An element v ∈ M is said
to be a properly minimal element of M (in the sense of linear scalarization)
if there exists a λ ∈ K∗0 such that 〈λ, v〉 ≤ 〈λ, v〉 for all v ∈ M . The set
of all properly minimal elements of M (in the sense of linear scalarization) is
denoted by PMin(M,K). It can be shown that every properly minimal element
of M is also minimal, but the reverse assertion fails in general. Corresponding
maximality notions are defined by using the definitions from above. The ele-
ments of the set Max(M,K) := Min(M,−K) are called maximal elements of M .
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2 Vector duals and relations between them

The primal linear vector optimization problem we consider is

(P ) Min
x∈A

Lx,

A = {x ∈ S : Ax− b ∈ C}

where L ∈ L(X,V ), A ∈ L(X,Z), b ∈ Z, and S ⊆ X and C ⊆ Z are convex
cones. In case X = Rn, Z = Rm, V = Rk, S = Rn+ and C = {0}, where
the linear continuous mappings L and A can be identified with the matrices
L ∈ Rk×n and, respectively, A ∈ Rm×n, (P ) becomes the so-called classical
linear vector optimization problem

(CP ) Min
x∈A

Lx.

A = {x ∈ Rn+ : Ax = b}

An element x ∈ A is said to be a properly efficient solution to (P ) if
Lx ∈ PMin(L(A),K), i.e. there exists λ ∈ K∗0 such that 〈λ, Lx〉 ≤ 〈λ, Lx〉
for all x ∈ A. An element x ∈ A is said to be an efficient solution to (P )
if Lx ∈ Min(L(A),K), i.e. there exists no x ∈ A such that Lx ≤K Lx. A
properly efficient solution x to (P ) is also efficient to (P ).

Remark 1. In general not all the efficient solutions to (P ) are also properly
efficient to it. However, we have shown in [1, Theorem 1] that when X = Rn,
Z = Rm, V = Rk, S = Rn+ and C = {0} the efficient and properly efficient
solutions to (P ) coincide. Note that this result remains valid when S and C
are arbitrary polyhedral cones.

Remark 2. In the literature there were proposed several concepts of properly
efficient solutions to a vector optimization problem. For an exhaustive review
of the proper efficiency notions considered in the literature and the relations
between them we refer to [2, Section 2.4]. In [2, Proposition 2.4.16] we have
shown that the properly efficient solutions (in the sense of linear scalarization)
are properly efficient solutions in the senses of Geoffrion, Hurwicz, Borwein,
Benson, Henig and Lampe and generalized Borwein, respectively, too. If V is
normed and K is closed and has a compact base, then according to [4] all these
types of properly efficient solutions coincide. This is the case for instance when
V = Rk and K = Rk+.

Although different issues on linear vector duality were already investigated
by Gale, Kuhn and Tucker back in the fifties, the first relevant contributions
to the study of duality for (P ) were brought by Isermann for the case where
X = Rn, Z = Rm, V = Rk, S = Rn+, C = {0} and K = Rk+, followed by
Jahn, who considered the problem (P ) in the general case treated in this paper,
bringing into attention two vector dual problems to it, namely (see [6, 7]) the
so-called vector abstract dual to (P )

(DJ) Max
(λ,U)∈BJ

hJ(λ,U),
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where

BJ =
{

(λ,U) ∈ K∗0 × L(Z, V ) : U∗λ ∈ C∗ and (L− U ◦A)∗λ ∈ S∗
}

and
hJ(λ,U) = Ub,

and, respectively, the vector Lagrange-type dual

(DL) Max
(λ,η,v)∈BL

hL(λ, η, v),

where

BL =
{

(λ, η, v) ∈ K∗0 × C∗ × V : 〈λ, v〉 ≤ 〈η, b〉 and L∗λ−A∗η ∈ S∗
}

and
hL(λ, η, v) = v.

When b 6= 0 the maximal sets of the images of the feasible sets through the
corresponding objective functions of these vector duals coincide, but the dis-
advantage of (DJ) in relation to (DL) can be noticed in case b = 0 when no
strong duality statement can be obtained for the first one, unlike the other.
More recently, in the finite-dimensional case considered by Isermann but with
an arbitrary nontrivial pointed convex cone K ⊆ Rk instead of Rk+, a vector
dual to (CP ) was proposed in [5] for which the duality assertions were shown
via complicated set-valued optimization techniques. Nevertheless, in the very
recent paper [1] we have introduced a direct generalization of a vector dual
introduced for K = Rk+ in [3] to the framework of [5], providing moreover a
complete analysis of all the mentioned vector duals to (CP ) in that setting.

The latter vector dual to (P ) can be extended to the framework of this
paper as

(D) Max
(λ,U,v)∈B

h(λ,U, v),

where

B =
{

(λ,U, v) ∈ K∗0×L(Z, V )×V : 〈λ, v〉 = 0, U∗λ ∈ C∗, (L−U ◦A)∗λ ∈ S∗
}

and
h(λ,U, v) = Ub+ v.

Let us see now what inclusions involving the images of the feasible sets
through their objective functions of the vector duals to (P ) considered in this
paper can be established, extending the scheme in [1, Section 4].

Proposition 1. It holds hJ(BJ) ⊆ h(B).

Proof. Let d ∈ hJ(BJ). Thus, there exists (λ,U) ∈ BJ such that d = Ub.
It is easy to notice that (λ,U, 0) ∈ B. Thus, h(λ,U, 0) = Ub = d, i.e. d ∈ h(B).�
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Proposition 2. It holds h(B) ⊆ hL(BL).

Proof. Let d ∈ h(B). Thus, there exist (λ,U, v) ∈ B such that d =
h(λ,U, v) = Ub + v. Let η := U∗λ. Then 〈λ, d〉 = 〈λ,Ub + v〉 = 〈U∗λ, b〉 +
〈λ, v〉 = 〈η, b〉, while L∗λ−A∗η = L∗λ−A∗U∗λ = (L− U ◦A)∗λ ∈ S∗. Conse-
quently, (λ, η, d) ∈ BL and, moreover, d ∈ hL(BL). �

Now let us investigate the sets of maximal elements of these sets with re-
spect to K.

Theorem 1. It holds

Max(hJ(BJ),K) ⊆ Max(h(B),K) = Max(hL(BL),K)

and the inclusion becomes equality when b 6= 0.

Proof. Assume the existence of a d ∈ Max(h(B),K)\Max(hL(BL),K).
Then there exist a d ∈ hL(BL), such that d ≤K d, and (λ, η, d) ∈ BL such
that d = hL(λ, η, d) and 〈λ, d〉 = 〈η, b〉. There exists also k ∈ K\{0} such
that 〈λ, k〉 = 1. Let U ∈ L(Z, V ) be defined by Uz := 〈η, z〉k, for z ∈ Z.
Then U∗λ = η ∈ C∗. Moreover, (L − U ◦ A)∗λ = L∗λ − A∗η ∈ S∗. Taking
v := d−Ub, one gets 〈λ, v〉 = 0. Consequently, (λ,U, v) ∈ B and thus d ∈ h(B).
But since d ∈ Max(h(B),K) and d ≤K d a contradiction is attained, therefore
Max(h(B),K) ⊆ Max(hL(BL),K).

Take now d ∈ Max(hL(BL),K). Then there exists (λ, η, d) ∈ BL such that
〈λ, d〉 ≤ 〈η, b〉. From the maximality of d in hL(BL) it follows that one actually
has 〈λ, d〉 = 〈η, b〉. Defining U and v like above, one can directly verify that
(λ,U, v) ∈ B and d ∈ h(B). By Proposition 2 it follows that d ∈ Max(h(B),K),
whence Max(hL(BL),K) ⊆ Max(h(B),K), too.

Therefore Max(h(B),K) = Max(hL(BL),K) and what remained yet un-
proven follows via [2, Theorem 4.5.2]. �

3 Weak, strong and converse vector duality

We give in the following weak, strong and converse duality results for the primal-
dual pair of vector optimization problems (P )− (D). The first one holds in the
most general framework.

Theorem 2. (weak duality for (D)) There exist no x ∈ A and (λ,U, v) ∈ B
such that Lx ≤K Ub+ v.

Proof. Assume the existence of x ∈ A and (λ,U, v) ∈ B such that Lx ≤K
Ub + v. Then 0 < 〈λ,Ub + v − Lx〉 = 〈λ,Ub − Lx〉 = 〈λ,Ub − U ◦ Ax + U ◦
Ax − Lx〉 = 〈U∗λ, b − Ax〉 − 〈(L − U ◦ A)∗λ, x〉 ≤ 0. As this cannot happen,
the assumption we made is false. �
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In order to prove strong and converse duality for (D) we consider the fol-
lowing regularity condition

(RC) ∃x′ ∈ S such that Ax′ − b ∈ int(C).

Theorem 3. (strong duality for (D)) If x is a properly efficient solution
to (P ) and (RC) is fulfilled, there exists (λ,U, v) ∈ B, an efficient solution to
(D), such that Lx = Ub+ v.

Proof. Since x is properly efficient to (P ), there exists λ ∈ K∗0 such that
〈λ, Lx〉 ≤ 〈λ, Lx〉 for all x ∈ A. The fulfillment of (RC) yields that for the
scalar optimization problem

inf
x∈A
〈λ, Lx〉

and its Lagrange dual

sup
η∈C∗

inf
x∈S

{
〈λ, Lx〉+ 〈η, b−Ax〉

}
,

which can be equivalently written as

sup
η∈C∗,

L∗λ−A∗η∈S∗

〈η, b〉,

there is strong duality, i.e. their optimal objective values coincide and the dual
has an optimal solution, say η ∈ C∗. Consequently, as x solves the primal
problem, one gets 〈λ, Lx〉 = 〈η, b〉, where L∗λ−A∗η ∈ S∗.

As λ ∈ K∗0, there exists k ∈ K\{0} such that 〈λ, k〉 = 1. Let U ∈ L(Z, V )
be defined by Uz := 〈η, z〉k for z ∈ Z, and v := Lx − Ub ∈ V . Then
〈λ, v〉 = 〈λ, Lx−Ub〉 = 〈λ, Lx〉− 〈η, b〉 = 0, U

∗
λ = η ∈ C∗ and (L−U ◦A)∗λ =

L∗λ−A∗η ∈ S∗. Consequently, (λ,U, v) ∈ B and Ub+v = Ub+Lx−Ub = Lx.
Assuming that (λ,U, v) is not efficient to (D), i.e. the existence of another fea-
sible solution (λ,U, v) ∈ B satisfying Ub+v ≤K Ub+v, it follows Lx ≤K Ub+v,
which contradicts Theorem 2. Consequently, (λ,U, v) is an efficient solution to
(D) for which Lx = Ub+ v. �

Remark 3. In case int(C) = ∅ and X and Z are Fréchet spaces, S is closed
and C is closed one can assume instead of (RC) that b ∈ sqri(A(S)−C). If the
linear subspace lin(A(S) − C) has a finite dimension, the regularity condition
can be replaced by b ∈ ri(A(S) − C). When X and Z are finite-dimensional,
the result in Theorem 3 remains valid under the hypothesis b ∈ A(ri(S))−ri(C)
and in this condition one can replace the relative interiors of the cones which
are actually nonnegative orthants with the cones themselves.

Remark 4. If x ∈ A and (λ,U, v) ∈ B fulfill Lx = Ub + v, then the com-
plementarity conditions 〈(L−U◦A)∗λ, x〉 = 0 and 〈U∗λ,Ax−b〉 = 0 are fulfilled.

Like in the finite-dimensional case, a converse duality statement for (D) can
be provided, too.
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Theorem 4. (converse duality) If (λ,U, v) ∈ B is an efficient solution to
(D), (RC) is fulfilled and L(A) + K is closed, there exists x ∈ A, a properly
efficient solution to (P ), such that Lx = Ub+ v.

Proof. Let d := Ub + v and suppose that d /∈ L(A). Using Theorem 2
it follows easily that d /∈ L(A) + K, too. Then Tuckey’s separation theorem
(see [2, Theorem 2.1.5]) guarantees the existence of γ ∈ V ∗\{0} and a ∈ R such
that

〈γ, d〉 < a < 〈γ, Lx+ k〉 ∀x ∈ A ∀k ∈ K. (1)

Assuming that γ /∈ K∗ would yield the existence of some k ∈ K for which
〈γ, k〉 < 0. Taking into account that K is a cone, this implies a contradiction
to (1), consequently γ ∈ K∗. Taking k = 0 in (1) it follows

〈γ, d〉 < 〈γ, Lx〉 ∀x ∈ A. (2)

On the other hand, one has 〈λ, d〉 = 〈λ,Ub+ v〉 = 〈U∗λ, b〉 ≤ 〈U∗λ,Ax〉 for all
x ∈ A, so it holds

〈λ, Lx− d〉 ≥ 〈(L− U ◦A)∗λ, x〉 ≥ 0 ∀x ∈ A. (3)

Now, taking p := a−〈γ, d〉 > 0 it follows 〈(rλ+(1−r)γ), d〉 = a−p+r(〈λ, d〉−a+
p) for all r ∈ R. Note that there exists an r ∈ (0, 1) such that r(〈λ, d〉−a+p) <
p/2 and r(〈λ, d〉−a) > −p/2, and let λ := rλ+(1−r)γ. It is clear that λ ∈ K∗0.
By (2) and (3) it follows r〈λ, d〉+ (1− r)a < 〈rλ+ (1− r)γ, Lx〉 for all x ∈ A
and all r ∈ (0, 1), consequently

〈λ, d〉 = r〈λ, d〉+ (1− r)〈γ, d〉 = r〈λ, d〉+ (1− r)(a− p)

<
p

2
+ r(a− p) + (1− r)(a− p) = a− p

2
< 〈λ, Lx〉 ∀x ∈ A.

Moreover, there exists k ∈ K\{0} such that 〈λ, k〉 = 1. Like in the proof of
Theorem 3, the validity of (RC) yields strong duality for the scalar optimization
problem infx∈A〈λ, Lx〉 and its Lagrange dual, i.e. there exists an η ∈ C∗ with
L∗λ−A∗η ∈ S∗ for which infx∈A〈λ, Lx〉 = 〈η, b〉.

Let U ∈ L(Z, V ) be defined by Uz := 〈η, z〉k, z ∈ Z. Then U∗λ = η ∈ C∗
and (L − U ◦ A)∗λ ∈ S∗. Consequently, the hyperplane H := {Ub + v : v ∈
V, 〈λ, v〉 = 0}, which is nothing but the set {w ∈ V : 〈λ,w〉 = 〈λ,Ub〉}, is
contained in h(B).

On the other hand, as 〈λ, d〉 < 〈η, b〉 = 〈λ,Ub〉, there exists a k ∈ K\{0}
such that 〈λ, d+k〉 = 〈λ,Ub〉. Hence d+k ∈ H ⊆ h(B). Noting that d ≤K d+k,
we have just arrived to a contradiction to the maximality of d to the set h(B).
Therefore our initial supposition is false, consequently d ∈ L(A). Then there
exists x ∈ A such that Lx = d = Ub + v. Using (3), it follows that x is a
properly efficient solution to (P ). �

Remark 5. From Theorem 1, Theorem 3 and Theorem 4 one can conclude
that when (RC) is fulfilled and L(A)+K is closed the following inclusion scheme
holds

Max(hJ(BJ),K) ⊆ PMin(L(A),K) = Max(h(B),K) = Max(hL(BL),K) (4)
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and the inclusion becomes equality when b 6= 0. When X = Rn, S = Rn+,
V = Rk, Z = Rm and C = {0}, taking into consideration Remark 3 and [1, Sec-
tion 4], (4) is valid because L(A) +K is closed and there is no need to impose
the fulfillment of any regularity condition since (RC) can be replaced by a sim-
ple feasibility condition that is already satisfied.

Remark 6. In the framework of [1, Theorem 4] the set L(A) +K is closed.
Thus, a natural question is under which conditions can the closedness of the
mentioned set be guaranteed in more general settings. Sufficient conditions that
ensure this can be found for instance in [8, Corollary 9.1.2]), [9, Theorem 1.1.8]
and [10, Corollary 3.12].

4 Extending another vector dual

After successfully generalizing the vector dual from [1] to infinite-dimensional
spaces, a natural challenge is to try doing the same with the vector dual to
(CP ) from [5]. To this end, we propose the following vector dual to (P )

(DH) Max
U∈BH

hH(U),

where

BH =
{
U ∈ L(Z, V ) : ((L− U ◦A)(S) + U(C)) ∩ (−K) = {0}

}
and

hH(U) = Ub+ PMin
(
(L− U ◦A)(S) + U(C),K

)
.

When X = Rn, S = Rn+, V = Rk, Z = Rm and C = {0} this turns out
to be exactly the vector dual problem proposed in [5] to (CP ), taking also in
consideration that (see [1, Theorem 1]) in that framework the properly efficient
solutions of the vector minimization problem in the objective function of (DH)
coincide with the efficient ones of the same problem.

We begin with a result that establishes a connection between the feasible
elements of (DJ) and the one of (DH). Note that in the framework of [1] it is
valid in both directions. A good way to achieve also here such an equivalence is
by strongly separating the sets (L−U ◦A)(S) +U(C) and −K. This could be
done, under additional hypotheses, for instance by [7, Theorem 3.22], [5, Lemma
2.2] or [8, Theorem 11.4].

Proposition 3. If λ ∈ K∗0 and U ∈ L(Z, V ) fulfill U∗λ ∈ C∗ and
(L− U ◦A)∗λ ∈ S∗, then ((L− U ◦A)(S) + U(C)) ∩ (−K) = {0}.

Proof. Assume to the contrary that the conclusion is false. Then there
exist x ∈ S and c ∈ C such that 0 6= (L− U ◦ A)x+ Uc ∈ −K. Consequently,
〈λ, (L−U ◦A)x+Uc〉 < 0. But 〈λ, (L−U ◦A)x+Uc〉 = 〈(L−U ◦A)∗λ, x〉+
〈U∗λ, c〉 and the hypotheses imply the nonnegativity of the both terms in the
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right-hand side of the last equality, so we reached the desired contradiction.�

Let us see now where does the image set of this vector dual lie, in relation
to the other vector duals considered in this paper.

Proposition 4. It holds hJ(BJ) ⊆ hH(BH).

Proof. Let d ∈ hJ(BJ). Thus, there exists (λ,U) ∈ BJ such that d = Ub.
By Proposition 3 we obtain immediately that U ∈ BH . Moreover, (L − U ◦
A)(0) +U(0) = 0 and whenever x ∈ S and c ∈ C there holds 〈λ, (L−U ◦A)x+
Uc〉 = 〈(L−U ◦A)∗λ, x〉+〈U∗λ, c〉 and this is nonnegative because (λ,U) ∈ BJ .
Consequently, 0 ∈ PMin

(
(L− U ◦A)(S) + U(C),K

)
and d ∈ hH(BH). �

Proposition 5. It holds hH(BH) ⊆ h(B).

Proof. Let d ∈ hH(BH). Thus, there exists U ∈ BH such that d = Ub+ v,
with v ∈ PMin

(
(L− U ◦A)(S) + U(C),K

)
. Then, there exist γ ∈ K∗0, x ∈ S

and c ∈ C such that v = (L− U ◦A)x+ Uc and

〈γ, (L− U ◦A)x+ Uc〉 ≤ 〈γ, (L− U ◦A)x+ Uc〉 ∀x ∈ S ∀c ∈ C. (5)

Taking in the right-hand side of (5) c := c, it follows 〈γ, (L − U ◦ A)x〉 ≤
〈γ, (L − U ◦ A)x〉 for all x ∈ S. As S is a cone, the existence of a point
x̃ ∈ S for which 〈γ, (L − U ◦ A)x̃〉 < 0 would yield 〈γ, (L − U ◦ A)x〉 = −∞,
that is impossible, so 〈γ, (L − U ◦ A)x〉 ≥ 0 for all x ∈ S. Consequently,
(L − U ◦ A)∗γ ∈ S∗. As 0 ∈ S, it follows also that 〈γ, (L − U ◦ A)x〉 ≤ 0, so
〈γ, (L− U ◦A)x〉 = 0.

Back to (5), taking now x := x one gets 〈γ, Uc〉 ≤ 〈γ, Uc〉 for all c ∈ C.
Since C is a cone, too, the same argumentation as above leads to U∗γ ∈ C∗ and
〈γ, Uc〉 = 0. Consequently, 〈γ, (L−U ◦A)x+Uc〉 = 〈γ, v〉 = 0, so (γ, U, v) ∈ B
and h(γ, U, v) = d. Therefore d ∈ h(B). �

Remark 7. Employing Proposition 2, Proposition 4 and Proposition 5, one
can arrange the image sets of the vector duals we treated in this paper in the
following scheme

hJ(BJ) ⊆ hH(BH) ⊆ h(B) ⊆ hL(BL).

Examples showing that the just proven inclusions can be sometimes strict were
given in [5, Section 4.3], [2, Example 5.5.1] and [1, Remark 5], respectively.

Let us investigate now the duality properties of (DH). First note that from
Theorem 2 and Proposition 5 one can deduce the following weak duality state-
ment for (DH).

Corollary 1. There exist no x ∈ A, U ∈ BH and v ∈ PMin
(
(L − U ◦

A)(S) + U(C),K
)

such that Lx ≤K Ub+ v.

9



Strong duality for (DH) can be proven under the same hypotheses as for
(D). Note that Remark 3 is valid in this case, too.

Theorem 5. If x is a properly efficient solution to (P ) and (RC) is ful-
filled, there exists U ∈ BH , an efficient solution to (DH), such that Lx = Ub+v,
where v ∈ PMin

(
(L− U ◦A)(S) + U(C),K

)
.

Proof. Like in the proof of Theorem 3, the proper efficiency of x to (P )
delivers a λ ∈ K∗0 and the fulfillment of (RC) an η ∈ C∗ such that 〈λ, Lx〉 =
〈η, b〉 and L∗λ − A∗η ∈ S∗. As λ ∈ K∗0, there exists k ∈ K\{0} such that
〈λ, k〉 = 1. Let U ∈ L(Z, V ) be defined by Uz := 〈η, z〉k, z ∈ Z. Proposition 3
yields then U ∈ BH .

Take now v := Lx − Ub. Then it can be rewritten as v = (L − U ◦ A)x +
U(Ax − b), so v ∈ (L − U ◦ A)(S) + U(C). One has 〈λ, v〉 = 〈λ, Lx − Ub〉 =
〈η, b〉 − 〈λ, 〈η, b〉k〉 = 0 and 〈λ, (L−U ◦A)x+Uc〉 ≥ 0 for all x ∈ S and c ∈ C.
Consequently, v ∈ PMin

(
(L− U ◦A)(S) + U(C),K

)
.

Assuming that U were not efficient to (DH), i.e. the existence of an-
other feasible solution U ∈ BH satisfying Ub + v ≤K Ub + v for a v ∈
PMin

(
(L − U ◦ A)(S) + U(C),K

)
, it follows Lx ≤K Ub + v, which contra-

dicts Corollary 1. Consequently, U is an efficient solution to (D) for which
Lx = Ub+ v. �

Remark 8. From Theorem 5 one can conclude that when (RC) is fulfilled
one has

PMin(L(A),K) ⊆ Max(hH(BH),K).

It remains an open challenge to find out under which conditions does this
inclusion turn into an equality and also to compare Max(hH(BH),K) with
Max(h(B),K) and Max(hL(BL),K). Note that Max(hH(BH),K) coincides
with the equal sets from (4) in the framework of [1], i.e. when X = Rn,
S = Rn+, V = Rk, Z = Rm and C = {0}.
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