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Abstract. A fruitful idea, when providing subdifferential formulae and dual representa-
tions for convex risk measures, is to make use of the conjugate duality theory in convex
optimization. In this paper we underline the outstanding role played by the qualification
conditions in the context of different problem formulations in this area. We show that not
only the meanwhile classical generalized interiority point ones come here to bear, but also
a recently introduced one formulated by means of the quasi-relative interior.
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1 Introduction

1.1 Preliminaries of convex analysis

Let X be a separated locally convex vector space and X'™* its topological dual space. We
denote by (z*,x) the value of the linear continuous functional z* € X* at x € X.

For a subset C of X we denote by coC, clC and int C its convex hull, closure and
interior, respectively. The set cone C := Uy>oAC denotes the cone generated by C', while
the normal cone of C at x € C' is given by No(z) = {z* € X*: (z*,y —z) <0 Vy € C}.
When C'is a convex and closed set, by Co := {z € X : 2 + C C C}, which is in this case
a convex closed cone, we denote the asymptotic cone of C.

The indicator function of a set C' C X, denoted by ¢, is defined by ¢ : X — R :=
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RU {£o0},
0, ifzeC,
400, otherwise.

dc(x) = {

For a function f : X — R we denote by dom f = {z € X : f(z) < +oo} its effective
domain and by epi f = {(z,7) € X xR : f(z) < r} its epigraph. We call f proper if
dom(f) # 0 and f(x) > —oo for all z € X. The Fenchel-Moreau conjugate of f is the
function f*: X* — R defined by

F* (@) = sup{(a*,z) — f(2)}Va* € A

zeX
Similarly, when X™ is endowed with the weak®™ topology, the biconjugate function of f,
. X = R, is given by

(@) = sup {(z",z) — [ (")} Vo € X.
T*eX*

By the Fenchel-Moreau Theorem, whenever f : X — R is a proper, convex and lower
semicontinuous function, one has f = f**.

For f : X — R an arbitrary function the set df(x) = {z* € X* : f(y) — f(x) >
(x*,y —x) Yy € X}, when f(x) € R, denotes the subdifferential of f at x, while if
f(z) € {00} we take by convention df(z) = 0.

Regarding a function and its conjugate we have the Young-Fenchel inequality f*(z*)+
f(z) > (z*,z) for all x € X and z* € X*. Moreover, for all z € X, z* € X* one has

fr@) + f@) = (2%, 2) & " € 0f (x). (1)

If f: X — R is a proper, convex and lower semicontinuous, then by fo : X —
R we denote the recession function of f, which is defined as being the function whose
epigraph is (epi f)o. The recession function is in this setting a proper, sublinear and
lower semicontinuous function, while for all d € X’ one has

foo(d) =sup{f(z+d) — f(x) : x € dom f}
and (see, for instance, [30])

foo(d) = lim fl+td) = [(x) = sup Jla+td) = J(z) Vx € dom f. (2)
t—-oo t >0 t

Having f; : X — R,i = 1, ..., m, given proper functions we denote by f1...0f,, : X —
R, fi0..Ofn(x) = inf {37, fi(z:) : St x; = a}, for & € X, their infimal convolution.

In the formulation of the qualification conditions which we employ in the investigations
made in this paper we will make use of several generalized interiority notions. For a convex
set C' C X, we recall those interiority notions we need in the following:

e the algebraic interior or core of C' (cf. [30]),
coreC = {x € C : cone(C —z) = X};

e the strong quasi-relative interior of C (cf. [6,30]),
sqriC = {x € C': cone(C — x) is a closed linear subspace of X'};



e the quasi-relative interior of C' (cf. [7]),
qriC = {x € C : clcone(C — z) is a linear subspace of X'}

e the quasi interior of C' (cf. [21]),
qiC ={x € C:clcone(C —z) = X}.

For the last two notions we have the following dual characterizations.

Proposition 1 (¢f. [7,11]) Let C be a nonempty convex subset of X and x € C. Then:
(i) x € qriC <= N¢(x) is a linear subspace of X*;
(i) © € qiC <= N¢(z) = {0}.

For the generalized interiority notions from above the following relations of inclusion hold:

sqri C'
int C' C coreC C CqriC C O,
qcC

all of them being in general strict. Between sqri and qi no relation of inclusion holds in
general. For a comprehensive discussion, examples and counterexamples with this respect
we refer to [9]. If X is a finite-dimensional space, then qi C' = int C' = core C' (cf. [21]) and
qriC = sqriC = riC (cf. [7]), where riC is the relative interior of C. In case int C' # ()
all the generalized interiority notions collapse into the topological interior of the set C.

In the following we turn our attention to the Lagrange duality for the optimization
problem with geometric and cone constraints

(P) i f(a).
g(z)e—K

Here X and Z are two separated locally convex spaces, the latter being partially
ordered by the nonempty convex cone K C Z, S C X is a nonempty set, f : X — Ris a
proper function and g : X — Z is a vector function fulfilling dom f NS N g~ (—K) # 0.
We denote by > the partial ordering induced by K on Z, defined for u,v € Z by u >g v
whenever u —v € K, and by K* = {z* € X* : (z*,x) > 0 Vx € K} the dual cone of K.

The K-epigraph of g : X — Z is the set epig g = {(z,2) € X X Z: 2 >k g(x)}. The
vector function g is said to be K-convex if epiy g is convex and K-epi closed if epig g is
closed.

We further assume that S is a convex set, f is a convex function and g a K-convex
vector function. The Lagrange dual problem associated to (P) is

(D) swp inf {f(x) + (X g(x))}.
AEK* T€

By v(P) and v(D) we denote the optimal objective values of the primal and the dual
problem, respectively. It is a known fact that between the primal and the dual problem
weak duality, i.e. v(P) > v(D), always holds. In order to guarantee strong duality, i.e.
the situation when v(P) = v(D) and (D) has an optimal solution, we additionally need
to require the fulfillment of a so-called qualification condition. In the literature one can
distinguish between two main classes of qualification conditions, the so-called generalized



interiority point and closedness-type conditions, respectively. For an overview on the
relations between these two classes we refer to [8].

Throughout this paper we deal with qualification conditions of the first type and discuss
their applicability in the context of different topics involving convex risk measures. To
this end we consider the Slater constraint qualification

(QC1) 3z’ € dom f N S such that g(z) € —int K
as well as the generalized interiority point qualification conditions (cf. [8])
(QC9) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
g is K-epi closed and 0 € core(g(dom f N S) + K),
and

(QCs) X and Z are Fréchet spaces, S is closed, f is lower semicontinuous,
g is K-epi closed and 0 € sqri(g(dom f N S) + K).

Assuming that v(P) € R, along the above qualification conditions, we consider also
the following one introduced in [11] (see, also, [9,10]) and expressed by means of the quasi
interior and quasi-relative interior

(QCy)  Ja’ € dom f NS such that g(2’) € —qri K, cl(K — K) = Z and
(07 O) ¢ qri [CO (gv(P) U {(07 0)})]

where E,py = {(f(7) —v(P) +¢,9(z) +2) : x € dom fN S,z € K,e > 0} is the set in
analogy to the the conic extension, a notion used by Giannessi in the theory of image
spaces analysis (see [20]). If 0 € qi[(g(dom f N S) + K) — (¢9(dom f N S) + K)], then
(0,0) ¢ qri [co (Eypy U{(0,0)})] is equivalent to (0,0) ¢ qi [co (E,py U{(0,0)})]. On the
other hand, whenever (P) has an optimal solution one has co (£,(py U{(0,0)}) = &,(p).
For further qualification conditions expressed by means of the quasi interior and quasi
relative-interior we refer to [9,11]. Different to (QC;),7 € {2, 3}, these conditions have the
remarkable property that they do not require the fulfillment of any topological assumption
for the set S or for the functions f and g and they do not restrict the spaces X and Z to be
Fréchet. More than that, they find applicability in situations where K is the ordering cone
of a separable Banach space, like /P or LP, p € [1,00) (see [9-11]). This is because of the
fact that these ordering cones have nonempty quasi-relative interiors and quasi interiors,
all the other interiority notions furnishing the empty set. The assumption that v(P) is a
real number is not restrictive at all, since, otherwise, namely, when v(P) = —oo, strong
duality is automatically fulfilled.

Remark 1 When X and Z are Fréchet spaces and f,g are proper, convex and lower
semicontinuous functions we have the following relations between the above qualification
conditions (QC1) = (QC3%) = (QC3) and, whenever v(P) € R, (QC1) = (QC2) = (QCY).
In general the conditions (QC3) and (QC}) cannot be compared, for more on this topic
the reader being invited to consult [9].

Theorem 2 Assume that v(P) € R. If one of the qualification conditions (QC;),i €
{1,...,4}, is fulfilled, then v(P) = v(D) and the dual problem has an optimal solution.

Proof. Assuming one of the conditions (QC5),i € {1,2, 3}, fulfilled, the statement follows
from Theorem 3.4 in [8]. If (QC4) holds, then the strong duality is a consequence of
Theorem 4.1 in [10] (see also [8,11]). [



1.2 Convex risk measures on L”

Let (Q,F,P) be an atomless probability space, where £ denotes the space of future states
w, § is a o-algebra on 2 and P is a probability measure on (€2, §). For a measurable random
variable X : Q@ — RU{+o0} the expectation value with respect to P is defined by E(X) :=
Jo X (w) dP(w). Whenever X takes the value 400 on a subset of positive measure we have
E(X) = 400. The essential supremum of X, which represents the smallest essential upper
bound of the random variable, is essup X := inf{a € R : P(w : X(w) > a) = 0}, while its
essential infimum is defined by essinf X := — essup(—X).
Further, for p € [1,00) let we consider the following space of random variables

LP:=ILP(Q,5,P,R) = {X : Q — R: X is measurable, / | X (w)[PdP(w) < +oo}.
Q

1
The space LP equipped with the norm || X ||, = (E(|X|P))? is a Banach space. To complete
the picture of LP spaces, we introduce the space corresponding to the limiting value p = oo,
namely

L>*:=L>*(Q,§,P,R) ={X : Q — R : X is measurable, essup |X| < +oo},

which, being equipped with the norm || X||. = essup|X|, is a Banach space, too. For
p,q € [1,00],p > ¢, it holds LP C L?. We denote the topological dual space of LP by (LP)*
and for p € [1,00) one has that (LP)* = L9, where q € (1, 00] fulfills ¢ = p/(p — 1) (with
the convention 1/0 = c0). In what concerns (L*°)*, the topological dual space of L, this
can be identified with ba, the space of all bounded finitely additive measures on (£2,§)
which are absolutely continuous with respect to P and it is usually much bigger than L.
For the dual pairing (X, X*) € (LP, (L?)*) we shall write (X*, X) = E(X*X) (even in the
case p = 00, by making an abuse of notation).

Equalities between random variables are to be interpreted in an almost everywhere
(a.e.) way, while for X,Y € LP we write X > Y if and only if X —Y € L} := {X ¢
LP : X > 0 ae.}. We also write X > Y if X(w) > Y(w) for almost every w € Q.
Random variables X : 2 — R which take a constant value ¢ € R, i.e X = ¢ a.e., will be
identified with the real number c¢. Each random variable X :  — R can be represented
as X = Xy — X_, where X, X_ : Q — R are the random variables defined by X (w) =
max{0, X (w)} and X_(w) = max{0, =X (w)} for all w € Q. The characteristic function of
a set G € § is defined as being 15 : 2 — R,

1, ifwegd,

0, otherwise

lg(w) = {

and, in view of the above notion, the expectation of a random variable X admits the
equivalent representation E(X) = (1q, X), which will be used several times in this article.
The notions we introduce next will play a central role in what follows.

Definition 1 We call risk function a proper function p : L? — R,p € [1,00]. The risk
function p is said to be

(i) conver, if: p(AX + (1 —=N)Y) < Xp(X)+ (1= N)p(Y) VA€ [0,1] VX,Y € LP;

(ii) positively homogeneous, if: p(0) = 0 and p(AX) = Ap(X) VA > 0 VX € LP;



(iii) monotone, if: X >Y = p(X) < p(Y) VX,Y € LP;

(v) a convex risk measure, if: p is convex, monotone and cash-invariant;

)

(iv) cash-invariant, if: p(X +a) = p(X) —a VX € LP Va € R;
)
)

(vi) a coherent risk measure, if: p is a positively homogeneous convex risk measure.

The first axiomatic way of defining risk measures has been given by Artzner, Delbaen,
Eber and Heath in [1] and refers to coherent risk measures. Nevertheless, it has become
a standard in modern risk management to assess the riskness of a portfolio by means of
convez risk measures. The latter have been introduced by Follmer and Schied in [18].

While the elements of LP,p € [1,00] can be seen as describing future net worths, the
value p(X) can be understood as a capital requirement for X. Consequently, a convex risk
measures guarantees that the capital requirement of the convex combination of two posi-
tions does not exceed the convex combination of the capital requirements of the positions
taken separately. The monotonicity property says that if one has the certitude that Y will
be smaller than X in (almost) every state of the world, than the capital requirement for
Y should be greater than for X. Cash-invariance means that adding a constant amount
of money a to X should reduce the capital requirement for X by a. For the economic
interpretation of the other notions given in Definition 1 we refer to [1,18,19].

The reader can find examples of coherent and convex risk measures in [12,14-18,23~
25,27,29], some of them being objects of the investigations we make in the forthcoming
sections. The literature on convex risk measures has known in the last time a rapid growth,
several aspects in connection with these notions being addressed. In this paper we will
concentrate ourselves on providing subdifferential formulae and dual representations for
different convex risk measures by making use of the conjugate duality theory in convex
optimization.

One of the most challenging topics to be addressed in this field is the formulation of
optimality conditions for portfolio optimization problems with a convex risk measure as
objective function. Since for this class of functions differentiability is not necessarily guar-
anteed, one will be forced to make use of the convex subdifferential when characterizing
optimality (see, for instance, [13]). This is why it is important to be in the possession of
easily handleable formulae for the subdifferential of the risk measures which could come
into consideration with this respect. Among the most relevant literature on this topic one
has to mention [23,24,26,27,29].

Within a short time after the introduction of the convex risk measures, one could notice
a intensification of the efforts to provide dual representations for these. With this respect,
we refer the reader to [12,14, 15,22, 23,26,27,29]. As it has been noticed, for instance,
in [22,23], the importance of having dual representations is given by the fact, that these
can be used for deriving several properties for the risk measures in a very simple manner.

One of the major aims of the article is to emphasize the fact that different research
aspects in connection with convex risk measures on LP, p € [1,00], lead to some cone-
constrained optimization problems having as ordering cone L% , which has to be inves-
tigated from the point of view of the convex duality theory. As seen in Subsection 1.1,
one needs to this end to have a qualification condition fulfilled. The Slater qualification
condition is with this respect useful only when p = oo, as in

int(L3°) = {X € L™ : essinf X > 0}



is a nonempty set. On the other hand, for p € [1,00) one has (see [7])
int L% = core L = sqri L% =0,

which means that the Slater condition is in this situation unusable, while the conditions
(QC3) and (QC3) could be employed only when the image of dom f N S through g is not
a subset of the ordering cone. More appropriate for this situation will prove to be the
qualification condition (QC4), since one has that (see [7])

gL =qrilt ={X € L*: X > 0}.

1.3 Outline of the paper

In Section 2 we consider a generalized convex risk measure defined via a so-called wtility
function and associated with the Optimized Certainty Equivalent (OCE), a notion intro-
duced and explored in [4,5]. This convex risk measure is expressed as an infimal value
function, thus we provide first of all a weak sufficient condition for the attainment of the
infimum in its definition. Further, we give formulae for its conjugate function and its
subdifferential. The generalized convex risk measure we consider has the advantage that,
for some particular choices of the utility function, it leads to some well-known convex risk
measures, for the conjugate and subdifferential of which we are consequently able to derive
the corresponding formulae.

The results in the sections 3 and 4 are motivated the paper of Filipovié¢ and Kupper [16],
where for a convex risk function the so-called monotone cash-invariant hull has been in-
troduced, which is actually the greatest monotone and cash-invariant function majorized
by the risk function. This function has been formulated by making use of the infimal con-
volution. In other words, the monotone cash-invariant hull at a given point is nothing else
than the optimal objective value of a convex optimization problem. Having as a starting
point this observation, we give a dual representation of the monotone and cash-invariant
hull by employing the Lagrange duality theory along with a qualification condition, un-
der the hypothesis that the risk function is lower semicontinuous. This guarantees the
vanishing of the duality gap and, implicitly, the validity of the dual representation. The
examples considered in [16] are discussed from this new point of view.

In the last section of the paper we deal with the same problem as in Section 3, but by
considering this time a convex risk function which does not fulfill the lower semicontinuity
assumption. For this function we can easily establish the monotone hull and we can also
give a dual representation for it by making use of the quasi-relative interiority-type qual-
ification condition (QC4). We also refer to the limitations of this approach in the context
of the determination of the monotone cash-invariant hull for the function in discussion.

2 Conjugate and subdifferential formulae for convex risk
measures via Optimized Certainty Equivalent

In this section we will furnish first formulae for both conjugate and subdifferential of
a generalized convex risk measure, associated with the Optimized Certainty Equivalent
(OCE). The Optimized Certainty Equivalent was introduced by Ben-Tal and Teboulle
in [4] by making use of a concave utility function. For properties of OCE and for relations



with other certainty equivalent measures we refer to [4,5]. For the investigations in this
paper we adapt the definition of the Optimized Certainty Equivalent and the setting in
which this has been introduced, by considering a convex utility function, as this better
suits in the general framework of convex duality. We close the section by particularizing
the general results to some convex risk measures widely used in the literature.

Let us start by fixing the framework in which we work throughout the section.

Assumption Let u: R — R be a proper, convex, lower semicontinuous and nonincreas-
ing function such that «(0) =0 and —1 € du(0).

Remark 2 The two conditions we impose on the utility function u are also known as
normalization conditions. By exploiting the definition of the subdifferential, they can be
equivalently written as u(0) =0 and u(t) +¢ > 0 for all ¢t € R.

Having as starting point the definition of the Optimized Certainty Equivalent given
in [5] we define for p € [1,00] the following generalized convex risk measure p, : LP —
R U {+00}

pul(X) = iE A+ E(u(X + )} 3)

One can easily see that, due to the Assumption, p,(X) > —E(X) for all X € L?
and that this function satisfies the properties required in the definition of a convex risk
measure. Next we provide a formula for the conjugate of p,.

Lemma 3 The conjugate function of py, pl : (LP)* — R, is given by

E(u'(X*)), if B(X*)=—1,
400, otherwise.

ix = {

Proof. By the definition of the conjugate function we get for all X* € (LP)*

pu(X7) = §EEP{<X*’X> —A-E@X + )} = gggpﬂX*, R—X) = A-E(u(R))}
AeR AeR
= sup{-AME(X") + 1)} + sup {(X", R) — E(u(R))}.
AER RelL?

Using the interchangeability property of minimization and integration (see, for instance,
[28, Theorem 14.60]) the second expression from above can be written as

sup {(X*,R) —E(u(R))} =E {sup(rX* - u(r))} =E(u*(X")).
ReLP reR

On the other hand, since supycp{—A(E(X*) + 1)} = d;03(E(X*) + 1), one obtains the
desired conclusion. [ |

Before providing a subdifferential formula for p,, we deliver via Lagrange duality a
sufficient condition the utility function u has to fulfill in order to guarantee the attainment
of the infimum in the definition of p,(X) for all X € LP. According to [4,5], for those
X € LP having as support a bounded and closed interval, the infimum in (3) is attained.
But what we provide here, is a condition which ensures this fact independently from the
choice of the random variable.



Let X € LP be fixed. Consider the following primal optimization problem

20 B @) - (x.2)], 5)

where ¢ := 25, if p € [1,00), and ¢ := 1, if p = co. The Lagrange dual optimization

problem to (p53 is given by

sup inf [Bu*()) ~ (X,5) + AEE) + )] =sup A sup (0~ 2,5) - Bw(@)].

Again, via [28, Theorem 14.60], it holds

wpQX—AqummE»>:E<mmmx—n—www>:mmx—xn

=el4 reR

and this leads to the following dual problem to (5)

ig[_x_mmx+Aw. (6)

Let us notice that the optimal objective value of the dual problem (6) is equal to —p,(X).

Theorem 4 Assume that for the recession function of the utility function wu fulfills the
following condition
{d € R: ux(d) = —d} = {0}. (7)

Then for all X € LP there exists \(X) € R such that p,(X) = MX) + E(u(X + A(X))).

Proof. We consider X € LP fixed and prove that under condition (7) for the primal-dual
pair (5)-(6) strong duality holds. This will guarantee among others the existence of an
optimal solution A(X) for the dual, which will prove the assertion.

Define s : R — R as being s(t) = u(t) +t. Notice that s is proper, convex and lower
semicontinuous, too, and for all t* € R it holds s*(¢*) = w*(t*—1), so dom s* = dom u* +1.
On the other hand, since 0 € dom s, it holds (see (2))

s(td) — s(0) u(td) +td u(td) — u(0)

Seo(d) = sup = sup =sup ——— +d = u(d) + d Vd € R.
>0 3 >0 3 >0 t
(8)

Thus condition (7) is nothing else than asking that {d € R : so(d) = 0} = {0}. On the
other hand, from (8) it follows that s (d) > 0 for all d € R. By taking into account [2,
Theorem 3.2.1.] we get that 0 € ri(dom s*) = ri(dom u* + 1).

Further, we notice that, by taking f : L — R, f(Z) = E(u*(Z)) — (X,Z) and g : LI —
R, g(2) = E(E) + 1, which are both convex functions, the qualification condition (QCs5)
is fulfilled. Indeed, f is lower semicontinuous, ¢ is continuous and 0 € ri(domu* + 1) =
sqri(E(dom u*) + 1). Thus the existence of strong duality for (5)-(6) and, consequently, of
an optimal solution for (6) is shown. [ |

Next we provide a formula for the subdifferential of the general convex risk measure
Pu-



Theorem 5 Assume that condition (7) is fulfilled. Let X € LP and \(X) € R be the
element where the infimum in the definition of p,(X) is attained. Then it holds

Ipu(X) = {X* € (LP)* : X*(w) € Ju(X (w)+A(X)) for almost everyw € Q,E(X*) = —1}.
(9)

Proof. Wefixan X € L? and let A\(X) € R be such that p,(X) = M X)+E(u(X+\(X))).
Then, via (1),
X" € 0pu(X) & pp(X7) + 9pu(X) = (X7, X)

or, equivalently, (see Lemma 3)

E(X*) = -1 and E(u"(X*) + u(X + A(X)) — (X", X + A\(X))) = 0.
On the other hand, by the Young-Fenchel inequality, it holds

W (X (@) + u(X (@) + AX)) = X*(@)(X (@) + A(X)) = 0 ¥ € ©,

which means that E(u*(X*) 4+ u(X + M(X)) — (X*, X + XA(X))) = 0 is nothing else than
uw*(X*(w)) + u(X(w) + AMX)) — X*(w)(X(w) + A(X)) = 0 for almost every w € Q. In
conclusion, X* € dp,(X) if and only if

E(X*) = —1 and X*(w) € du(X(w) + A(X)) for almost every w € .
|

In the sequel we rediscover for particular choices of the utility function u several well-
known convex risk measures and provide formulae for their conjugates and subdifferentials.

2.1 Conditional value-at-risk (CVaR)

For v < —1 < 1 < 0 we consider the utility function u; : R — R defined by

. ’}/Qt, if ¢ < 0,
un(t) = { yt, ift >0,

and notice that it satisfies all the requirements in the Assumption. This gives rise to the
following convex risk measure p,, : LP — R,

puy (X) = A1161]11;{/\ +NE(X +A)4 — REX +A)-}

Since u} via Lemma 3 one gets for p; : (LP)* — R the following expression

= Oz, m]>

* «w_ )0, if o < X* <, E(X*) = —1,
puy (X7) = { 400, otherwise.

Noticing that for all d € R,

’}/Qd, if d <0,
(u1)oo(d) =4 0, ifd=0,
md, ifd >0,

10



one can easily see that condition (7) is satisfied. Thus for all X € LP there exists A(X) € R
such that py, (X) = MX) + ME(X + MX))+ — %E(X + A(X))_. Further, according to
Theorem 5, we will make use of A(X) when giving the formula for the subdifferential of
pu, at X. Since
{’72}7 ift <0,
8U1(t) = [’)/2, ’)/1}, ift = 0,
{’Yl}? ift >0,

via (9) we obtain for all X € L the following formula

Xtw) =g i X(w) < X(X),
Opuy (X) = 4 X* € (1) s B(X) = —1, X*() € ao], i X(w) = ~A(X), b. (10)
X*(w) =1, if X(w) > —A(X)

When v; =0 and 2 = —1/8, where § € (0,1), the convex risk measure p,, turns out
to be the classical so-called conditional value-at-risk (see, for instance, [24,25]), CVaRg :
L’ - R,

CVaRs(X) = )i\ré]%{)\%— ;E[(XH)]}. (11)

Thus, for all X* € (LP)* its conjugate function CVaRj : (LP)* — R looks like

0, if — % < X*<0,E(X*) =1,

* X* —
CVaRj(X™) {_,_007 otherwise.

For all X € L? the element where the infimum in the definition of CVaRg(X) is attained,
is the so-called wvalue-at-risk of X at level S,

VaRs(X) = —inf{a : P(X < a) > 5}.

This fact, along with (10), furnishes for all X € LP the following formula for the subdif-
ferential of the conditional value-at-risk

X*(w)=-1/p, if X(w) < —VaRg(X),
0CVaRg(X) = (X" € (LP)":E(X") = —1,X*(w) € [-1/6,0], if X(w) = —VaRg(X),
X*(w) =0, if X(w)> —VaRg(X)

For alternative approaches for deriving the formula of the subdifferential of the condi-
tional value-at-risk we refer to [26,29].

2.2 Entropic risk measure

Consider the utility function uz : R — R, ua(t) = exp(—t) — 1, which obviously fulfills the
hypotheses in the Assumption. The convex risk measure we define via ug is py, : LP — R,
Pus (X) = infycg{\ + E(exp(—X — A\) — 1)}. With the convention 01n(0) = 0 we have for
all t* € R that . . . .

wi(t) = { —t*In(—t*) + t* + 1, %ft* <0,
400, if t* >0,

and, so, from Lemma 3 it follows that for all X* € (LP)* one has

~E(X*In(-X*)), if X* <0, E(X*) = -1,
+o00, otherwise.

prax) = {

11



Since (u2)s0 = 6)0,400), condition (7) is fulfilled and for all X € LP there exists AMX)eR
such that the infimum in the definition of p,,(X) is attained at this point. But in this
special case one can easily see that A\(X) = In(E(exp(—X)) and therefore the risk measure
can be equivalently written as p,,(X) = In(E(exp(—X))). This is the so-called entropic
risk measure introduced and investigated in [3].

Noticing that dua(t) = {Vua(t)} = {—exp(—t)} for all ¢ € R, the subdifferential of

the entropic risk measure at X € LP is Opy, (X) = {Vpu,(X)} = {W(l—x)) exp(—X)}.

2.3 The worst-case risk measure

By taking as utility function uz = [ _4oo) one rediscovers under py, : LP — R U {400},

pus (X) = /{Ielﬂf% A = —essinf X, (12)
X+A>0

the so-called worst-case risk measure. As uj = §(_o o], we have for all X* € (LP)* that

« ryey _ )0 if X* <0, E(X*)=-1,

Pug(X7) = { +00, otherwise.

Noticing that (u3)ec = d[o,100); One can easily see that (7) is fulfilled, which means that
for all X € LP there exists A\(X) € R at which the infimum in (12) is attained. If
essinf X = —oo, then one can take A(X) arbitrarily in R, while, when essinf X € R,
A(X) = —essinf X. Since

0, if t <0,
Jug(t) = ¢ (—00,0], ift =0,
{0}, ift >0,

we can provide via Theorem 5 the formula for the subdifferential of the worst-case risk
measure. Indeed, for X € LP with essinf X = —oo one has 9p,,(X) = 0, while, if
essinf X € R, it holds

X*(w) €

Opus (X) = {X* c (LP)* :E(X*) = -1, (o) 00,0, if X(w) = essinf X, }

(_
0, if X (w) > essinf X

3 Dual representations ofmonotone and cash-invariant hulls

Throughout the economical literature one finds a vast variety of risk functions, along
the coherent and convex ones some very irregular ones, which are neither monotone nor
cash-invariant being present, too. In order to overcome the lack of monotonicity or cash-
invariance and to provide better tools for quantifying risk, Filipovi¢ and Kupper have
proposed in [16] the notions of monotone and cash-invariant hulls, which are the greatest
monotone and, respectively, cash-invariant functions majorized by the risk function in
discussion. For the majority of the examples treated in [16] these hulls are not given in
their initial formulation, but tacitly some dual representations of them are used.

In this section we show that these dual representations are nothing else than the dual
problems of the primal optimization problems hidden in the definition of the monotone
and cash-invariant hulls and formulate sufficient qualification conditions for the existence
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of strong duality. This is the premise for making the dual representations viable. Finally,
we discuss the examples from [16] and show that for those particular situations the qualifi-
cation conditions are automatically fulfilled, fact which permits the formulation of refined
dual representations.

For the beginning we work in the general setting of a separated locally convex vector
space X with X* its topological dual space. Further, let P be a nonempty convex closed
cone in X, II € X\ {0} and f : X — R a proper function. The following notions have
been introduced in [16] having as a starting point the corresponding ones in the definition
of a convex risk measure.

Definition 2 The function f is called:
(i) P-monotone, if: z >p y = f(z) < f(y) Vz,y € X;

(ii) H-invariant, if: f(x + all) = f(z) —a Vz € X Va € R.

If ¥ = LP, P = L% and II = 1, then one rediscovers in the definition above the mono-
tonicity and cash-invariance, respectively, as introduced in Definition 1.

Before introducing the following notions we consider the set D := {z* € X* : (z*,II) =
—1} and notice that for the conjugate of the indicator function of D we have (see, for
instance, [16, Lemma 3.3]) for all x € X" that

dp(x) = sup (x*,x) =

{ —a, if da € R such that = = all,
z*eD

400, otherwise.
This means that dom 67, = RII := Ugerall.

Definition 3 For the given function f we call

(i) P-monotone hull of f the function fp : X — R defined as
f(x) = fO8p(x) = mf{f(y) : y € X, 3 >p y}
(ii) M-invariant hull of f the function fi : X — R defined as

() = fO6p(w) = inf {f(w — oIl) - a}.

(iii) P-monotone H-invariant hull of f the function fpy: X — R defined as

fru(x) ;== fO6p00p(z) =inf{f(y) —a:y € X,a e R,z >p y + all}.

Obviously, dom fp = dom f + P, dom fi; = dom f +RII and dom fp 1 = dom f +P + RIL.
Moreover, f is P-monotone if and only if f = fp, while f is II-invariant if and only if
= Ju

In the following we assume that f is a proper and convex function and provide a dual
representation for fp i1 by making use of the convex duality theory. This approach is based
on the observation that the value of the P-monotone Il-invariant hull at a given point is
nothing else than the optimal objective value of a convex optimization problem.
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Theorem 6 Let f : X — R be a proper and convex function and x € dom f + P + RIIL.
If one of the following qualification conditions

J(y/,d') € dom f x R such that y' +a'll —z € —int P (13)
and
X is a Fréchet space, f is lower semicontinuous and x € sqri(dom f + RII+P) (14)
18 fulfilled, then one has

fP,H(x) = *Hel%%()* {<x*7x> —f*(l’*)}, (15)
<§*,H):—1

where by the use of max instead of sup we signalize the fact that the supremum is attained.

Proof. For the beginning we would like to notice that fpy(x) is the optimal objective
value of the convex optimization problem

inf —a. 1
jeinf fy) —a (16)
y+all—xze—P

Its Lagrange dual problem looks like

inf - * I —
sup Gt W) —at @@ty +all—a))

or, equivalently,

Sup, {;ngR{a(@ ) = 1)} +y1g§({<w )+ fW))—( ,:c>}-
Since inf,er{a({z*, 1) — 1)} = —d;01((*,II) — 1), the dual problem becomes
sup  {(z*,z) — f*(z¥)}. (17)
zre—P*
(z*,II)=—1

Since g : X xR — X, g(y,a) = y+ all — z, is an affine and continuous function, condition
(13) is nothing else than the Slater constraint qualification (QC4), while (14) coincides
with the qualification condition (QCj3). Consequently, according to Theorem 2, one has
strong duality for the primal-dual pair (16)-(17). This means that

fpﬂ(x) = *Hel%%()* {<x*7[[‘> — f*(;p*)}
<f*,n):—1
|

Remark 3 If f is P-monotone, then f = f[1dp, which means that f* = f* +d_p«. In
this situation one would get for fp(z) = fr(z) the following dual representation

sup - {(z7,2) — f*(2")}. (18)

(z*,II)=-1
On the other hand, if f is Il-invariant, then f = f[10}, which means that f* = f* + ép.

In this situation one would get for fp(x) = fp(x) the following dual representation

sup {(z", x) = f*(z7)}. (19)
z*e—P*
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In the following we investigate the verifiability of the qualification conditions (13) and
(14) in the context of risk measure theory, namely by assuming that X = L? and P = L%,
for p € [1, 00]. Working in this framework, one can easily see that condition (13) could be
a valuable one only when p = oo, since for p € [1,00) the ordering cone L]i has an empty
interior; therefore we will concentrate ourselves in the latter situation on condition (14)
and assume to this end that f is lower semicontinuous. A situation when f fails to have
this topological property will be addressed in connection to qualification condition (QCjy)
in the next section.

Corollary 7 For p € [1,00] let f : LP — R be a convex risk function. If one of the
following conditions
e when p € [1,x]

[ is lower semicontinuous and — L% C dom f; (20)

e when p = 0o
essinf IT - essup IT > 0; (21)

1s fulfilled, then one has for all X € LP that

fro(X) = max A{E(X"X)— f"(X")},
X*e—(LY)*
E(X*)=—1

where by the use of max instead of sup we signalize the fact that the supremum is attained.

Proof. For p € [1,00], if —L% C dom f, then one has dom f + RII + L = LP, meaning
that (14) is valid for all X € LP. The conclusion follows via Theorem 6.

Take now p = oo and assume that essinf II-essup IT > 0. Obviously, dom f+RII+L3 C
L*>. As f is proper we can choose an element Y € dom f. Thus, for all X € L there
exists a € R such that X —Y —all € L. This is because of the assumption made on
II, which actually means that either essupIl > essinfIl > 0 or 0 > essupIl > essinf II.
Consequently, dom f + RII 4+ L3 = L°°.

We consider an arbitrary element X € L* = dom f + RII + L. Thus there exist
Y’ € dom f and a € R such that X —Y’ —all € LY. Again, the condition (21) ensures the
existence of @’ € R such that X — Y’ —a/Il € int L° = {Z € L™ : essinf Z > 0}, meaning
that (13) is fulfilled. The conclusion follows also in this case via Theorem 6. [

Remark 4 One can notice that for p = oo the condition (21) in the theorem above is
fulfilled when II € L™ is a constant numeraire.

In the last part of this section we discuss the examples treated in [16] from this new
perspective given by the duality theory, investigate the fulfillment of the conditions (20)
and (21) and provide some refined dual representations for the risk functions in discussion.
We will use the notion monotone for Lﬁ-monotone and cash-invariant for 1-invariant. The
same applies when we speak about the corresponding hulls.

Example 1 For p € [1,00) and ¢ > 0 consider the LP deviation risk measure f: LP — R
defined by f(X) = ¢||X —E(X)||, —E(X). This is a convex, continuous and cash-invariant
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(IT = 1) risk function, but not monotone in general. For the conjugate formula of the LP
deviation risk measure we refer to [12]. This is for X* € L9 given by

P, 0, if 3Y* € LY such that ¢(Y* —E(Y™*)) — 1= X*, [|[Y*]; <1,
FX7) = +00, otherwise.
As dom f = LP, (20) is valid and thus the monotone hull of f looks for all X € L” like
(see also Remark 3)

fro 1(X) = frp (X) = UL cE(Y*)E(X) — E(Y*X)] — E(X).
(Y —E(Y*)<1

In this way we rediscover the formula given in [16, Subsection 5.1].

Example 2 Closely related to previous example we consider for p € [1,00) and ¢ > 1 the
LP semi-deviation risk measure f: LP — R defined as f(X) = ¢||(X —E(X))_|l, — E(X).
This is a convex, continuous and cash-invariant (IT = 1) risk function, but not monotone
in general. For its conjugate function we have for X* € L9 the following formula (see [12])

FHX7) = 0, if 3Y* € —LY% such that ¢(Y* —E(Y™*)) — 1= X*, [[Y*||, <1,

| +oo, otherwise.
Consequently, since (20) is valid, the monotone hull of f is for all X € LP given by (see
also [16, Subsection 5.2])

fre 1(X) = frp (X) = max — c[E(Y")E(X) - E(Y"X)] - E(X).
Y*eLl V¥ <1
c(Y*—E(Y*))<1

Example 3 For p € [1,00) and ¢ > 0 consider the mean-LP risk measure f : LP — R
defined as f(X) = ¢/pE(|X|P)—E(X) = ¢/p|| X ||5—E(X), which is a convex and continuous
risk function but neither monotone nor cash-invariant (II = 1). Its conjugate function can
be easily derived from [12] and for X* € L? it looks like

rxn =P Exe 1),

pert

Again, dom f = LP, which means that the monotone cash-invariant hull of f has for all
X € LP the following formulation

1
frr (X)) = max E|X"X - IX* 1] .

X*e—L ci1q
E(X*)=—1

Different to the approach in [16, Subsection 5.3], the use of the strong duality theory allows
us to guarantee the attainment of the supremum in the formula above.

Example 4 For p € [1,00) and ¢ > 0 consider now the LP semi-moment risk measure
f: LP — R defined as f(X) = 1/cE[(X_)P] = 1/¢|| X_||b, which is a convex, continuous
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and monotone risk function, but not cash-invariant (IT = 1). Its conjugate function is for
X* € L1 given by (see [12])
a : * q
, it X*e-L%,

p—1
f*(X*)Z{ ¢ a

~+00, otherwise.

cx*
P

Since dom f = LP, the cash-invariant hull of f has for all X € LP the following formulation
(see also Remark 3)

q}

q

Example 5 The next risk function we consider is the exponential risk measure defined
for p € [1,00] as being f : LP — R, f(X) = E(exp(—X)) — 1. This is a convex, continuous
and monotone, but not cash-invariant (IT = 1) risk function. The conjugate function of f
is for X* € (LP)* given by

(X7 = ;ggp{(X*,ﬂ — E(exp(=X)) + 1},

-1
c

Cxx
p

_ _ R
fir 1(X) = fi(X) = et {E(X X)
E(X*)=—1

which by the interchangeability of minimization and integration (see [28, Theorem 14.60])
becomes (we make use again of the convention 01n(0) = 0)
} B { E[-X*In(—X*) + X*] +1, if X* <0,

E {sup{X*:C —exp(—z) + 1} +00 otherwise.

zeR

Consequently, one obtains via Remark 3 for all X € LP the following representation for
the cash-invariant hull of f

frr 1(X) = fi(X)= max E[-X"X — X*In(X")].
+ X*e(Lh)*
E(X*)=1
Example 6 For p = oo the so-called logarithmic risk measure f : L™ — R,

F(X) :{ E(-In(X)) -1, if X >0,

400, otherwise,
is a convex, lower semicontinuous and monotone risk function which fails to be cash-
invariant (IT = 1). Its conjugate function is given for X* € (L*°)* by

fHX7) = sup {(X7, X) + E(In(X) + 1)}
X>0
and can be further calculated by using [28, Theorem 14.60]. Indeed, one has
N * [ —E(In(—X™)), if X* <0,
JXT) =E {ili%{x z+In(z) + 1}} B { +0o0, otherwise.

Before giving a dual representation for the cash-invariant hull of the logarithmic risk

measure, one should notice that we are now in a situation where (20) fails, but (21) is

valid. Consequently, the cash-invariant hull of f can be for all X € L™ given by
frea(X) = fi(X) = max E[-X*X 4 In(X™)].

X*e(L>®)*,X*>0
E(X*)=1
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Remark 5 The cash-invariant hull of a monotone and convex risk function has been
object of investigation in the papers of Cheridito and Li [14, 15]. The two authors work
there with risk measures on Orlicz hearts, which contain the LP spaces, p € [1,00], as
particular instances, for which they provide, among others, dual representations. The
latter make use of a so-called penalty function, a notion which is strongly connected to the
conjugate of the convex measure in discussion. Conditions for attainment of the infimum
in the definition of the cash-invariant hull a risk function are given. For several classes of
monotone and convex risk functions dual representations for their cash-invariant hulls are
also discussed. It could be of particular interest to find out if the investigations done in
this paper can be extended to the general setting considered in [14,15].

4 The situation of missing lower semicontinuity

In the following we deal with the same problem of furnishing dual representations for the
monotone and cash-invariant hull of a convex risk function by using the duality approach
developed in Section 3, treating the particular case of a risk function which fails to be
lower semicontinuous. We also discuss the difficulties which can arise when this topological
assumption is missing.

For p € [1, 0] consider f : L? — R defined by

— HX - E(X)Hp7 if X_ € L=,
HX) = { 400, otherwise.
This risk function is convex and fails to be lower semicontinuous for p € [1,00). One can
casily verify that dom f = L> + L.

Like in the previous section we take as ordering cone Lﬁ, but work with a not nec-
essarily constant numeraire II € LP \ {0}. Our goal is to furnish a dual representation
for the monotone Il-invariant hull of f. To this end we will make use of the conjugate
formula of Y — ||Y —E(Y)]|p, p € [1, 0], which looks for X* € (LP)* like (see [12, Fact
4.3])

P 0, it 3Y* € (LP)*||Y*|| )+ < 1, such that X* =Y* — E(Y™),
(- =BG )" (X7) = { 400, otherwise. .
(22)
The case p = co. In this situation dom f = L*°, f is a convex and continuous function
and one can, consequently, use the qualification condition (20), which is obviously fulfilled.
Thus for the monotone Il-invariant hull of f one can employ again formula (15). This
means that, by taking into consideration (22), the monotone Il-invariant hull of f looks

for all X € L like

o (X)) = max E(Y*X) -E(Y"E(X). 23
freal)= L me RO S BOC)E(X) (23)
E(Y*II)—E(Y*)E(IT)+1=0

One can easily notice that if II is a constant numeraire, then f 9,11 = —00.

The case p € [1,00). In this second case we will proceed as follows: we first establish
the monotone hull of f, along with a dual representation for it, then we discuss which
are the difficulties that appear when trying to determine the dual representation of f Ly -
Recall that fLﬁ,H(X) = (fLi)H(X) for all X € LP. In this setting we denote the dual
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space of LP with L, ¢ = p/(p — 1) (with the convention 1/0 = co) and the same applies
for the corresponding norm.
As dom frp» = dom f + LE = L> + L%, for every X outside this set one has fiz (X) =
+00. For X € L> + L% we have
frp (X) = inf Y —E(Y)[, (24)

YeL®+LE
Y-Xe—-LE

and, obviously, fLi (X) > 0. On the other hand, since X = Z 4+ Y for Z € L* and
Y € LY, it holds X > essinf Z, thus essinf Z is feasible for the optimization problem in
the right-hand side of (24), which means that fLi (X) = 0. Consequently, szjr = 5L°°+Lﬁ'
Before furnishing the monotone Il-invariant hull of f, let us shortly investigate how
one could give dual representation for fLi . For X € L + Lf_ fixed one has to consider

the convex optimization problem
inf Y —E(Y)llp (25)

YeL®+LE
Y-Xe—Lt

and its Lagrange dual problem (notice that L* is dense in LP)

su inf Y-EY)|, +(X*, Y -X)} = sup inf {||]Y -EY)|,+ (X", Y -X
S (Y B0 b= s, ol (1 B0 )

or, equivalently,

sup  {(X*, X)—([|-—E()|[,)"(X™)} = sup E(Y*"X)-E(Y")E(X). (26)
X*e—L% Y *|lq<1E(Y*)-Y*eLl

In order to show that for the primal-dual pair (25)-(26) strong duality holds, one needs to
use the quasi-relative interior-type condition (QC4). Indeed, (25) is of the same type as
the problem (P) from the preliminary section, when taking X = 2 = S = LP, K = L% |
g:LP — LP g(Y) =Y — X and having as objective function f : L? — R,

Y —E(Y)|,, ifY_eL>,
400, otherwise.

ron={

Since X € L™ + L%, for X’ :== X — 1 € dom f one has g(X') € —qri L% (see [7]), while
obviously cl(L%. —L% ) = LP. More than that, as (g(dom fNS)+LE )—(g(dom fNS)+I) =
LP and the optimal objective value of (25) is fLi (X) =0, in order to show that (QCy) is
verified, it is enough to prove that (0,0) ¢ qi(c‘,’szi (x)); Where

€y ) =AY =B )lp+6Y =X +2): Y € L¥+ 11,7 € L7, ¢ > 0}.

Indeed, (—1,0) € Ng, (0,0) and via Proposition 1(ii) we get the desired conclusion.
L

p (X)

The qualification condition being verified it follows that

X) = E(Y*X) - E(Y*)E(X
frz (X) < B ey (Y"X) — E(Y")E(X)

19



and so one obtains for the monotone hull of f for all X € LP the following dual represen-
tation
max E(Y*X) - E(Y*)E(X), if X € L™+ LE|

frr (X) = Y *llg<1E(Y*)-Y*eLl
" 100, otherwise.

The monotone Il-invariant hull of f is the Il-invariant hull of f 7] and for its derivation
we use the direct formulation of the latter, f Ly = Opooy Lt as it is easier to handle with.

For all X € L¥ the monotone II-invariant hull of f is

X) = inf X —all) —a} = inf —a.
frpn(X) = (i (X —al) —a) = ot
Y +all-X=0

Since fLi 11 is the optimal objective value of a convex optimization problem, it is natural
to ask if a dual formulation for it, via the duality theory, can be provided. Unfortunately,
we are not always able to answer this question. What we can say is, that for X € L +
LY +RII = dom fr» g it holds f» ;(X) = 4oo. For X ¢ L* + L¥ + RII one get as
Lagrange dual problem to

inf —a (27)
(Y,a)e(L®+LE)xR
Y +all-X=0
the following optimization problem
sup inf [—a+ (X", Y +all — X)),

X*eLa (Yya)e(Lo+LE ) xR

which, since L™ is dense in L?, is nothing else than

—(X*, X inf a((X*,1I) — 1 inf (X*,Y)| =— 28
S | &)+ I o((XLID = 1) o, (X, V) | = oo 28

Nevertheless, we cannot be sure that this is the value which fLi n(X) takes, since no
known qualification condition can be verified for (27)-(28). This applies as well as for the
classical generalized interior ones (L* + L% is not closed) as for the one of quasi-relative
interior-type. This emphasizes the fact that one can have exceptional situations for which
the approach we use is, unfortunately, not suitable.

Let us also mention that whenever II € L* (which includes the situation when II is a
constant numeraire), then for all a € R there exists Y € L + L% such that X = all +Y

and so fLi,H(X) = —00. In this case we have for all X € L
_f —oo, if X € L™+ L +RII,
fLﬁvH(X) o { +00, otherwise.

Remark 6 The fact that L™ + Lﬁ is not closed does not make the applicability of the
other main class of qualification conditions, the closedness-type ones, for the convex opti-
mization problem in (27) possible, too.
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