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Abstract. The aim of this note is to give an alternative proof for a recent result
due to Dorsch, Jongen and Shikhman, which provides an upper estimate for the
Clarke subdifferential of an infimal value function. We show the validity of this
result under a weaker condition than the one assumed in the mentioned paper,
while the use of the Mordukhovich subdifferential, as an intermediate step, will
considerably shorten its proof.
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1 Motivation and preliminary results

The setting we work within in this article, which is in fact the one considered in [2],
is the following. Let g0, ..., gs : Rn × Rm → R be real-valued and continuously
differentiable functions and ϕ : Rn → R ∪ {−∞} be defined as

ϕ(x) := inf
y∈Rm

max
0≤k≤s

gk(x, y).

The topological structure of the upper-level set

Mmax := {x ∈ Rn : ϕ(x) ≥ 0}

of the infimal value function ϕ is of particular interest in the study of generalized
semi-infinite optimization problems (cf. [3]).
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Further, let be

σ : Rn × Rm → R, σ(x, y) := max
0≤k≤s

gk(x, y),

the set-valued operator

M : Rn ⇒ Rm,M(x) := {y ∈ Rm : σ(x, y) = ϕ(x)}

and for all (x, y) ∈ Rn × Rm the following set of indices

K(x, y) := {k ∈ {0, ..., s} : gk(x, y) = σ(x, y)}.

For (x, y) ∈ Rn × Rm we consider (cf. [3]) the convex and compact set

V (x, y) :=


∑

k∈K(x,y)

µkDxgk(x, y)

∑
k∈K(x,y)

µkDygk(x, y) = 0,∑
k∈K(x,y)

µk = 1,

µk ≥ 0 ∀k ∈ K(x, y)

 .

Here, for a function g : Rn × Rm → R, Dxg and Dyg denote the gradients of g
with respect to the variables x, respectively, y. Further, let be

V : Rn ⇒ Rm, V (x) :=
⋃

y∈M(x)

V (x, y).

The following condition was introduced in [2].
Compactness Condition CC. One says that the Compactness Condition

CC is fulfilled, if for all sequences (xk, yk)k∈N ⊆ Rn × Rm with
• xk → x ∈ Rn (k →∞)
• either σ(xk, yk)→ a (k →∞) and a ≤ ϕ(x)

or σ(xk, yk)→ −∞ (k →∞)

the sequence (yk)k∈N contains a convergent subsequence.
One of the main results of [2] is represented by the following upper estimate

for the Clarke subdifferential of the function ϕ.

Theorem 1 Let the Compactness Condition CC be fulfilled and let x̄ ∈ Rn. Then
it holds

∂Cϕ(x̄) ⊆ conv V (x̄). (1)

In the above result ∂Cϕ(x̄) denotes the Clarke subdifferential of ϕ at x̄, while
conv V (x̄) is the convex hull of the set V (x̄).

The proof given in [2] for this result is quite involved and makes use of some
characterizations of the Clarke subdifferential from [1]. We will give in this note
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an alternative proof for the above inclusion under a weaker assumption than
the Compactness Condition CC, by using as intermediate tool the Mordukhovich
subdifferential. This proof will allow us to point out which are the difficulties one
has to face when trying to discuss the situation when the inclusion in Theorem
1 becomes an equality.

The condition which will turn out to be sufficient for (1) was given in [2], too,
and has the following formulation.

Condition C∗. One says that Condition C∗ is fulfilled if

(C1) for all x ∈ Rn and sequences (yk)k∈N ⊆ Rm with σ(x, yk)→ ϕ(x)
(k →∞) there exists a convergent subsequence of (yk)k∈N and

(C2) the mapping x⇒M(x) is locally bounded, i.e., for all x̄ ∈ Rn there
exists an open neighborhood Ux̄ ⊆ Rn of x̄ such that

⋃
x∈Ux̄

M(x)
is bounded.

According to [2, Lemma 2.1], Condition C∗ guarantees the following local
description of ϕ:

for every x̄ ∈ Rn there exists an open neighborhood Ux̄ ⊆ Rn of x̄ and a
compact set W ⊆ Rm such that

ϕ(x) = min
y∈W

σ(x, y) ∀x ∈ Ux̄. (2)

As proved in [2], Condition C∗ is implied by the Compactness Condition CC
and the two conditions are not equivalent. However, according to [2], Condition
C∗ is not stable with respect to C0-perturbations of the functions involved, which
is not the case for the Compactness Condition CC. Nevertheless, for guaranteeing
(1), one does not necessarily have to assume that the latter is fulfilled, as we will
prove in the next section. To this end, we need several notions and results, which
we introduce in the following.

Let f : Rn → R ∪ {+∞} be a given function with a nonempty effective
domain dom f := {x ∈ Rn : f(x) < +∞}. The epigraph of f is the set epi f :=
{(x, r) ∈ Rn × R : f(x) ≤ r}. We say that f is lower semicontinuous around
x̄ ∈ dom f if there exists an open neighborhood Ux̄ ⊆ Rn of x̄ such that f is lower
semicontinuous at x for all x ∈ Ux̄. We say that f is locally Lipschitzian around
x̄ ∈ dom f if there exists an open neighborhood Ux̄ ⊆ Rn of x̄ and a real number
L > 0 such that |f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ Ux̄.

For ε ≥ 0 the Fréchet ε-subdifferential (or the analytic ε-subdifferential) of f
at x̄ ∈ dom f is defined by

∂Fε f(x̄) :=

{
x∗ ∈ X∗ : lim inf

‖h‖→0

f(x̄+ h)− f(x)− 〈x∗, h〉
‖h‖

≥ −ε
}
,

while for x 6∈ dom f we set ∂Fε f(x) := ∅. Further, ∂Ff(x̄) := ∂F0 f(x̄) denotes the
classical Fréchet subdifferential of f at x̄.
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For a given function f : Rn → R∪{+∞}, which is locally Lipschitzian around
x̄ ∈ dom f , f ◦(x̄; ·) : Rn → R, defined by

f ◦(x̄; d) = lim sup
x→x̄
t↓0

f(x+ td)− f(x)

t
,

denotes its Clarke generalized derivative, while

∂Cf(x̄) := {v ∈ Rn : vTd ≤ f ◦(x̄; d) ∀d ∈ Rn}

stays for the Clarke subdifferential (cf. [1]) of f at x̄.
For a set S ⊆ Rn we denote by δS : Rn → R ∪ {+∞},

δS(x) =

{
0, if x ∈ S,

+∞, otherwise,

the indicator function of S and by distS : Rn → R∪{+∞}, distS(x) := infs∈S ‖x−
s‖, the distance function to S. For x̄ ∈ S the Clarke normal cone to S at x̄ is
defined as

NC(S; x̄) := cl

(⋃
λ>0

λ∂C distS(x̄)

)
,

while for x̄ /∈ S one takes NC(S; x̄) := ∅.
We can now define the Clarke subdifferential of an arbitrary function f : Rn →

R ∪ {+∞} at x̄ ∈ dom f , as being

∂Cf(x̄) := {v ∈ Rn : (v,−1) ∈ NC(epi f ; (x̄, f(x̄)))},

while for x̄ /∈ dom f we take ∂Cf(x̄) := ∅.
Having a set-valued operator F : Rn ⇒ Rm we define its graph as being

gphF := {(x, y) ∈ Rn × Rm : y ∈ F (x)},

while its domain is the set

domF := {x ∈ Rn : F (x) 6= ∅}.

For x̄ ∈ domF we say that F is closed-graph at x̄ if ȳ ∈ F (x̄) whenever xk →
x̄ (k → ∞) and yk → ȳ (k → ∞) with yk ∈ F (xk) for all k ≥ 1. Further, one
says that F is inner semicompact at x̄ (cf. [5]) if for every sequence xk → x̄ (k →
∞) there is a sequence yk ∈ F (xk) for all k ≥ 1 that contains a convergent
subsequence as k →∞. We also recall here the Painlevé-Kuratowski upper/outer
limit of F at a point x̄ ∈ Rn, which is the set

Limsup
x→x̄

F (x) := {ȳ ∈ Rm : ∃ sequences xk → x̄ (k →∞) and yk → ȳ

(k →∞) with yk ∈ F (xk) for all k ≥ 1}.
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By means of the Painlevé-Kuratowski upper/outer limit we can introduce a fur-
ther subdifferential notion.

For a function f : Rn → R ∪ {+∞} and x̄ ∈ dom f we denote by

∂Mf(x̄) := Limsup
x

f→ x̄
ε↓0

∂Fε f(x) (3)

the basic/limiting/Mordukhovich subdifferential of f at x̄ (cf. [5, 6]) and we put

∂Mf(x̄) := ∅ when x̄ /∈ dom f . Here the symbol x
f→ x̄ means that x → x̄ with

f(x) → f(x̄). Whenever f is lower semicontinuous around x̄ ∈ dom f one can
equivalently put ε = 0 in (3). Further, one has for all x̄ ∈ Rn the following
relation between the three subdifferential notions introduced above

∂Ff(x̄) ⊆ ∂Mf(x̄) ⊆ ∂Cf(x̄),

the inclusions being in general strict.
Given a set S ⊆ X and x̄ ∈ S the basic/limiting/Mordukhovich normal cone

to S at x̄ is defined as
NM(S; x̄) := ∂MδS(x̄),

while for x̄ /∈ S one takes NM(S; x̄) := ∅. Finally, for a function f : Rn →
R ∪ {+∞} and x̄ ∈ dom f we denote by

∂∞f(x̄) := {v ∈ Rn : (v, 0) ∈ NM(epi f ; (x̄, f(x̄)))} (4)

the singular subdifferential of f at x̄ (cf. [5]) and we put ∂∞f(x̄) := ∅ for x̄ /∈
dom f . For x̄ ∈ dom f one always has that 0 ∈ ∂∞f(x̄). If f is locally Lipschitzian
around x̄ ∈ dom f , then it holds ∂∞f(x̄) = {0} (cf. [5, Corollary 1.81]).

By making use of the last two subdifferentials introduced in this first section,
one can deliver the following useful characterization of the Clarke subdifferential
of a function f : Rn → R ∪ {+∞} at x̄ ∈ dom f (see [5, Theorem 3.57 (b)]),
which closes this section.

Theorem 2 Let f : Rn → R∪{+∞} be lower semicontinuous around x̄ ∈ dom f .
Then it holds

∂Cf(x̄) = cl conv
[
∂Mf(x̄) + ∂∞f(x̄)

]
. (5)

2 The main result

The main result of this note states the existence of the upper estimate in (1)
under the weak assumption Condition C∗. The proof we give for it considerably
shortens the one given for the same result in [2], one of its essential ingredients
being the following result taken from [5, Theorem 1.108].
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Theorem 3 Let σ : Rn × Rm → R ∪ {+∞} be a given function, G : Rn ⇒ Rm

a set-valued operator, the infimal value function ϕ : Rn → R ∪ {±∞}, ϕ(x) =
infy∈G(x) σ(x, y), and the argminimum mapping M : Rn ⇒ Rm,M(x) = {y ∈
G(x) : σ(x, y) = ϕ(x)}. For x̄ ∈ Rn we assume that ϕ(x̄) ∈ R, M(x̄) 6= ∅, M
is inner semicompact at x̄, G is closed-graph at x̄ and σ is lower semicontinuous
on gphG. Then one has

∂Mϕ(x̄) ⊆

v ∈ Rn : (v, 0) ∈
⋃

y∈M(x̄)

∂M(σ + δgphG)(x̄, y)

 (6)

and

∂∞ϕ(x̄) ⊆

v ∈ Rn : (v, 0) ∈
⋃

y∈M(x̄)

∂∞(σ + δgphG)(x̄, y)

 . (7)

The main result follows.

Theorem 4 Let the Condition C∗ be fulfilled and let x̄ ∈ Rn. Then it holds

∂Cϕ(x̄) ⊆ conv V (x̄). (8)

Proof. We notice first that σ is a continuous function. Due to the local de-
scription of ϕ, there exists an open neighborhood Ux̄ ⊆ Rn of x̄ and a compact
set W ⊆ Rm such that (cf. (2))

ϕ(x) = min
y∈W

σ(x, y) ∀x ∈ Ux̄,

which implies that ϕ(x̄) = miny∈W σ(x̄, y). Thus there exists ȳ ∈ W with
ϕ(x̄) = σ(x̄, ȳ). Consequently, ϕ(x̄) ∈ R and, as x̄ was arbitrarily chosen,
one has domϕ = Rn. Next we show that, for G : Rn ⇒ Rm taken such that
gphG = Rn × Rm, the hypotheses of Theorem 3 are fulfilled. Obviously, G is
closed-graph at x̄ and σ is lower semicontinuous on gphG. Further, ȳ ∈ M(x̄),
where M : Rn ⇒ Rm,M(x) = {y ∈ Rm : σ(x, y) = ϕ(x)}. It remains to prove
that M is inner semicompact at x̄.

Indeed, consider an arbitrary sequence xk converging to x̄ when k → ∞.
Without loss of generality we can assume that xk ∈ Ux̄ for all k ≥ 1. Thus there
exists yk ∈ W such that ϕ(xk) = σ(xk, yk) or, equivalenlty, yk ∈ M(xk) for all
k ≥ 1. Since W is compact, yk contains a convergent subsequence (ykl)l∈N as
l →∞ and this provides the inner semicompactness of M at x̄. Now, according
to Theorem 3, one has

∂Mϕ(x̄) ⊆
⋃

y∈M(x̄)

{
v ∈ Rn : (v, 0) ∈ ∂Mσ(x̄, y)

}
(9)
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and
∂∞ϕ(x̄) ⊆

⋃
y∈M(x̄)

{v ∈ Rn : (v, 0) ∈ ∂∞σ(x̄, y)} . (10)

The functions gk, k = 0, ..., s, are continuously differentiable, thus locally Lip-
schitzian around any (x, y) ∈ Rn × Rm. This means that σ is locally Lipschitz
around any (x, y) ∈ Rn × Rm, too, as it is a maximum of a family of locally
Lipschitz functions. Consequently, ∂∞σ(x, y) = {(0, 0)} for all (x, y) ∈ Rn × Rm

and, taking into account (10), it holds ∂∞ϕ(x̄) = {0}.
The next step of the proof concerns the lower semicontinuity of the function

ϕ around x̄. More precisely, we will show that ϕ is lower semicontinuous on Ux̄.
To this end, take an arbitrary z̄ ∈ Ux̄. Assume to the contrary that there exists
a ∈ R such that lim infz→z̄ ϕ(z) < a < ϕ(z̄). Thus there exists a sequence (zk)k∈N
in Ux̄ such that zk → z̄ when k →∞ and ϕ(zk) < a for all k ≥ 1. Due to the local
description of ϕ, for all k ≥ 1 there exists uk ∈ W such that ϕ(zk) = σ(zk, uk).
The sequence (uk)k∈N contains a convergent subsequence (ukl)l∈N which converges
to an element ū ∈ W as l→∞. Thus σ(zkl , ukl) < a for all l ≥ 1 and due to the
continuity of σ one has σ(z̄, ū) ≤ a. On the other hand, we have ϕ(z̄) ≤ σ(z̄, ū),
which implies that ϕ(z̄) ≤ a, furnishing the desired contradiction.

Consequently, we can apply Theorem 2 and, by combining it with relation
(9), we get

∂Cϕ(x̄) = cl conv[∂Mϕ(x̄) + ∂∞ϕ(x̄)] = cl conv ∂Mϕ(x̄)

⊆ cl conv
⋃

y∈M(x̄)

{
v ∈ Rn : (v, 0) ∈ ∂Mσ(x̄, y)

}
⊆ cl conv

⋃
y∈M(x̄)

{
v ∈ Rn : (v, 0) ∈ ∂Cσ(x̄, y)

}
.

Using Proposition 2.3.12 in [1] one rapidly can notice that{
v ∈ Rn : (v, 0) ∈ ∂Cσ(x̄, y)

}
= V (x̄, y),

which implies that
∂Cϕ(x̄) ⊆ cl conv V (x̄).

Condition C∗ also guarantees that M(x̄) is compact and thus V (x̄) is a com-
pact set as a compact union of compact sets. This means that cl conv V (x̄) =
conv V (x̄) and, consequently,

∂Cϕ(x̄) ⊆ conv V (x̄).

�
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Remark 1 Assuming that Condition C∗ is fulfilled, from the proof of Theorem 4
we get as a by-product, since ϕ is lower semicontinuous at x̄ and ∂∞ϕ(x̄) = {0},
the fact that the infimal value function ϕ is locally Lipschitzian around x̄ (see [5,
Theorem 3.52]).

As already noticed in [2], answering questions like whether the inclusion in (1)
is in fact an equality or under which sufficient conditions it becomes one, seems
to be very challenging. As follows from the proof of Theorem 4, exact formulae
(this means, not only upper estimates) for the subdifferential of an infimal value
function could be very useful with this respect. Unfortunately, these formulae are
available in the literature on nonsmooth analysis only for very special situations.

We discuss one of them in the following, namely, in the case when s = 0,
which means that σ = g0 is a continuously differentiable function. Thus ϕ :
Rn → R ∪ {−∞} becomes ϕ(x) = infy∈Rm g0(x, y) and for all (x, y) ∈ Rn × Rm

one has K(x, y) = {0} and

V (x, y) = {Dxg0(x, y) | Dyg0(x, y) = 0} .

The treatment of this particular situation relies on some results given in [7],
which we recall as follows. Let σ : Rn×Rm → R∪{+∞} be a given function, G :
Rn ⇒ Rm a set-valued operator, the infimal value function ϕ : Rn → R∪ {±∞},
ϕ(x) = infy∈G(x) σ(x, y), and the argminimum mapping M : Rn ⇒ Rm,M(x) =
{y ∈ G(x) : σ(x, y) = ϕ(x)}.

We assume that the infimal value function ϕ is finite at some x̄ ∈ domM , that
σ is differentiable at (x̄, ȳ) for some ȳ ∈ M(x̄) and that the solution mapping
M : domG ⇒ Rm admits a local upper Lipschitzian selection at (x̄, ȳ). This
means that there exists a single-valued mapping h : domG → Rm, which is
locally upper Lipschitzian at x̄ satisfying h(x̄) = ȳ and h(x) ∈ M(x) for all
x ∈ domG in an open neighborhood of x̄. According to [8], the single-valued
mapping h : domG → Rm is locally upper Lipschitzian at x̄ if there exists an
open neighborhood Ux̄ ⊆ Rn of x̄ and a number L ≥ 0 such that

‖h(x)− h(x̄)‖ ≤ L‖x− x̄‖ whenever x ∈ Ux̄ ∩ domG.

Then, due to [7, Theorem 2], it holds

∂Fϕ(x̄) = Dxσ(x̄, ȳ) +DF∗G(x̄, ȳ)(Dyσ(x̄, ȳ)),

where
DF∗G(x̄, ȳ)(w) := {v ∈ Rn : (v,−w) ∈ NF ((x̄, ȳ); gphG)}

is the Fréchet coderivative of G at (x̄, ȳ) and

NF ((x̄, ȳ); gphG) := ∂F δgphG(x̄, ȳ)

denotes the Fréchet normal cone to gphG at (x̄, ȳ). The concept of coderivative
has been introduced by Mordukhovich in [4].

We can prove the following result.

8



Theorem 5 Consider the continuously differentiable function g0 : Rn×Rm → R,
the infimal value function ϕ : Rn → R ∪ {−∞}, ϕ(x) = infy∈Rm g0(x, y), the
argminimum mapping M : Rn ⇒ Rm,M(x) = {y ∈ Rm : g0(x, y) = ϕ(x)},
x̄ ∈ Rn and assume that Condition C∗ is fulfilled. If for each y ∈ M(x̄) with
Dyg0(x̄, y) = 0 the mapping M : Rn ⇒ Rm admits a local upper Lipschitzian
selection at (x̄, y), then

∂Cϕ(x̄) = conv V (x̄).

Proof. By taking G : Rn ⇒ Rm such that gphG = Rn × Rm we are in the
setting considered in [7] and described above. As shown in the proof of Theorem
4, since Condition C∗ is fulfilled, the function ϕ is finite at x̄ and M(x̄) 6= ∅.
More than that, for every (x, y) ∈ gphG one has NF ((x, y); gphG) = {(0, 0)}
and, consequently, DF∗G(x, y)(w) = {0} if w = 0, being equal to the empty set,
otherwise.

Let be an arbitrary y ∈M(x̄) such that Dyg0(x̄, y) = 0. Since M : Rn ⇒ Rm

admits a local upper Lipschitzian selection at (x̄, y), by [7, Theorem 2], it holds
∂Fϕ(x̄) = {Dxσ(x̄, y)}. Thus V (x̄, y) = ∂Fϕ(x̄) ⊆ ∂Cϕ(x̄), which means that
V (x̄) ⊆ ∂Cϕ(x̄). Using the fact that ∂Cϕ(x̄) is a convex set, it yields conv V (x̄) ⊆
∂Cϕ(x̄), which, combined with Theorem 4, provides the desired conclusion. �

3 The convex case

In the last section of the paper we discuss another particular situation for which
the inclusion in (1) becomes an equality, provided that Condition C∗ is fulfilled.
To this end we assume that the functions g0, ..., gs : Rn × Rm → R are convex
and differentiable (not necessarily continuously differentiable). Thus the function
σ : Rn × Rm → R, σ(x, y) = max0≤k≤s gk(x, y), is convex, too, which at its
turn furnishes the convexity of the infimal value function ϕ : Rn → R ∪ {−∞},
ϕ(x) = infy∈Rm σ(x, y).

One of the intermediate tools which we will use in this section is the convex
subdifferential of a function. Having a function f : Rn → R ∪ {+∞} and an
element x̄ ∈ dom f the convex subdifferential of f at x̄ is the set

∂f(x̄) := {v ∈ Rn : f(x)− f(x̄) ≥ vT (x− x̄) ∀x ∈ Rn},

while for x̄ /∈ dom f we put ∂f(x̄) := ∅.
According to [9, Theorem 2.6.1 (ii)], for all (x, y) ∈ Rn × Rm it holds

(v, 0) ∈ ∂σ(x, y)⇔ ϕ(x) = σ(x, y) and v ∈ ∂ϕ(x). (11)

On the other hand, according to [9, Corollary 2.8.11], for all (x, y) ∈ Rn×Rm

we have

∂σ(x, y) =

 ∑
k∈K(x,y)

µk(Dxgk(x, y), Dygk(x, y))

∑
k∈K(x,y)

µk = 1,

µk ≥ 0 ∀k ∈ K(x, y)

 , (12)
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which means that
(v, 0) ∈ ∂σ(x, y)⇔ v ∈ V (x, y). (13)

Working in the convex setting, one gets equality in (1), without any supple-
mentary assumption, excepting Condition C∗.

Theorem 6 Let the Condition C∗ be fulfilled and let x̄ ∈ Rn. Then it holds

∂Cϕ(x̄) = V (x̄) = conv V (x̄). (14)

Proof. As we have already seen, Condition C∗ guarantees that M(x) 6= ∅ for
all x ∈ Rn, which implies that domϕ = Rn. From (11) it follows that

v ∈ ∂ϕ(x̄) if and only if ∃y ∈M(x̄) such that (v, 0) ∈ ∂σ(x̄, y),

which can be equivalently formulated as (cf. (13))

v ∈ ∂ϕ(x̄)⇔ v ∈
⋃

y∈M(x̄)

V (x̄, y) = V (x̄).

Further, since ϕ is a convex function, one gets

∂Cϕ(x̄) = V (x̄),

while (14) follows as a consequence of the convexity of the set ∂Cϕ(x̄). �

Acknowledgements. The author is thankful to an anonymous reviewer for
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