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February 13, 2012

Abstract. The generalized parallel sum of two monotone operators via a linear continuous mapping is defined
as the inverse of the sum of the inverse of one of the operators and with inverse of the composition of the second
one with the linear continuous mapping. In this article, by assuming that the operators are maximal monotone
of Gossez type (D), we provide sufficient conditions of both interiority- and closedness-type for guaranteeing that
their generalized sum via a linear continuous mapping is maximal monotone of Gossez type (D), too. This result
will follow as a particular instance of a more general one concerning the maximal monotonicity of Gossez type (D)
of an extended parallel sum defined for the maximal monotone extensions of the two operators to the corresponding
biduals.

Key Words. monotone operator, maximal monotone operator of Gossez type (D), representative function, convex
conjugate duality

AMS subject classification. 47H05, 46N10, 42A50

1 Introduction and preliminaries

Having two nonempty sets A and B and a multivalued operator M : A ⇒ B, we denote by G(M) = {(a, b) ∈
A × B : b ∈ M(a)} its graph and by M−1 : B ⇒ A the inverse operator of M , which is the multivalued operator
having as graph the set G(M−1) := {(b, a) ∈ B×A : (a, b) ∈ G(M)}. When X is a real nonzero Banach space and
X∗ is its topological dual space, the parallel sum of two multivalued monotone operators S, T : X ⇒ X∗ is defined
as

S||T : X ⇒ X∗, S||T (x) := (S−1 + T−1)−1(x) ∀x ∈ X.

This notion has been first considered in Hilbert spaces by Passty in [23], where the interested reader can find some
practical interpretations of this notion including some preliminary investigations on the maximal monotonicity of
the parallel sum of two maximal monotone operators. The latter problem was also addressed in Hilbert spaces
in [22] and in reflexive Banach spaces in [1,30], the weakest condition for the maximal monotonicity of the parallel
sum available in the latter setting in the literature being recently introduced in [27]. Since S and T are maximal
monotone if and only if their inverse S−1 and, respectively, T−1 are maximal monotone, the sufficient conditions
for the maximal monotonicity of S||T in reflexive Banach spaces can be gathered from the ones formulated for the
maximal monotonicity of the sum of two maximal monotone operators, applied to S−1 + T−1.

When Y is another real nonzero Banach space with Y ∗ being its topological dual space, S : X ⇒ X∗ and
T : Y ⇒ Y ∗ are two monotone operators and A : X → Y is a linear continuous mapping with adjoint mapping
A∗ : Y ∗ → X∗, Penot and Zălinescu proposed in [27] the following generalized parallel sums of S and T defined via
A

S||AT : Y ⇒ Y ∗, S||AT (y) := (AS−1A∗ + T−1)−1(y) ∀y ∈ Y

and
S||AT : X ⇒ X∗, S||AT (x) := (S−1 + (A∗TA)−1)−1(x) ∀x ∈ X,
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respectively. One can easily notice that when X = Y and A is the identity mapping on X, then they both collapse
into S||T . As the monotonicity of S and T gives rise to the same property for S||AT and S||AT , the question of how
to guarantee for these maximal monotonicity, provided that S and T are maximal monotone, comes automatically.

This question was already addressed by Stephen Simons in [35] in general Banach spaces in what concerns the
generalized parallel sum S||AT . Under the assumption that S and T are maximal monotone operators of Gossez
type (D), in the mentioned paper, interiority-type regularity conditions for ensuring that S||AT is a maximal
monotone operator of Gossez type (D), too, have been formulated. Due to its nature, at least in reflexive spaces,
statements on the maximal monotonicity of the parallel sum S||AT and corresponding interiority- and closedness-
type regularity conditions can be derived from the statements given in the literature for the sum of a monotone
operator with the composition of a second one with a linear continuous mapping. With this respect we refer
the reader to [5, 6, 28], where weak sufficient regularity conditions are formulated by making use of the theory of
representative functions for maximal monotone operators. One should also notice that the latter was also employed
(see [12,13]) in the study of both extended and variational sums of maximal monotone operators and compositions
of maximal monotone operators with a linear continuous mapping (see [29]), as well.

Unfortunately, the approach suggested above for S||AT , regarding the direct derivation of sufficient conditions
for maximal monotonicity from the already existent ones, cannot be applied to S||AT accordingly. This fact
represented the starting point of the investigations made in this paper, where we want to provide interiority- and
closedness-type regularity conditions for the maximal monotonicity of Gossez type (D) of S||AT , whenever S and
T are maximal monotone operators of Gossez type (D).

For a recent study on primal-dual splitting algorithms for solving inclusion problems involving generalized
parallel sums of maximal monotone operators we refer the interested reader to [?].

The outline of the paper is the following. In the remaining of this section we recall some elements of convex
analysis and introduce the necessary apparatus of notions and results referring to monotone operators in general
Banach spaces. In Section 2 we investigate the fulfilment in an exact sense of a generalized bivariate infimal
convolution formula for which we provide, by making use of a special conjugate formula, equivalent closedness-type
conditions, but also sufficient interiority-type ones. This formula represents the premise for ensuring in Section
3 maximal monotonicity of Gossez type (D) of a generalized parallel sum of the maximal monotone operators of
Gossez type (D) S and T , defined by making use of their extensions to the corresponding biduals. The maximal
monotonicity of Gossez type (D) of S||AT will follow as a particular instance of this general result. A special
attention will be also given to the formulation of further sufficient conditions for the interiority-type regularity
condition and to the situation when these became equivalent. Finally, in Section 4, some particular instances, to
which the general results on the maximal monotonicity of S||AT give rise, are considered.

1.1 Elements of convex analysis

Let X be a real separated locally convex space and X∗ be its topological dual space. We denote by w(X,X∗) (or,
for short, w) the weak topology on X induced by X∗ and by w(X∗, X) (or, for short, w∗) the weak∗ topology on X∗

induced by X. We denote by 〈x∗, x〉 the value of the continuous linear functional x∗ ∈ X∗ at x ∈ X. For a given
set D ⊆ X, we denote by coD, aff D, intD and clD, its convex hull, affine hull, interior and closure, respectively.
When Z ⊆ X is a given set we say that D is closed regarding the set Z if clD ∩ Z = D ∩ Z. The conic hull of the
set D will be denoted by coneD = ∪λ>0λD, while its relative interior is defined as (see [42])

riD =

{
rintD, if aff D is a closed set,
∅, otherwise,

where rintD := intaff DD. The algebraic interior (or core) of D is the set (see [16,31,42])

coreD = {u ∈ X| ∀x ∈ X ∃δ > 0 such that ∀λ ∈ [0, δ] : u+ λx ∈ D},

while its relative algebraic interior (or intrinsic core) is the set (see [16,42])

icrD = {u ∈ X| ∀x ∈ aff(D −D) ∃δ > 0 such that ∀λ ∈ [0, δ] : u+ λx ∈ D}.

One always has that rintD ⊆ icrD. The intrinsic relative algebraic interior of D (see [42,43]) is defined as

icD =

{
icrD, if aff D is a closed set,
∅, otherwise.

Thus we have, in general, that
riD ⊆ icD. (1)

In the case when D is a convex set, the above generalized interiority notions can be characterized as follows:
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• coreD = {x ∈ D : cone(D − x) = X} (see [31,42]);

• icrD = {x ∈ D : cone(D − x) is a linear subspace of X} (see [16,42]);

• icD = {x ∈ D : cone(D − x) is a closed linear subspace of X} (see [42,43]);

• x ∈ icD if and only if x ∈ icrD and aff(D − x) is a closed linear subspace of X (see [42,43])

and we have the following inclusions

intD ⊆ coreD ⊆ icD ⊆ icrD ⊆ D, (2)

they being in general strict.
When Y is another real separated locally convex space and A : X −→ Y is a linear continuous mapping we

consider its graph G(A) := {(x,Ax) : x ∈ X}, which becomes when A = idX : X −→ X with idX(x) = x for all
x ∈ X (the identity mapping on X) the diagonal subspace ∆X := {(x, x) : x ∈ X} of X ×X. The following result,
which is of interest independently of the purposes of this article, will play an important role in the sequel.

Lemma 1.1. Let X and Y be separated locally convex spaces, U ⊆ X and V ⊆ Y be two given convex sets and
A : X −→ Y be a linear continuous mapping. Then it holds

(0, 0) ∈ ic (U × V −G(A))⇔ 0 ∈ ic(V −A(U)).

Proof. In the proof we use the following two characterizations:

(0, 0) ∈ ic (U × V −G(A))⇔ C := cone (U × V −G(A)) is a closed linear subspace of X × Y

and
0 ∈ ic(V −A(U))⇔ D := cone(V −A(U)) is a closed linear subspace of Y.

”⇒ ” Suppose that C is a closed linear subspace. Since U and V are convex sets, one has that D is a convex
cone. In order to proof that D is a linear subspace, we show that −D ⊆ D. Take an arbitrary d ∈ D. Thus
d = α(v −Au) for α > 0, u ∈ U and v ∈ V, hence (0, d) = (α(u− u), α(v −Au)) = α((u, v)− (u,Au)) ∈ C. But C
is a linear space, hence (0,−d) ∈ C, that is (0,−d) = β((u1, v1)− (x,Ax)), with β > 0, u1 ∈ U, v1 ∈ V and x ∈ X.
It results that u1 − x = 0, hence x = u1 ∈ U . Thus −d = β(v1 −Au1) with β > 0, u1 ∈ U, v1 ∈ V, hence −d ∈ D.

We prove next that D is closed and consider therefore an arbitrary element d ∈ clD. Thus there exist (λα)α∈I ⊆
R+, (uα)α∈I ⊆ U and (vα)α∈I ⊆ V such that dα = λα(vα − Auα) −→ d. But (0, dα) ∈ C for all α ∈ I and C is
closed, thus (0, d) = β(u− x, v − Ax), with β > 0, u ∈ U, v ∈ V and x ∈ X. Hence, x = u ∈ U and, consequently,
d = β(v −Au) ∈ D.

”⇐ ” Suppose now that D is a closed linear subspace. The convexity of the sets U and V guarantees that C is a
convex cone. Next we prove that −C ⊆ C and consider to this end an arbitrary c ∈ C. Thus c = α(u− x, v−Ax),
with α > 0, u ∈ U, v ∈ V, x ∈ X. Hence, c = α(0, v − Au) + α(u − x,A(u − x)). Obviously, α(v − Au) ∈ D
and since D is a linear space, we have −α(v − Au) = β(v1 − Au1), with β > 0, u1 ∈ U and v1 ∈ V. Thus

−c = β(0, v1 −Au1)− α(u− x,A(u− x)) = β
(
u1 −

(
u1 + α/β(u− x)

)
, v1 −A

(
u1 + α/β(u− x)

))
∈ C.

In order to show that C is closed we consider an element c := (c1, c2) ∈ clC and show that c ∈ C. Thus there exist
(λα)α∈I ⊆ R+, (uα)α∈I ⊆ U, (vα)α∈I ⊆ V and (xα)α∈I ⊆ X such that cα = λα(uα−xα, vα−Axα) −→ c = (c1, c2).
Obviously, λα(uα−xα) −→ c1, hence λαA(uα−xα) −→ Ac1 and from here we obtain that λα(vα−Auα) −→ c2−Ac1.
But λα(vα − Auα) ∈ D for all α ∈ I and D is closed, hence c2 − Ac1 = β(v − Au), with β > 0, u ∈ U and v ∈ V.
Thus (c1, c2) =

(
u−

(
u− 1/βc1

)
, v −A

(
u− 1/βc1

))
∈ C and this concludes the proof.

The indicator function of a set D ⊆ X is defined as δD : X −→ R := R ∪ {±∞},

δD(x) =

{
0, if x ∈ D,
+∞, otherwise.

For E and F two nonempty sets we consider the projection operator prE : E × F → E, prE(e, f) = e for all
(e, f) ∈ E × F . For G and H two further nonempty sets and k : E → G and l : F → H two given functions we
denote by k× l : E×F → G×H the function defined as k× l(e, f) = (k(e), l(f)) for all (e, f) ∈ E×F . Throughout
the paper, when an infimum is attained we write min instead of inf.

Having a function f : X −→ R we denote its domain by dom f = {x ∈ X : f(x) < +∞} and its epigraph by
epi f = {(x, r) ∈ X ×R : f(x) ≤ r}. We call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X. By cl f : X → R
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we denote the lower semicontinuous hull of f , namely the function whose epigraph is the closure of epi f , that is
epi(cl f) = cl(epi f). We consider also co f : X → R, the convex hull of f , which is the greatest convex function
majorized by f . For x ∈ X such that f(x) ∈ R we define the subdifferential of f at x by

∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}.

When f(x) ∈ {±∞} we take by convention ∂f(x) = ∅.
The Fenchel-Moreau conjugate of f is the function f∗ : X∗ −→ R defined by

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} ∀x∗ ∈ X∗.

One always has the Young-Fenchel inequality

f∗(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ X ∀x∗ ∈ X∗.

Consider Y another separated locally convex space and a mapping h : X −→ Y . We denote by h(D) = {h(x) :
x ∈ D} the image of a set D ⊆ X through h and by h−1(E) = {x ∈ X : h(x) ∈ E} the inverse of a set E ⊆ Y
through h.

For A : X −→ Y a linear continuous mapping, ImA := A(X) denotes the image space of A, while its adjoint
operator A∗ : Y ∗ −→ X∗ is defined by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for all y∗ ∈ Y ∗ and x ∈ X. When X and Y are normed
spaces, the biadjoint operator of A, A∗∗ : X∗∗ −→ Y ∗∗, is defined as being the adjoint operator of A∗.

1.2 Monotone operators in general Banach spaces

Consider further X a nonzero real Banach space, X∗ its topological dual space and X∗∗ its topological bidual space.
Throughout the paper we identify X with its image under the canonical injection of X into X∗∗. A multivalued
operator S : X ⇒ X∗ is said to be monotone if

〈y∗ − x∗, y − x〉 ≥ 0, whenever y∗ ∈ S(y) and x∗ ∈ S(x).

A monotone operator S is called maximal monotone if its graph G(S) is not properly contained in the graph of
any other monotone operator S′ : X ⇒ X∗. For the operator S we consider also its domain D(S) := {x ∈ X :
S(x) 6= ∅} = prX(G(S)) and its range R(S) := ∪x∈XS(x) = prX∗(G(S)). The most prominent example of a
maximal monotone operator is the subdifferential of a proper, convex and lower semicontinuous function (see [32]).
However, there exist maximal monotone operators which are not subdifferentials (see [33,34]).

To an arbitrary monotone operator S : X ⇒ X∗ we associate the Fitzpatrick function ϕS : X × X∗ −→ R,
defined by

ϕS(x, x∗) = sup{〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ S(y)},

which is obviously convex and weak×weak∗ lower semicontinuous. Introduced by Fitzpatrick in 1988 (see [11]) and
rediscovered after some years in [10,21], it proved to be very important in the theory of maximal monotone operators,
revealing important connections between convex analysis and monotone operators (see [2–10,20,24–27,33,37,38,41]
and the references therein).

Denoting by c : X × X∗ → R, c(x, x∗) = 〈x∗, x〉 for all (x, x∗) ∈ X × X∗ the coupling function of X × X∗,
one can easily show that ϕS(x, x∗) = c∗S(x∗, x) for all (x, x∗) ∈ X ×X∗, where cS : X ×X∗ → R, cS = c+ δG(S).

Well-linked to the Fitzpatrick function is the function ψS : X ×X∗ → R, ψS = cl‖·‖×‖·‖∗(co cS), where the closure
is taken in the strong topology of X ×X∗. For all (x, x∗) ∈ X ×X∗ we have ψ∗S(x∗, x) = ϕS(x, x∗), while when X
is a reflexive Banach space the equality ϕ∗S(x∗, x) = ψS(x, x∗) holds (see [10, Remark 5.4]). The most important
properties of the Fitzpatrick function of a maximal monotone operator follow.

Lemma 1.2. (see [11]) Let S : X ⇒ X∗ be a maximal monotone operator. Then

(i) ϕS(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗,

(ii) G(S) = {(x, x∗) ∈ X ×X∗ : ϕS(x, x∗) = 〈x∗, x〉}.

They gave rise to the following notion introduced in connection to a monotone operator.

Definition 1.1. For S : X ⇒ X∗ a monotone operator, we call representative function of S a convex and lower
semicontinuous (in the strong topology of X ×X∗) function hS : X ×X∗ −→ R fulfilling

hS ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉}.
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If G(S) 6= ∅ (which is the case when S is maximal monotone), then every representative function of S is proper.
Obviously, the Fitzpatrick function associated to a maximal monotone operator is a representative function of
the operator. From [10] we have the following properties for the representative function of a maximal monotone
operator.

Proposition 1.1. Let S : X ⇒ X∗ be a maximal monotone operator and hS be a representative function of S.
Then the following statements are true:

(i) ϕS ≤ hS ≤ ψS;

(ii) the function (x, x∗) 7→ h∗S(x∗, x) is also a representative function of S;

(iii) {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X ×X∗ : h∗S(x∗, x) = 〈x∗, x〉} = G(S).

By Proposition 1.1 it follows that a convex and lower semicontinuous function f : X × X∗ −→ R is a repre-
sentative function of the maximal monotone operator S if and only if ϕS ≤ f ≤ ψS , in particular, ϕS and ψS
are representative functions of S. Let us also notice that if f : X −→ R is a proper, convex and lower semicon-
tinuous function, then a representative function of the maximal monotone operator ∂f : X ⇒ X∗ is the function
(x, x∗) 7→ f(x) + f∗(x∗). Moreover, according to [8, Theorem 3.1] (see also [24, Example 3]), if f is a sublinear and
lower semicontinuous function, then the operator ∂f : X ⇒ X∗ has a unique representative function, namely the
function (x, x∗) 7→ f(x) + f∗(x∗). For more on the properties of representative functions we refer to [3, 10, 20, 27]
and the references therein.

Next we give a maximality criteria for a monotone operator valid in reflexive Banach spaces (cf. [9, Theorem
3.1] and [27, Proposition 2.1]; see also [34] for other maximality criteria in reflexive spaces).

Theorem 1.1. Let X be a reflexive Banach space and f : X ×X∗ −→ R be a proper, convex and lower semicon-
tinuous function such that f ≥ c. Then the operator whose graph is the set {(x, x∗) ∈ X ×X∗ : f(x, x∗) = 〈x∗, x〉}
is maximal monotone if and only if f∗(x∗, x) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗.

For the following generalization of this result to general Banach spaces we refer to [18, Theorem 4.2].

Theorem 1.2. Let X be a nonzero Banach space and f : X × X∗ −→ R be a proper, convex and lower
semicontinuous function such that f ≥ c and f∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉 for all (x∗, x∗∗) ∈ X∗ × X∗∗. Then the
operator whose graph is the set {(x, x∗) ∈ X × X∗ : f(x, x∗) = 〈x∗, x〉} is maximal monotone and it holds
{(x, x∗) ∈ X ×X∗ : f(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X ×X∗ : f∗(x∗, x) = 〈x∗, x〉}.

In the last part of this section we turn our attention to a particular class of maximal monotone operators on
general Banach spaces.

Definition 1.2. (see [15]) Let S : X ⇒ X∗ be a maximal monotone operator.

(a) Gossez’s monotone closure of S is the operator S : X∗∗ ⇒ X∗ whose graph is

G(S) = {(x∗∗, x∗) ∈ X∗∗ ×X∗ : 〈x∗∗ − y, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ G(S)}.

(b) The operator S : X ⇒ X∗ is said to be of Gossez type (D) if for any (x∗∗, x∗) ∈ G(S) there exists a bounded
net {(xα, x∗α)}α∈I ⊆ G(S) which converges to (x∗∗, x∗) in the w∗ × ‖ · ‖∗-topology of X∗∗ ×X∗.

Gossez proved in [14] that a maximal monotone operator S : X ⇒ X∗ of Gossez type (D) has a unique
maximal monotone extension to the bidual, namely, its Gossez’s monotone closure S : X∗∗ ⇒ X∗. The following
characterization of the maximal monotone operators of Gossez type (D) was recently provided in [19] (see also [17]).

Theorem 1.3. Let X be a nonzero real Banach space and S : X ⇒ X∗ be a maximal monotone operator. The
following statements are equivalent:

(a) S is of Gossez type (D);

(b) S is of Simons negative infimum type (NI) (see [36]), namely

inf
(y,y∗)∈G(S)

〈y − x∗∗, y∗ − x∗〉 ≤ 0 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗;

(c) there exists a representative function hS of S such that

h∗S(x∗, x∗∗) ≥ 〈x∗∗, x∗〉 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗;
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(d) for every representative function hS of S one has

h∗S(x∗, x∗∗) ≥ 〈x∗∗, x∗〉 ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

A representative function hS of a maximal monotone operator S : X ⇒ X∗ fulfilling the inequality in the item
(c) (or (d)) of the above theorem is called strong representative function of S (see [39]). The Fitzpatrick function
ϕS of a maximal monotone operator S : X ⇒ X∗ of Gossez type (D) is a strong representative function and
one has ϕS |X×X∗ = ϕS . When hS : X × X∗ → R is a representative function of a maximal monotone operator
of Gossez type (D) S : X ⇒ X∗, then h∗S : X∗ × X∗∗ → R is a representative function of the inverse operator

S
−1

: X∗ → X∗∗ of Gossez’s monotone closure S of S (for these statements we refer the reader to [19]).

2 A generalized bivariate infimal convolution formula

In this section we provide, by making use of an appropriate conjugate formula, sufficient conditions for an extended
bivariate infimal convolution formula, which we use in the sequel.

2.1 An useful conjugate formula

Let X,Y, Z be real separated locally convex spaces with topological duals X∗, Y ∗ and Z∗, respectively.

Theorem 2.1. Let f : X −→ R and g : Y −→ R be proper, convex and lower semicontinuous functions and
A : Z −→ X and B : Z −→ Y be linear continuous mappings such that A−1(dom f) ∩B−1(dom g) 6= ∅.

(a) For every set U ⊆ Z∗ the following statements are equivalent:

(i) The set {(A∗x∗ +B∗y∗, r) : r ∈ R, f∗(x∗) + g∗(y∗) ≤ r} is closed regarding U × R in (Z∗, w∗)× R;

(ii) (f ◦A+ g ◦B)∗(z∗) = min{f∗(x∗) + g∗(y∗) : (x∗, y∗) ∈ X∗ × Y ∗, A∗x∗ +B∗y∗ = z∗} for all z∗ ∈ U.

(b) If X,Y and Z are Fréchet spaces and

(0, 0) ∈ ic(dom f × dom g − (A×B)(∆Z)),

then the statements (i) and (ii) are valid for every U ⊆ Z∗.

Proof. (a) Consider an arbitrary set U ⊆ Z∗ and the perturbation function

Φ : Z ×X × Y −→ R, Φ(z, x, y) = f(Az + x) + g(Bz + y),

which is proper, convex and lower semicontinuous and fulfills

(0, 0) ∈ prX×Y (dom Φ) = dom f × dom g − (A×B)(∆Z).

Its conjugate function looks for all (z∗, x∗, y∗) ∈ Z∗ ×X∗ × Y ∗ like

Φ∗(z∗, x∗, y∗) = δ{0}(z
∗ −A∗x∗ −B∗y∗) + f∗(x∗) + g∗(y∗).

Thus (ii) is nothing else than

(Φ(·, 0, 0))∗(z∗) = min
(x∗,y∗)∈X∗×Y ∗

Φ∗(z∗, x∗, y∗) ∀z∗ ∈ U.

According to [5, Theorem 2], this is further equivalent to

prZ∗×R(epi Φ∗) is closed regarding U × R in (Z∗, w∗)× R. (3)

As one can easily see, it holds

prZ∗×R(epi Φ∗) = {(A∗x∗ +B∗y∗, r) : f∗(x∗) + g∗(y∗) ≤ r}

and in this way the equivalence (i)⇔(ii) is proven.
(b) Since X,Y and Z are Fréchet spaces and (0, 0) ∈ ic

(
prX×Y (dom Φ)

)
, by [42, Corollary 2.7.3] it follows that

for all z∗ ∈ Z∗
(Φ(·, 0, 0))∗(z∗) = min

(x∗,y∗)∈X∗×Y ∗
Φ∗(z∗, x∗, y∗)

or, equivalently,

(f ◦A+ g ◦B)∗(z∗) = min{f∗(x∗) + g∗(y∗) : (x∗, y∗) ∈ X∗ × Y ∗, A∗x∗ +B∗y∗ = z∗},

which concludes the proof.
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Remark 2.1. In the hypotheses of Theorem 2.1, when X, Y and Z are Fréchet spaces, then, according to [42,
Proposition 2.7.2],

ic(dom f × dom g − (A×B)(∆Z)) = ri(dom f × dom g − (A×B)(∆Z)).

Remark 2.2. We refer the reader to [4] for examples where, even X, Y and Z are finite dimensional spaces, the
statements (i) and (ii) in Theorem 2.1(a) are fulfilled, while the interiority-type condition in Theorem 2.1(b) fails.

Remark 2.3. According to the previous theorem, one obtains when Z = X, A = idX and X and Y are Fréchet
spaces as a sufficient condition for the exact conjugate formula

(f + g ◦B)∗(z∗) = min{f∗(z∗ −B∗y∗) + g∗(y∗) : y∗ ∈ Y ∗} ∀z∗ ∈ X∗ (4)

the interiority-type condition
(0, 0) ∈ ic(dom f × dom g −G(B)).

Via Lemma 1.1 it follows that this is nothing else than

0 ∈ ic (dom g −B(dom f)),

which is a regularity condition for (4) that has been already considered in literature (see, for instance, [42]).

2.2 A bivariate infimal convolution formula adequate for the generalized parallel
sum

Let X and Y be two Banach spaces with X∗ and Y ∗ being their topological dual spaces and X∗∗ and Y ∗∗ their
topological bidual spaces, respectively. Further, let f : X ×X∗ −→ R and g : Y ×Y ∗ −→ R be two given functions
and A : X −→ Y be a linear continuous mapping. In this subsection we deal with the following extended bivariate
infimal convolutions f ©A

1 g : X ×X∗ −→ R,

(f ©A
1 g)(x, x∗) = inf{f(u, x∗) + g(Aw, v∗) : u,w ∈ X, v∗ ∈ Y ∗, u+ w = x, A∗v∗ = x∗},

and f∗©A
2 g∗ : X∗ ×X∗∗ −→ R,

(f∗©A
2 g∗)(x∗, x∗∗) = inf{f∗(x∗, u∗∗) + g∗(v∗, A∗∗w∗∗) : u∗∗, w∗∗ ∈ X∗∗, v∗ ∈ Y ∗, u∗∗ + w∗∗ = x∗∗, A∗v∗ = x∗},

respectively. By making use of Theorem 2.1, we can prove the following result.

Theorem 2.2. Assume that f : X×X∗ −→ R and g : Y ×Y ∗ −→ R are proper, convex and lower semicontinuous
functions such that dom g × prX∗(dom f) ∩ ImA×G(A∗) 6= ∅.

(a) The following statements are equivalent:

(i) The set {(u∗, A∗v∗, A∗∗u∗∗ + v∗∗, r) : r ∈ R, f∗(u∗, u∗∗) + g∗(v∗, v∗∗) ≤ r} is closed regarding ∆X∗ ×
ImA∗∗ × R in (X∗, w∗)× (X∗, w∗)× (Y ∗∗, w∗)× R;

(ii) (f ©A
1 g)∗(x∗, x∗∗) = (f∗©A

2 g∗)(x∗, x∗∗) and f∗©A
2 g∗ is exact (that is, the infimum in the definition

of (f∗©A
2 g∗)(x∗, x∗∗) is attained) for every (x∗, x∗∗) ∈ X∗ ×X∗∗.

(b) If
(0, 0, 0) ∈ ic (dom g × prX∗(dom f)− ImA×G(A∗)),

then the statements (i) and (ii) are true.

Proof. Consider the proper, convex and lower semicontinuous functions F : X × X × X∗ −→ R, F (u,w, u∗) =
f(u, u∗) and G : X × Y × Y ∗ −→ R, G(u, v, v∗) = g(v, v∗) and the linear continuous mappings M : X × X ×
Y ∗ → X × X × X∗, M = idX × idX ×A∗, and N : X × X × Y ∗ → X × Y × Y ∗, N = idX ×A × idY ∗ . Since
dom g × prX∗(dom f) ∩ ImA×G(A∗) 6= ∅, we obtain that M−1(domF ) ∩N−1(domG) 6= ∅.

(a) According to Theorem 2.1(a), applied for U := ∆X∗ × ImA∗∗ ⊆ X∗ ×X∗ × Y ∗∗, we have that

{(M∗(u∗1, w∗, u∗∗) +N∗(u∗2, v
∗, v∗∗), r) : r ∈ R, F ∗(u∗1, w∗, u∗∗) +G∗(u∗2, v

∗, v∗∗) ≤ r} is closed regarding
∆X∗ × ImA∗∗ × R in (X∗, w∗)× (X∗, w∗)× (Y ∗∗, w∗)× R (5)
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if and only if

(F ◦M +G ◦N)∗(x∗, x∗, A∗∗x∗∗) =
min

(u∗1 ,w∗,u∗∗)∈X∗×X∗×X∗∗

(u∗2 ,v
∗,v∗∗)∈X∗×Y ∗×Y ∗∗

{F ∗(u∗1, w∗, u∗∗) +G∗(u∗2, v
∗, v∗∗) : M∗(u∗1, w

∗, u∗∗) +N∗(u∗2, v
∗, v∗∗) = (x∗, x∗, A∗∗x∗∗)}

for all (x∗, x∗∗) ∈ X∗ ×X∗∗.
(6)

Since F ∗(u∗, w∗, u∗∗) = δ{0}(w
∗)+f∗(u∗, u∗∗) for all (u∗, w∗, u∗∗) ∈ X∗×X∗×X∗∗ and G∗(u∗, v∗, v∗∗) = δ{0}(u

∗)+
g∗(v∗, v∗∗) for all (u∗, v∗, v∗∗) ∈ X∗ × Y ∗ × Y ∗∗, one can easily see that

{(M∗(u∗1, w∗, u∗∗) +N∗(u∗2, v
∗, v∗∗), r) : r ∈ R, F ∗(u∗1, w∗, u∗∗) +G∗(u∗2, v

∗, v∗∗) ≤ r} =

{(u∗, A∗v∗, A∗∗u∗∗ + v∗∗, r) : f∗(u∗, u∗∗) + g∗(v∗, v∗∗) ≤ r},
which means that the statement in (5) is nothing else than (i).

On the other hand, for all (x∗, x∗∗) ∈ X∗ ×X∗∗ it holds

(F ◦M +G ◦N)∗(x∗, x∗, A∗∗x∗∗) =

sup
(u,w,v∗)∈X×X×Y ∗

{〈(x∗, x∗, A∗∗x∗∗), (u,w, v∗)〉 − (F ◦M)(u,w, v∗)− (G ◦N)(u,w, v∗)} =

sup
(u,w,v∗)∈X×X×Y ∗

{〈(x∗, x∗∗), (u+ w,A∗v∗)〉 − f(u,A∗v∗)− g(Aw, v∗)} =

sup
(s,s∗)∈X×X∗

{
〈(x∗, x∗∗), (s, s∗)〉 − inf

(u,w,v∗)∈X×X×Y ∗
{f(u, s∗) + g(Aw, v∗) : u+ w = s, A∗v∗ = s∗}

}
=

(f ©A
1 g)∗(x∗, x∗∗)

and

min
(u∗1 ,w∗,u∗∗)∈X∗×X∗×X∗∗

(u∗2 ,v
∗,v∗∗)∈X∗×Y ∗×Y ∗∗

{F ∗(u∗1, w∗, u∗∗) +G∗(u∗2, v
∗, v∗∗) : M∗(u∗1, w

∗, u∗∗) +N∗(u∗2, v
∗, v∗∗) = (x∗, x∗, A∗∗x∗∗)} =

min
(u∗,0,u∗∗)∈X∗×X∗×X∗∗

(0,v∗,v∗∗)∈X∗×Y ∗×Y ∗∗
{f∗(u∗, u∗∗) + g∗(v∗, v∗∗) : M∗(u∗, 0, u∗∗) +N∗(0, v∗, v∗∗) = (x∗, x∗, A∗∗x∗∗)} =

min
(u∗∗,w∗∗,v∗)∈X∗∗×X∗∗×Y ∗

{f∗(x∗, u∗∗) + g∗(v∗, A∗∗w∗∗) : A∗v∗ = x∗, u∗∗ + w∗∗ = x∗∗} =

(f∗©A
2 g∗)(x∗, x∗∗),

which means that the statement in (6) says actually that (f ©A
1 g)∗(x∗, x∗∗) = (f∗©A

2 g∗)(x∗, x∗∗) and f∗©A
2 g∗

is exact for every (x∗, x∗∗) ∈ X∗ ×X∗∗. This leads to the desired conclusion.
(b) The assertion is a direct consequence of Theorem 2.1(b), as, obviously,

(0, 0, 0, 0, 0, 0) ∈ ic (domF × domG− (M ×N)(∆X×X×Y ∗))⇔

(0, 0, 0, 0, 0, 0) ∈ ic (X ×X ×X × (dom g × prX∗(dom f)− ImA×G(A∗)))⇔
(0, 0, 0) ∈ ic (dom g × prX∗(dom f)− ImA×G(A∗)).

Remark 2.4. In the hypotheses of Theorem 2.2 and by keeping the notations used in its proof, according to
Remark 2.1, we have

ic (domF × domG− (M ×N)(∆X×X×Y ∗)) = ri (domF × domG− (M ×N)(∆X×X×Y ∗)) ,

which is equivalent to

ic (dom g × prX∗(dom f)− ImA×G(A∗)) = ri (dom g × prX∗(dom f)− ImA×G(A∗)) .

In reflexive Banach spaces the equivalence in Theorem 2.2(a) gives rise to the following result.

Corollary 2.1. Let X and Y be reflexive Banach spaces and f : X ×X∗ −→ R and g : Y × Y ∗ −→ R be proper,
convex and lower semicontinuous functions such that prX∗(dom f) ∩ A∗(prY ∗(dom g)) 6= ∅. Then the following
statements are equivalent:

(i) the set {(u∗, A∗v∗, Au + v, r) : r ∈ R, f∗(u∗, u) + g∗(v∗, v) ≤ r} is closed regarding ∆X∗ × ImA × R in
(X∗, ‖ · ‖∗)× (X∗, ‖ · ‖∗)× (Y, ‖ · ‖)× R;

(ii) (f ©A
1 g)∗(x∗, x) = (f∗©A

2 g∗)(x∗, x) and f∗©A
2 g∗ is exact for every (x∗, x) ∈ X∗ ×X.

8



3 The maximal monotonicity of Gossez type (D) of S||AT
In what follows we assume that X and Y are real nonzero Banach spaces, that S : X ⇒ X∗ and T : Y ⇒ Y ∗

are two monotone operators and that A : X −→ Y is a linear continuous mapping. For S : X∗∗ ⇒ X∗ and
T : Y ∗∗ ⇒ Y ∗, Gossez’s monotone closures of S and T , respectively, we consider their extended generalized parallel
sum defined via A, which is the multivalued operator defined as

S||AT : X ⇒ X∗, S||AT (x) := (S
−1

+ (A∗TA∗∗)−1)−1(x) ∀x ∈ X.

The following result proposes two sufficient conditions ensuring the maximal monotonicity of Gossez type (D)
of S||AT , provided that both operators are maximal monotone of Gossez type (D), and it will give rise to a
characterization of the maximal monotonicity of the generalized parallel sum of S and T defined via A,

S||AT : X ⇒ X∗, S||AT (x) := (S−1 + (A∗TA)−1)−1(x) ∀x ∈ X.

Theorem 3.1. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, and A : X −→ Y be a linear continuous mapping such that
domhT × prX∗(domhS) ∩ ImA×G(A∗) 6= ∅. Assume that one of the following conditions is fulfilled:

(a) (0, 0, 0) ∈ ic(domhT × prX∗(domhS)− ImA×G(A∗));

(b) the set {(u∗, A∗v∗, A∗∗u∗∗+v∗∗, r) : r ∈ R, h∗S(u∗, u∗∗)+h∗T (v∗, v∗∗) ≤ r} is closed regarding ∆X∗×ImA∗∗×R
in (X∗, w∗)× (X∗, w∗)× (Y ∗∗, w∗)× R.

Then the function h : X ×X∗ −→ R, h(x, x∗) = cl‖·‖×‖·‖∗(hS©A
1 hT )(x, x∗), is a strong representative function of

S||AT and the extended generalized parallel sum S||AT is a maximal monotone operator of Gossez type (D).

Proof. Obviously, h : X × X∗ −→ R is convex and (strong) lower semicontinuous and, due to the feasibility
condition domhT × prX∗(domhS) ∩ ImA×G(A∗) 6= ∅, h is not identical to +∞. Since one of the conditions (a)
and (b) is fulfilled, then one has, via Theorem 2.2, that h∗(x∗, x∗∗) = (hS©A

1 hT )∗(x∗, x∗∗) = (h∗S©A
2 h
∗
T )(x∗, x∗∗)

and h∗S ©A
2 h∗T is exact for every (x∗, x∗∗) ∈ X∗ ×X∗∗.

Take an arbitrary (x, x∗) ∈ X ×X∗. Then we have

(hS ©A
1 hT )(x, x∗) = inf{hS(u, x∗) + hT (Aw, v∗) : u,w ∈ X, v∗ ∈ Y ∗, u+ w = x, A∗v∗ = x∗}

≥ inf{〈x∗, u〉+ 〈x∗, w〉 : u,w ∈ X,u+ w = x} = 〈x∗, x〉.

Hence, h(x, x∗) = cl‖·‖×‖·‖∗(hS ©A
1 hT )(x, x∗) ≥ 〈x∗, x〉, which implies that h ≥ c, concomitantly ensuring that h

is proper.
Take an arbitrary (x∗, x∗∗) ∈ X∗ ×X∗∗. Then we have

h∗(x∗, x∗∗) = (h∗S ©A
2 h∗T )(x∗, x∗∗)

= inf{h∗S(x∗, u∗∗) + h∗T (v∗, A∗∗w∗∗) : u∗∗, w∗∗ ∈ X∗∗, v∗ ∈ Y ∗, u∗∗ + w∗∗ = x∗∗, A∗v∗ = x∗}

≥ inf{〈u∗∗, x∗〉+ 〈w∗∗, x∗〉 : u∗∗, w∗∗ ∈ X∗∗, u∗∗ + w∗∗ = x∗∗} = 〈x∗∗, x∗〉.

Thus, according to Theorem 1.2 and Theorem 1.3, the operator with the graph

{(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉}

is maximal monotone of Gossez type (D) and one has

{(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X ×X∗ : h∗(x∗, x) = 〈x∗, x〉}.

In order to conclude the proof, we show that

G(S||AT ) = {(x, x∗) ∈ X ×X∗ : h∗(x∗, x) = 〈x∗, x〉}

and this will mean that h is a strong representative function of S||AT .

Let (x, x∗) ∈ G(S||AT ). Then x ∈ S−1
(x∗) + (A∗TA∗∗)−1(x∗), hence there exists u∗∗ ∈ S−1

(x∗) and w∗∗ ∈
(A∗TA∗∗)−1(x∗) such that x = u∗∗ + w∗∗. Thus (u∗∗, x∗) ∈ G(S) and, as x∗ ∈ A∗TA∗∗(w∗∗), there exists
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v∗ ∈ T (A∗∗w∗∗) such that A∗v∗ = x∗. Consequently, h∗S(x∗, u∗∗) = 〈u∗∗, x∗〉 and h∗T (v∗, A∗∗w∗∗) = 〈A∗∗w∗∗, v∗〉
and, so,

h∗(x∗, x) = (h∗S ©A
2 h∗T )(x∗, x) ≤ h∗S(x∗, u∗∗) + h∗T (v∗, A∗∗w∗∗) = 〈u∗∗, x∗〉+ 〈w∗∗, x∗〉 = 〈x∗, x〉.

On the other hand, as shown above, h∗(x∗, x) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X×X∗, hence h∗(x∗, x) = 〈x∗, x〉, implying
that G(S||AT ) ⊆ {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉}.

Conversely, let (x, x∗) ∈ X×X∗ be such that h∗(x∗, x) = 〈x∗, x〉. Using that h∗S©A
2 h
∗
T is exact at (x∗, x), there

exists (u∗∗, w∗∗, v∗) ∈ X∗∗ ×X∗∗ × Y ∗ such that u∗∗ +w∗∗ = x,A∗v∗ = x∗ and 〈x∗, x〉 = h(x, x∗) = h∗S(x∗, u∗∗) +
h∗T (v∗, A∗∗w∗∗). Since, on the other hand, h∗S(x∗, u∗∗) + h∗T (v∗, A∗∗w∗∗) ≥ 〈u∗∗, x∗〉 + 〈A∗∗w∗∗, v∗〉 = 〈x∗, x〉, it
follows that h∗S(x∗, u∗∗) = 〈u∗∗, x∗〉 and h∗T (v∗, A∗∗w∗∗) = 〈A∗∗w∗∗, v∗〉.

But h∗S and h∗T are representative functions of S
−1

and T
−1

, respectively, which means that (u∗∗, x∗) ∈ G(S)

and (A∗∗w∗∗, v∗) ∈ G(T ). We have u∗∗ ∈ S
−1

(x∗) and, since w∗∗ = x − u∗∗, we obtain v∗ ∈ TA∗∗(x − u∗∗),
hence x∗ = A∗v∗ ∈ A∗TA∗∗(x − u∗∗) or, equivalently, x − u∗∗ ∈ (A∗TA∗∗)−1(x∗). Thus x = u∗∗ + (x − u∗∗) ∈
(S
−1

+ (A∗TA∗∗)−1)(x∗) and so (x, x∗) ∈ G(S||AT ).
Hence, G(S||AT ) = {(x, x∗) ∈ X ×X∗ : h∗(x∗, x) = 〈x∗, x〉} and this concludes the proof.

Under the additional assumption that the domain of Gossez’s closure of S is a subset of X, the conditions
(a) and (b) of the previous theorem become sufficient for the maximal monotonicity of Gossez type (D) of the
generalized parallel sum S||AT . One can notice that D(S) ⊆ X is particulary fulfilled when X is a reflexive Banach
space.

Theorem 3.2. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, and A : X −→ Y be a linear continuous mapping such
that domhT × prX∗(domhS) ∩ ImA×G(A∗) 6= ∅ and D(S) ⊆ X. Assume that one of the following conditions is
fulfilled:

(a) (0, 0, 0) ∈ ic(domhT × prX∗(domhS)− ImA×G(A∗);

(b) the set {(u∗, A∗v∗, A∗∗u∗∗+v∗∗, r) : r ∈ R, h∗S(u∗, u∗∗)+h∗T (v∗, v∗∗) ≤ r} is closed regarding ∆X∗×ImA∗∗×R
in (X∗, w∗)× (X∗, w∗)× (Y ∗∗, w∗)× R.

Then the function h : X ×X∗ −→ R, h(x, x∗) = cl‖·‖×‖·‖∗(hS©A
1 hT )(x, x∗), is a strong representative function of

S||AT and the generalized parallel sum S||AT is a maximal monotone operator of Gossez type (D).

Proof. We need only to show that S||AT = S||AT , whenever D(S) ⊆ X. Indeed, (x, x∗) ∈ G(S||AT ) if and only if

there exist u∗∗ ∈ S−1
(x∗) ⊆ X and w∗∗ ∈ (A∗TA∗∗)−1(x∗) such that x = u∗∗ + w∗∗. This is further equivalent to

the existence of u∗∗ and w∗∗ in X such that (u∗∗, x∗) ∈ G(S), x∗ ∈ A∗TA∗∗(w∗∗) = A∗T (Aw∗∗) = A∗T (Aw∗∗) and
x = u∗∗ + w∗∗. But this is the same with x ∈ S−1(x∗) + (A∗TA)−1(x∗) or, equivalently, (x, x∗) ∈ G(S||AT ).

Remark 3.1. Concerning the two sufficient conditions for maximal monotonicity considered in Theorem 3.1 and
Theorem 3.2, one can notice, according to Theorem 2.2, that condition (b) is fulfilled whenever condition (a) is
fulfilled. In the last section of the paper we provide a situation where the latter fails, while condition (b) is valid
(see Example 4.1).

In the last part of this section we turn our attention to the formulation of further interiority-type regularity
conditions for the maximal monotonicity of Gossez type (D) of the generalized parallel sums S||AT , respectively,
S||AT , this time expressed by means of the graph of T and of the range of S. We start with the following result.

Theorem 3.3. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, and A : X −→ Y be a linear continuous mapping such that
domhT × prX∗(domhS) ∩ ImA×G(A∗) 6= ∅. Then it holds:

ic (G(T )×R(S)− ImA×G(A∗)) ⊆ ic (coG(T )× coR(S)− ImA×G(A∗)) ⊆

ic (domhT × prX∗(domhS)− ImA×G(A∗)) = ri (domhT × prX∗(domhS)− ImA×G(A∗)) .

Proof. Let us denote by C := domhT × prX∗(domhS)− ImA×G(A∗) and by D := G(T )×R(S)− ImA×G(A∗).
Then coD = coG(T )× coR(S)− ImA×G(A∗) and, obviously, icD ⊆ ic(coD). On the other hand, as pointed out
in Remark 2.4, we have icC = riC. Thus, it remains to show that ic(coD) ⊆ icC.
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Since, coD ⊆ C, one has aff(coD) = aff D ⊆ aff C. Thus, in order to prove that ic(coD) ⊆ icC, it is enough to
show that that aff C ⊆ cl(aff D). The proof will rely on [33, Lemma 20.4(b)] (for another result, where this lemma
found application we refer to [40]). What we will actually prove, is that

domϕT × prX∗(domϕS) ⊆ cl(aff D), (7)

where ϕS and ϕT denote the Fitzpatrick functions of the operators S and T , respectively. If (7) is true, then one
gets

C ⊆ domϕT × prX∗(domϕS)− ImA×G(A∗) ⊆ cl (aff D − ImA×G(A∗)) = cl(aff D),

which leads to the desired conclusion.
In order to show (7), we assume without loss of generality that (0, 0) ∈ G(S) and (0, 0) ∈ G(T ). Suppose that

there exists (v, v∗, u∗) ∈ domϕT × prX∗(domϕS) such that (v, v∗, u∗) 6∈ cl(aff D). Then, according to a strong
separation theorem, there exist δ ∈ R and (q∗, q∗∗, p∗∗) ∈ Y ∗ × Y ∗∗ ×X∗∗ such that

〈(q∗, q∗∗, p∗∗), (v, v∗, u∗)〉 > δ > sup{〈(q∗, q∗∗, p∗∗), (y, y∗, x∗)〉 : (y, y∗, x∗) ∈ cl(aff D)}.

As 0 ∈ D, aff D is a linear subspace. Thus 〈(q∗, q∗∗, p∗∗), (y, y∗, x∗)〉 = 0 for all (y, y∗, x∗) ∈ aff D and,
consequently, δ > 0. In other words,

〈(q∗, q∗∗, p∗∗), (y −Au, y∗ − v∗, x∗ −A∗v∗)〉 = 0 ∀(y, y∗) ∈ G(T ) ∀x∗ ∈ R(S) ∀u ∈ X ∀v∗ ∈ Y ∗. (8)

By taking (y, y∗, x∗) := (0, 0, 0) ∈ G(T )×R(S), we obtain

q∗∗ = −A∗∗p∗∗

and from here it results that
〈q∗, Au〉 = 〈A∗q∗, u〉 = 0 ∀u ∈ X,

which means that A∗q∗ = 0. Hence,

〈q∗∗, q∗〉 = 〈−A∗∗p∗∗, q∗〉 = 〈−p∗∗, A∗q∗〉 = 0.

On the other hand, from (8), we have 〈(q∗, q∗∗, p∗∗), (y, y∗, x∗)〉 = 0 for all (y, y∗) ∈ G(T ) and all x∗ ∈ R(S), hence

〈(q∗, q∗∗), (y, y∗)〉 = 0 ∀(y, y∗) ∈ G(T )

and
〈p∗∗, x∗〉 = 0 ∀x∗ ∈ R(S).

Take now an arbitrary (y∗∗, y∗) ∈ G(T ). Then there exists (yα, y
∗
α)α∈I ∈ G(T ) such that (yα)α∈I converges to

y∗∗ in the weak∗ topology of Y ∗∗ and (y∗α)α∈I converges to y∗ in the strong topology of Y ∗. Since (yα, y
∗
α) ∈ G(T ),

we have 〈(q∗, q∗∗), (yα, y∗α)〉 = 0 for every α ∈ I, hence 〈(q∗, q∗∗), (y∗∗, y∗)〉 = 0. Consequently,

〈(q∗, q∗∗), (y∗∗, y∗)〉 = 0 ∀(y∗∗, y∗) ∈ G(T )

and one can prove in a similar way that

〈p∗∗, x∗〉 = 0 ∀x∗ ∈ R(S).

From here, according to [33, Lemma 20.4(b)], one has (as 〈q∗∗, q∗〉 = 0)

〈(q∗, q∗∗), (y∗∗, y∗)〉 = 0 ∀(y∗∗, y∗) ∈ domϕT

and (as, obviously, 〈p∗∗, 0〉 = 0)

〈(0, p∗∗), (x∗∗, x∗)〉 = 0 ∀(x∗, x∗∗) ∈ domϕS .

But (v, v∗, u∗) ∈ domϕT × prX∗(domϕS) and, as ϕS |X×X∗ = ϕS and ϕT |Y×Y ∗ = ϕT , it follows that

〈(q∗, q∗∗, p∗∗), (v, v∗, u∗)〉 = 0,

which is a contradiction to δ > 0. Consequently, (7) is valid and, so, ic(coD) ⊆ ic(C).
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The above theorem gives rise to two supplementary interiority-type regularity conditions for the maximal
monotonicity of S||AT .

Corollary 3.1. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, and A : X −→ Y be a linear continuous mapping such that
domhT × prX∗(domhS) ∩ ImA×G(A∗) 6= ∅. If

(0, 0, 0) ∈ ic (G(T )×R(S)− ImA×G(A∗))

or
(0, 0, 0) ∈ ic (coG(T )× coR(S)− ImA×G(A∗)),

then the extended generalized parallel sum S||AT is a maximal monotone operator of Gossez type (D).

As follows from the following result, under the supplementary assumption that D(S) ⊆ X, the inclusion relations
in Theorem 3.3 become equalities.

Theorem 3.4. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, and A : X −→ Y be a linear continuous mapping such that
domhT × prX∗(domhS) ∩ ImA×G(A∗) 6= ∅ and D(S) ⊆ X. Then it holds:

ic (G(T )×R(S)− ImA×G(A∗)) = ri (G(T )×R(S)− ImA×G(A∗)) =

ic (coG(T )× coR(S)− ImA×G(A∗)) = ri (coG(T )× coR(S)− ImA×G(A∗)) =

ic (domhT × prX∗(domhS)− ImA×G(A∗)) = ri (domhT × prX∗(domhS)− ImA×G(A∗)) .

Proof. By keeping the notations introduced in the proof of Theorem 3.3, let us prove first that icC ⊆ D. Take an
arbitrary (v, v∗, u∗) ∈ icC, hence (0, 0, 0) ∈ ic(C − (v, v∗, u∗)). Consider the functions

f̃ : X ×X∗ −→ R, f̃(x, x∗) = hS(x, x∗ + u∗)− 〈u∗, x〉

and
g̃ : Y × Y ∗ −→ R, g̃(y, y∗) = hT (y + v, y∗ + v∗)− (〈v∗, y〉+ 〈y∗, v〉+ 〈v∗, v〉)

and the operators S̃ : X ⇒ X∗ defined by G(S̃) = {(x, x∗) ∈ X × X∗ : f̃(x, x∗) = 〈x∗, x〉} and T̃ : Y ⇒ Y ∗

defined by G(T̃ ) = {(y, y∗) ∈ Y × Y ∗ : g̃(y, y∗) = 〈y∗, y〉}. It can be easily observed, that G(S̃) = G(S) − (0, u∗)

and G(T̃ ) = G(T ) − (v, v∗). Consequently, S̃ and T̃ are maximal monotone operators of Gossez type (D) and f̃ ,

respectively, g̃ are strong representative functions for them. Since D(S) ⊆ X, the domain of Gossez’s closure of S̃
is a subset of X, too. Hence, according to Theorem 3.2, the condition

(0, 0, 0) ∈ ic(C − (v, v∗, u∗)) = ic
(

dom g̃ × prX∗(dom f̃)− ImA×G(A∗)
)

ensures the maximal monotonicity of S̃||AT̃ . Hence, G(S̃||AT̃ ) 6= ∅, thus there exists x∗ ∈ (S̃−1 + (A∗T̃A)−1)−1(x)

for some x ∈ X. This means that there exist u,w ∈ X such that (u, x∗) ∈ G(S̃) and (w, x∗) ∈ G(A∗T̃A) and

u+ w = x. As G(S̃) = G(S)− (0, u∗), we have

(0, u∗) ∈ G(S)− (u, x∗).

On the other hand, as x∗ ∈ A∗T̃A(w), there exists y∗ ∈ Y ∗, such that y∗ ∈ T̃ (Aw) and x∗ = A∗y∗. Thus, for

y := Aw, we have (y, y∗) ∈ G(T̃ ) = G(T )− (v, v∗), hence

(v, v∗) ∈ G(T )− (y, y∗).

In conclusion, (v, v∗, u∗) ∈ G(T )×R(S)− ImA×G(A∗) = D and, so, icC ⊆ D.
If icC = riC is empty, then by Theorem 3.3 it holds icD = ic(coD) = icC = riC = ∅. Consequently,

riD = ri(coD) = ∅.
Assume now that icC is nonempty. Since icC ⊆ D ⊆ coD ⊆ C, one gets that icD = ic(coD) = icC = riC.

Moreover, it holds aff(icC) = aff C and, as riC =ic C ⊆ D ⊆ coD ⊆ C, we have aff C = aff D, these sets being
closed. Thus riC = riD = ri(coD) and this provides the desired conclusion.

We close the section by the following statement on the maximal monotonicity of Gossez type (D) of S||AT ,
which follows from Theorem 3.2 and Theorem 3.4.
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Corollary 3.2. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, and A : X −→ Y be a linear continuous mapping such that
domhT × prX∗(domhS)∩ ImA×G(A∗) 6= ∅ and D(S) ⊆ X. Then one has the following sequence of equivalencies

(0, 0, 0) ∈ ic (G(T )×R(S)− ImA×G(A∗))⇔ (0, 0, 0) ∈ ri (G(T )×R(S)− ImA×G(A∗))⇔

(0, 0, 0) ∈ ic (coG(T )× coR(S)− ImA×G(A∗))⇔ (0, 0, 0) ∈ ri (coG(T )× coR(S)− ImA×G(A∗))⇔

(0, 0, 0) ∈ ic (domhT × prX∗(domhS)− ImA×G(A∗))⇔ (0, 0, 0) ∈ ri (domhT × prX∗(domhS)− ImA×G(A∗))

and each of these conditions guarantees that the generalized parallel sum S||AT is a maximal monotone operator
of Gossez type (D).

4 Particular cases

In this section we will consider two particular instances of the generalized parallel sum defined via a linear continuous
mapping and show what the results provided in Section 3 become in these special settings.

4.1 The maximal monotonicity of Gossez type (D) of S||T
Assume that X is a real nonzero Banach space and S : X ⇒ X∗ and T : X ⇒ X∗ are two monotone operators.
By taking A = idX : X → X, their extended generalized parallel sum defined via A and their generalized parallel
sum defined via A become the extended parallel sum of S and T

S||T : X ⇒ X∗, S||T (x) := (S
−1

+ T
−1

)−1(x) ∀x ∈ X

and the classical parallel sum of S and T ,

S||T : X ⇒ X∗, S||T (x) := (S−1 + T−1)−1(x) ∀x ∈ X,

respectively.
Having hS : X × X∗ −→ R and hT : X × X∗ −→ R representative functions of S and T , respectively, the

extended infimal convolutions of them, namely hS ©A
1 hT and h∗S ©A

2 h∗T , turn out to be the following classical
bivariate infimal convolutions (see, for instance, [5, 33,37,39])

hS�1hT : X ×X∗ → R, (hS�1hT )(x, x∗) = inf{hS(u, x∗) + hT (w, x∗) : u,w ∈ X,u+ w = x}

and

h∗S�2h
∗
T : X∗ ×X∗∗ → R, (h∗S�2h

∗
T )(x∗, x∗∗) = inf{h∗S(x∗, u∗∗) + h∗T (x∗, w∗∗) : u∗∗, w∗∗ ∈ X∗∗, u∗∗ + w∗∗ = x∗∗},

respectively.

Theorem 4.1. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, such that prX∗(domhS) ∩ prX∗(domhT ) 6= ∅ and assume
that one of the following conditions is fulfilled:

(a) 0 ∈ ic(prX∗(domhS)− prX∗(domhT ));

(b) the set {(u∗, v∗, u∗∗ + v∗∗, r) : r ∈ R, h∗S(u∗, u∗∗) + h∗T (v∗, v∗∗) ≤ r} is closed regarding ∆X∗ × X∗∗ × R in
(X∗, w∗)× (X∗, w∗)× (X∗∗, w∗)× R.

Then the following statements are true:

(i) The function h : X ×X∗ −→ R, h(x, x∗) = cl‖·‖×‖·‖∗(hS�1hT )(x, x∗), is a strong representative function of

S||T and the extended parallel sum S||T is a maximal monotone operator of Gossez type (D).

(ii) If D(S) ⊆ X (or, if D(T ) ⊆ X), then the function h : X×X∗ −→ R, h(x, x∗) = cl‖·‖×‖·‖∗(hS�1hT )(x, x∗), is
a strong representative function of S||T and the parallel sum S||T is a maximal monotone operator of Gossez
type (D).
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Proof. The result follows directly Theorem 3.3 and Theorem 3.4, by noticing that the interiority-type condition in
these two statements becomes

(0, 0, 0) ∈ ic(domhT × prX∗(domhS)−X ×∆X∗) = X × ic(prX∗(domhS)× prX∗(domhS)−∆X∗)

or, equivalently,
(0, 0) ∈ ic(prX∗(domhS)× prX∗(domhS)−∆X∗).

According to Lemma 1.1, the latter relation is equivalent to

0 ∈ ic(prX∗(domhS)− prX∗(domhT )).

The next result follows from Theorem 3.3 and Theorem 4.1(i).

Theorem 4.2. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, such that prX∗(domhS) ∩ prX∗(domhT ) 6= ∅.

(a) Then it holds:
ic (R(S)−R(T )) ⊆ ic (coR(S)− coR(T )) ⊆

ic(prX∗(domhS)− prX∗(domhT )) = ri(prX∗(domhS)− prX∗(domhT )).

(b) If
0 ∈ ic (R(S)−R(T ))

or
0 ∈ ic (coR(S)− coR(T )),

then the extended parallel sum S||T is a maximal monotone operator of Gossez type (D).

Proof. As (b) is a direct consequence of Theorem 4.1(i) and statement (a), we will turn our attention to the proof
of the latter. Concerning it, one can easily notice that the inclusion

ic (R(S)−R(T )) ⊆ ic (coR(S)− coR(T ))

follows directly from the definition of the intrinsic relative algebraic interior, while the equality

ic(prX∗(domhS)− prX∗(domhT )) = ri(prX∗(domhS)− prX∗(domhT ))

is a direct consequence of [42, Theorem 2.7.2], applied to the proper, convex and lower semicontinuous function

Φ : X ×X ×X∗ ×X∗ → R,Φ(x, u, x∗, u∗) = hS(x, x∗ + u∗) + hT (u, x∗),

by taking into account that (we consider the projection on the fourth component of the product space X ×X ×
X∗ ×X∗)

prX∗(dom Φ) = prX∗(domhS)− prX∗(domhT ).

What it remained to be shown, namely that

ic (coR(S)− coR(T )) ⊆ ic(prX∗(domhS)− prX∗(domhT )),

follows according to Lemma 1.1 and Theorem 3.3. Indeed, when u∗ ∈ ic (coR(S)− coR(T )) or, equivalently,
0 ∈ ic (coR(S)− u∗ − coR(T )), one has that

(u∗, 0) ∈ ic(coR(T )× coR(S)−∆X∗) ⊆ ic(prX∗(domhT )× prX∗(domhS)−∆X∗)

and from here, again via Lemma 1.1, it follows u∗ ∈ ic(prX∗(domhS)− prX∗(domhT )).

Theorem 3.4 and Theorem 4.1(ii) give rise to the following result.

Theorem 4.3. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D) with
strong representative functions hS and hT , respectively, such that prX∗(domhS)∩prX∗(domhT ) 6= ∅ and D(S) ⊆ X
(or, D(T ) ⊆ X).
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(a) Then it holds:

ic (R(S)−R(T )) = ri (R(S)−R(T )) = ic (coR(S)− coR(T )) = ri (coR(S)− coR(T )) =

ic(prX∗(domhS)− prX∗(domhT )) = ri(prX∗(domhS)− prX∗(domhT )).

(b) One has the following sequence of equivalencies

0 ∈ ic (R(S)−R(T ))⇔ 0 ∈ ri (R(S)−R(T ))⇔ 0 ∈ ic (coR(S)− coR(T ))⇔

0 ∈ ri (coR(S)− coR(T ))⇔ 0 ∈ ic(prX∗(domhS)− prX∗(domhT ))⇔ 0 ∈ ri(prX∗(domhS)−prX∗(domhT ))

and each of these conditions guarantees that the parallel sum S||T is a maximal monotone operator of Gossez
type (D).

Proof. We will only prove statement (a), as (b) is a direct consequence of it and Theorem 4.1(ii).
For an arbitrary u∗ ∈ ic(prX∗(domhS)− prX∗(domhT )) one has, via Lemma 1.1, that

(u∗, 0) ∈ ic(prX∗(domhT )× prX∗(domhS)−∆X∗).

Further, by Theorem 3.4 it follows (u∗, 0) ∈ (R(T )×R(S)−∆X∗), implying that u∗ ∈ R(S)−R(T ). Consequently,

ic(prX∗(domhS)− prX∗(domhT )) ⊆ R(S)−R(T ).

If ic(prX∗(domhS)− prX∗(domhT )) is empty, then there is nothing to be proved. Otherwise, the conclusion follows,
by using that

ic(prX∗(domhS)− prX∗(domhT )) ⊆ R(S)−R(T ) ⊆ coR(S)− coR(T ) ⊆ prX∗(domhS)− prX∗(domhT )

and aff(ic(prX∗(domhS)− prX∗(domhT ))) = aff(prX∗(domhS)− prX∗(domhT )).

Remark 4.1. In the setting of reflexive Banach spaces several interority-type regularity conditions ensuring the
maximal monotonicity of the parallel sum S||T of two maximal monotone operators S and T have been introduced
in the literature. While in [1] the condition

int(R(S)) ∩R(T ) 6= ∅

was considered, in [30] it has been assumed that

cone(R(S)−R(T )) = X∗.

Further, in a Hilbert space context, in [22] the condition

cone(R(S)−R(T )) is a closed linear subspace of X∗

has been stated, while in [27], in reflexive Banach spaces, the condition

cone(coR(S)− coR(T )) is a closed linear subspace of X∗

was proposed.
Taking into account that an operator T : X ⇒ X∗ is maximal monotone if and only if T−1 : X∗ ⇒ X is maximal

monotone and that D(T−1) = R(T ), one can easily observe that all these interiority-type regularity conditions
ensuring that S||T is maximal monotone, provided S and T are maximal monotone, are the counterpart of some
meanwhile classical ones stated for the maximal monotonicity of the sum S−1 + T−1 (see, for instance, [28,33,37])
and can be easily derived from them.

For interiority-type regularity conditions guaranteeing the maximal monotonicity of Gossez type (D) of the
parallel sum and the extended parallel sum of two maximal monotone operators of Gossez type (D) in general
Banach spaces we refer to [35]. These results have been obtained as particular instances of some corresponding
ones formulated for the generalized parallel sum defined via a linear continuous mapping S||AT .
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Example 4.1. With this example we want to emphasize that there exist maximal monotone operators with a
maximal monotone parallel sum and for which the interiority-type regularity condition (a) in Theorem 4.1 is not
fulfilled, while the closedness-type condition (b) in Theorem 4.1 holds.

Consider the proper, sublinear and lower semicontinuous functions f, g : R2 −→ R, f(x1, x2) = ‖(x1, x2)‖2 +
δR2

+
(x1, x2), where ‖ · ‖2 denotes the Euclidean norm on R2, and g(x1, x2) =

√
3/2x1 + 1/2x2 + δ−R2

+
(x1, x2). Then

the multivalued operators S := ∂f and T := ∂g are maximal monotone and their only representative functions are
hS((x1, x2), (x∗1, x

∗
2)) = f(x1, x2) + f∗(x∗1, x

∗
2) and hT ((x1, x2), (x∗1, x

∗
2)) = g(x1, x2) + g∗(x∗1, x

∗
2), respectively. One

can easily verify that f∗ = δclBR2−R2
+
, where BR2 denotes the open unit ball of R2, and g∗ = δ[

√
3/2,+∞)×[1/2,+∞).

Obviously,

prR2(domhS) ∩ prR2(domhT ) = (clBR2 − R2
+) ∩ [

√
3/2,+∞)× [1/2,+∞) 6= ∅,

where the projection is taken onto the second component of the product space R2 × R2.
We also have

{(u∗, v∗, u∗∗ + v∗∗, r) ∈ R2 × R2 × R2 × R : h∗S(u∗, u∗∗) + h∗T (v∗, v∗∗) ≤ r} =(
clBR2 − R2

+

)
× [
√

3/2,+∞)× [1/2,+∞)× {(x1 + y1, x2 + y2, r) ∈ R2 × R : ‖(x1, x2)‖2 +
√

3/2y1 + 1/2y2 ≤ r},

which is obviously a closed set. Hence, condition (b) in Theorem 4.1 is fulfilled and S||T is maximal monotone.
On the other hand, one can notice that condition (a) in Theorem 4.1 fails. Otherwise, one would have according

to Theorem 4.3(b) that
(0, 0) ∈ ri(prR2(domhS)− prR2(domhT ))

or, equivalently, (
BR2 − intR2

+

)
∩ (
√

3/2,+∞)× (1/2,+∞) 6= ∅,

which would lead to a contradiction.

4.2 The maximal monotonicity of Gossez type (D) of A∗TA

For the second particular instance, we treat in this section, we stay in the same setting as in Section 3, but assume
that S : X ⇒ X∗ is the multivalued operator with G(S) = {0} × X∗, which is obviously maximal monotone of
Gossez type (D). Its extension to the bidual, S : X∗∗ ⇒ X∗, fulfills G(S) = {0} × X∗, which means that the
extended generalized parallel sum S||AT and the generalized parallel sum S||AT coincide (see also the proof of
Theorem 3.2) and fulfill

S||AT (x) = S||AT (x) = A∗TA(x) ∀x ∈ X.

Since ϕS = ψS = δ{0}×X∗ , by Proposition 1.1 it follows that the only representative function of S is hS = δ{0}×X∗ .
Since h∗S = δX∗×{0}, hS is actually a strong representative function of S.

Having hT : Y × Y ∗ −→ R a representative function T , the extended infimal convolutions hS ©A
1 hT and

h∗S ©A
2 h∗T of hS and hT become in this situation

hAT : X ×X∗ → R, hAT (x, x∗) = inf{hT (Ax, v∗) : v∗ ∈ Y ∗, A∗v∗ = x∗}

and
h∗AT : X∗ ×X∗∗ → R, h∗AT (x∗, x∗∗) = inf{h∗T (v∗, A∗∗x∗∗) : v∗ ∈ Y ∗, A∗v∗ = x∗},

respectively.
Noticing that domhT × prX∗(domhS)− ImA×G(A∗) = (prY (domhT )− ImA)× Y ∗×X∗, Theorem 3.2 gives

rise to the following result.

Theorem 4.4. Let T : Y ⇒ Y ∗ be a maximal monotone operators of Gossez type (D) with strong representative
function hT and A : X −→ Y be a linear continuous mapping such that prY (domhT )∩ ImA 6= ∅. Assume that one
of the following conditions is fulfilled:

(a) 0 ∈ ic(prY (domhT )− ImA);

(b) the set {(A∗v∗, v∗∗, r) : r ∈ R, h∗T (v∗, v∗∗) ≤ r} is closed regarding X∗×ImA∗∗×R in (X∗, w∗)×(Y ∗∗, w∗)×R.

Then the function h : X ×X∗ −→ R, h(x, x∗) = cl‖·‖×‖·‖∗ h
A
T (x, x∗), is a strong representative function of A∗TA

and A∗TA is a maximal monotone operator of Gossez type (D).
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Since G(T )×R(S)− ImA×G(A∗) = (D(T )− ImA)× Y ∗ ×X∗, via Theorem 3.4 and Corollary 3.2 we obtain
the following statement.

Theorem 4.5. Let T : Y ⇒ Y ∗ be a maximal monotone operators of Gossez type (D) with strong representative
function hT and A : X −→ Y be a linear continuous mapping such that prY (domhT ) ∩ ImA 6= ∅.

(a) Then it holds:

ic (D(T )− ImA) = ri (D(T )− ImA) = ic (coD(T )− ImA) = ri (coD(T )− ImA) =

ic(prY (domhT )− ImA) = ri(prY (domhT )− ImA).

(b) One has the following sequence of equivalencies

0 ∈ ic (D(T )− ImA)⇔ 0 ∈ ri (D(T )− ImA)⇔ 0 ∈ ic (coD(T )− ImA)⇔

0 ∈ ri (coD(T )− ImA)⇔ 0 ∈ ic(prY (domhT )− ImA)⇔ 0 ∈ ri(prY (domhT )− ImA)

and each of these conditions guarantees that A∗TA is a maximal monotone operator of Gossez type (D).

Remark 4.2. Using as a starting point Theorem 4.4 and Theorem 4.5 and by employing the techniques used
in [13], one can further provide interiority- and closedness-type regularity conditions for the maximal monotonicity
of Gossez type (D) of the sum of two maximal monotone operators of Gossez type (D), but also for the sum of a
maximal monotone operator of Gossez type (D) with the composition of another maximal monotone operator of
Gossez type (D) with a linear continuous mapping (for the latter one will thereby rediscover the statements given
in [39, Theorem 16]).
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[28] J.P. Penot, C. Zălinescu, Convex analysis can be helpful for the asymptotic analysis of monotone operators,
Mathematical Programming 116(1-2), 481-498, 2009.
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[30] J.P. Revalski, M. Théra, Variational and extended sums of monotone operators, in: M. Théra, R. Tichatschke
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