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Abstract

The problem of finding the zeros of the sum of two maximally monotone operators is of fundamental
importance in optimization and variational analysis. In this paper, we systematically study Attouch–Théra
duality for this problem. We provide new results related to Passty’s parallel sum, to Eckstein and Svaiter’s
extended solution set, and to Combettes’ fixed point description of the set of primal solutions. Furthermore,
paramonotonicity is revealed to be a key property because it allows for the recovery of all primal solutions
given just one arbitrary dual solution. As an application, we generalize the best approximation results
by Bauschke, Combettes and Luke [H.H. Bauschke, P.L. Combettes, D.R. Luke, A strongly convergent
reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert
space, Journal of Approximation Theory 141 (2006) 63–69] from normal cone operators to paramonotone
operators. Our results are illustrated through numerous examples.
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1. Introduction

Throughout this paper,

X is a real Hilbert space with inner product ⟨·, ·⟩ (1)

and induced norm ∥ · ∥.
Let A: X ⇒ X be a set-valued operator, i.e., (∀x ∈ X)Ax ⊆ X . Recall that A is monotone if

(∀(x, x∗) ∈ grA)(∀(y, y∗) ∈ grA)

x − y, x∗

− y∗

≥ 0 (2)

and that A is maximally monotone if it is impossible to properly enlarge the graph of A
while keeping monotonicity. Monotone operators continue to play an important role in modern
optimization and variational analysis; see, e.g., [5,11,14,17,42–45,48,50–52]. This is due to
the fact that subdifferential operators of proper lower semicontinuous convex functions are
maximally monotone, as are continuous linear operators with a monotone symmetric part. The
sum of two maximally monotone operators is monotone, and often maximally monotone if an
appropriate constraint qualification is imposed. Finding the zeros of two maximally monotone
operators A and B, i.e., determining

(A + B)−10 =


x ∈ X
0 ∈ Ax + Bx


, (3)

is a problem of great interest because it covers constrained convex optimization, convex
feasibility, and many others. Attouch and Théra provided [1] a comprehensive study of this
(primal) problem in terms of duality. Specifically, they associated with the primal problem a
dual problem. We set B−

= (−Id) ◦ B−1
◦ (−Id) where Id: X → X : x → x is the identity

operator. The Attouch–Théra dual problem is then to determine
A−1

+ B−
−10 =


x∗

∈ X
0 ∈ A−1x∗

+ B− x∗

. (4)

(See [36] for the special case of variational inequalities, and also [18] for work on Toland duality.)
This duality is very beautiful; e.g., the dual of the dual problem is the primal problem, and the
primal problem possesses at least one solution if and only if the same is true for the dual problem.

Our goal in this paper is to systematically study Attouch–Théra duality, to derive new results,
and to expose new applications.

Let us now summarize our main results.

• We observe a curious convexity property of the intersection of two sets involving the graphs
of A and B (see Theorem 3.3). This relates to Passty’s work on the parallel sum as well as to
Eckstein and Svaiter’s work on the extended solution set.

• We provide a new description of the fixed point set of the Douglas–Rachford splitting operator
(see Theorem 4.5); this refines Combettes’ description of (A + B)−10.

• We reveal the importance of paramonotonicity: in this case, the fixed point set of the
Douglas–Rachford splitting operator is a rectangle (see Corollary 5.6) and it is possible to
recover all primal solutions from one dual solution (see Theorem 5.3).

• We generalize the best approximation results by Bauschke–Combettes–Luke from normal
cone operators to paramonotone operators with a common zero (see Corollary 6.8 and
Theorem 8.1).

The remainder of this paper is organized as follows. In Section 2, we review and slightly
refine the basic results on Attouch–Théra duality. The solution mappings between primal and
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dual solutions are studied in Section 3. Section 4 deals with the Douglas–Rachford splitting
operator. The results in Sections 5 and 6 underline the importance of paramonotonicity in the
understanding of the zeros of the sum. Applications to best approximation as well as comments
on other duality frameworks are the topic of Section 8.

We conclude this introductory section with some notational comments. The set of zeros of A
is written as zerA = A−10. The resolvent and reflected resolvent are defined by

JA = (Id + A)−1 and RA = 2JA − Id, (5)

respectively. It is well known that zerA = FixJA :=


x ∈ X
JAx = x


. Moreover, JA is firmly

nonexpansive if and only if RA is nonexpansive; see, e.g., [23,31], or [35]. We also have the
inverse resolvent identity

JA + JA−1 = Id (6)

and the following very useful Minty parametrization.

Fact 1.1 (Minty Parametrization). Let A: X ⇒ X be maximally monotone. Then grA →

X : (a, a∗) → a + a∗ is a continuous bijection with continuous inverse x → (JAx, x − JAx);
thus,

grA =

(JAx, x − JAx)

x ∈ X

. (7)

Without explicitly mentioning it, we employ standard notation from convex analysis (see
[42,43], or [48]). Most importantly, f ∗ denotes the Fenchel conjugate of a function f , and ∂ f
its subdifferential operator. The set of all convex lower semicontinuous proper functions on X is
denoted by Γ (or ΓX if we need to emphasize the space). Finally, we set f ∨

:= f ◦ (−Id), which
yields ∂( f ∨) = (∂ f ) .

2. Duality for monotone operators

In this paper, we study the problem of finding zeros of the sum of maximally monotone
operators. More specifically, we assume that

A and B are maximally monotone operators on X. (8)

Definition 2.1 (Primal Problem). The primal problem, for the ordered pair (A, B), is to find the
zeros of A + B.

At first, it looks strange to define the primal problem with respect to the (ordered) pair (A, B).
The reason we must do this is to associate a unique dual problem. (The ambiguity arises because
addition is commutative.) It will be quite convenient to set

A = (−Id) ◦ A ◦ (−Id). (9)

An easy calculation shows that (A−1) = (A )−1, which motivates the notation

A−
:=


A−1

=


A
−1

. (10)

(This is similar to the linear-algebraic notation A−T for invertible square matrices.)
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Now since A and B form a pair of maximally monotone operators, so do A−1 and B− : we
thus define the dual pair

(A, B)∗ := (A−1, B− ). (11)

The biduality

(A, B)∗∗
= (A, B) (12)

holds, since (A−1)−1
= A, (B ) = B, and (B )−1

= (B−1) .
We are now in a position to formulate the dual problem.

Definition 2.2 ((Attouch–Théra) Dual Problem). The (Attouch–Théra) dual problem, for the
ordered pair (A, B), is to find the zeros of A−1

+ B− . Put differently: the dual problem for
(A, B) is precisely the primal problem for (A, B)∗.

This duality was systematically studied by Attouch and Théra [1]; although, it is worth nothing
that it was also touched upon earlier by Mercier [34, p. 40]. Additional relevant work can be
found in [15,21]. In view of (12), it is clear that the primal problem is precisely the dual of the
dual problem, as expected. One central aim of this paper is to understand the interplay between
the primal and dual solutions that we formally define next.

Definition 2.3 (Primal and Dual Solutions). The primal solutions are the solutions to the primal
problem and analogously for the dual solutions. We shall abbreviate these sets by

Z := (A + B)−1(0) and K :=


A−1
+ B−

−1
(0), (13)

respectively.

As observed by Attouch and Théra in [1, Corollary 3.2], one has:

Z ≠ ∅ ⇔ K ≠ ∅. (14)

Let us make this simple but important equivalence a little more precise. In order to do so, we
define

(∀z ∈ X) Kz := (Az) ∩ (−Bz) (15)

and

(∀k ∈ X) Zk := (A−1k) ∩ (−B− k) = (A−1k) ∩

B−1(−k)


. (16)

As the next proposition illustrates, these objects are intimately tied to primal and dual
solutions defined in Definition 2.3. This result is elementary and implicitly contained in [1,34].

Proposition 2.4. Let z ∈ X and let k ∈ X. Then the following hold.

(i) Kz and Zk are closed convex (possibly empty) subsets of X.
(ii) k ∈ Kz ⇔ z ∈ Zk .

(iii) z ∈ Z ⇔ Kz ≠ ∅.
(iv)


z∈Z Kz = K .

(v) Z ≠ ∅ ⇔ K ≠ ∅.
(vi) k ∈ K ⇔ Zk ≠ ∅.
(vii)


k∈K Zk = Z.
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Proof. (i): Because A and B are maximally monotone, the sets Az and Bz are closed and convex.
Hence Kz is also closed and convex. We see analogously that Zk is closed and convex as well.

(ii): This is easily verified from the definitions.
(iii): Indeed, z ∈ Z ⇔ 0 ∈ (A + B)z ⇔ (∃ a∗

∈ Az ∩ (−Bz)) ⇔ (∃ a∗
∈ Kz) ⇔ Kz ≠ ∅.

(iv): Take k ∈


z∈Z Kz . Then there exists z ∈ Z such that k ∈ Kz = Az ∩ (−Bz). Hence
z ∈ A−1k and z ∈ (−B)−1k = B−1(−Id)−1k = B−1(−k). Thus z ∈ A−1k and −z ∈ B− k.
Hence 0 ∈ (A−1

+ B− )k and so k ∈ K . The reverse inclusion is proved analogously.
(v): Combine (iii) and (iv).
(vi) and (vii): The proofs are analogous to the ones of (iii) and (iv). �
Let us provide some examples illustrating these notions.

Example 2.5. Suppose that X = R2, and that we consider the rotators by ∓π/2, i.e.,

A: R2
→ R2: (x1, x2) → (x2, −x1) and B: R2

→ R2: (x1, x2) → (−x2, x1). (17)

Note that B = −A = A−1
= A∗, where A∗ denote the adjoint operator. Hence A + B ≡ 0,

Z = X , and (∀z ∈ Z)Kz = {Az} = {−Bz}. Furthermore, A−1
= B while the linearity of B

implies that B−
= B−1

= −B = A. Therefore, (A, B)∗ = (B, A). Hence K = Z , while
(∀k ∈ K )Zk = {A−1k} = {Bk}.

Example 2.6. Suppose that X = R2, that A is the normal cone operator of R2
+, and that

B: X → X : (x1, x2) → (−x2, x1) is the rotator by π/2. As already observed in Example 2.5, we
have B−1

= −B and B−
= B−1

= −B. A routine calculation yields

Z = R+ × {0}; (18)

thus, since B is single-valued,

(∀z = (z1, 0) ∈ Z) Kz =

−Bz


=


(0, −z1)


. (19)

Thus,

K =


z∈Z

Kz = {0} × R− (20)

and so

(∀k = (0, k2) ∈ K ) Zk =

−B− k


=


Bk


=


(−k2, 0)


. (21)

The dual problem is to find the zeros of A−1
+ B− , i.e., the zeros of the sum of the normal cone

operator of the negative orthant and the rotator by −π/2.

Example 2.7 (Convex Feasibility). Suppose that A = NU and B = NV , where U and V
are closed convex subsets of X such that U ∩ V ≠ ∅. Then clearly Z = U ∩ V . Using
[7, Proposition 2.4(i)], we deduce that (∀z ∈ Z)Kz = NU−V (0) = K . Note that we do know at
least one dual solution: 0 ∈ K . Thus, by Proposition 2.4(ii) and (vii), (∀k ∈ K )Zk = Z .

Remark 2.8. The preceding examples give some credence to the conjecture that

z1 ∈ Z
z2 ∈ Z
z1 ≠ z2

 ⇒ either Kz1 = Kz2 or Kz1 ∩ Kz2 = ∅. (22)
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Note that (22) is trivially true whenever A or B is at most single-valued. While this conjecture
fails in general (see Example 2.9 below), it does, however, hold true for the large class of
paramonotone operators (see Theorem 5.3).

Example 2.9. Suppose that X = R2, and set U := R × R+, V = R × {0}, and R: X →

X : (x1, x2) → (−x2, x1). Now suppose that A = NU + R and that B = NV . Then domA = U
and domB = V ; hence, dom(A + B) = U ∩ V = V . Let x = (ξ, 0) ∈ V . Then
Ax = {0} × ]−∞, ξ ] and Bx = {0} × R. Hence Ax ⊂ ±Bx, (A + B)x = {0} × R and
therefore Z = V . Furthermore, Kx = Ax ∩ (−Bx) = Ax . Now take y = (η, 0) ∈ V = Z with
ξ < η. Then Kx = Ax $ Ay = K y and thus (22) fails.

Proposition 2.10 (Common Zeros). zerA ∩ zerB ≠ ∅ ⇔ 0 ∈ K .

Proof. Suppose first that z ∈ zerA ∩ zerB. Then 0 ∈ Az and 0 ∈ Bz, so 0 ∈ Az ∩ (−Bz) =

Kz ⊆ K . Now assume that 0 ∈ K . Then 0 ∈ Kz , for some z ∈ Z and so 0 ∈ Az ∩ (−Bz).
Therefore, 0 ∈ zerA ∩ zerB. �

Example 2.11. Suppose that B = A. Then Z = zerA, and zerA ≠ ∅ ⇔ 0 ∈ K .

Proof. Since 2A is maximally monotone and A + A is a monotone extension of 2A, we deduce
that A+ A = 2A. Hence Z = zer(2A) = zerA and the result follows from Proposition 2.10. �

The following result, observed first by Passty, is very useful. For the sake of completeness,
we include its short proof.

Proposition 2.12 (Passty). Suppose that, for every i ∈ {0, 1}, wi ∈ Ayi ∩ B(x − yi ). Then
⟨y0 − y1, w0 − w1⟩ = 0.

Proof (See [39, Lemma 14]). Since A is monotone, 0 ≤ ⟨y0 − y1, w0 − w1⟩. On the other hand,
since B is monotone, 0 ≤ ⟨(x − y0) − (x − y1), w0 − w1⟩ = ⟨y1 − y0, w0 − w1⟩. Altogether,
⟨y0 − y1, w0 − w1⟩ = 0. �

Corollary 2.13. Suppose that z1 and z2 belong to Z, that k1 ∈ Kz1 , and that k2 ∈ Kz2 . Then
⟨k1 − k2, z1 − z2⟩ = 0.

Proof. Apply Proposition 2.12 (with B replaced by B and at x = 0). �

3. Solution mappings K and Z

We now interpret the families of sets (Kz)z∈X and (Zk)k∈X as set-valued operators by setting

K: X ⇒ X : z → Kz and Z: X ⇒ X : k → Zk . (23)

Let us record some basic properties of these fundamental operators.

Proposition 3.1. The following hold.

(i) grK = grA ∩ gr(−B) and grZ = grA−1
∩ gr(−B− ).

(ii) domK = Z , ranK = K , domZ = K , and ranZ = Z.
(iii) grK and grZ are closed sets.
(iv) The operators K, −K, Z, −Z are monotone.
(v) K−1

= Z.
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Proof. (i): This is clear from the definitions.
(ii): This follows from Proposition 2.4.
(iii): Since A and B are maximally monotone, the sets grA and grB are closed. Hence, by (i),

grK is closed and similarly for grZ.
(iv): Since grK ⊆ grA and A is monotone, we see that K is monotone. Similarly, since B

is monotone and gr(−K) ⊆ grB, we obtain the monotonicity of −K. The proofs for ±Z are
analogous.

(v): Clear from Proposition 2.4(ii). �
In Proposition 2.4(iii) we observed the closedness and convexity of Kz and Zk . In view of

Proposition 2.4(iii) and (vii), the sets of primal and dual solutions are both unions of closed
convex sets. It would seem that we cannot a priori deduce convexity of these solution sets because
unions of convex sets need not be convex. However, not only are Z and K indeed convex, but so
are grZ and grK. This surprising result, which is basically contained in works by Passty [39] and
by Eckstein and Svaiter [25,26], is best stated by using the parallel sum, a notion systematically
explored by Passty in [39]. (See also [32].)

Definition 3.2 (Parallel Sum). The parallel sum of A and B is

A�B := (A−1
+ B−1)−1. (24)

The notation we use for the parallel sum (see [5, Section 24.4]) is nonstandard but highly
convenient: indeed, for sufficiently nice convex functions f and g, one has ∂( f �g) =

(∂ f )�(∂g) (see [39, Theorem 28], [37, Proposition 4.2.2], or [5, Proposition 24.27]).
The proof of the following result is contained in the proof of [39, Theorem 21], although

Passty stated a much weaker conclusion. For the sake of completeness, we present his proof.

Theorem 3.3. For every x ∈ X, the set
grA


∩


(x, 0) − gr(−B)


=


(y, w) ∈ grA

(x − y, w) ∈ grB


(25)

is convex.

Proof (See also [39, Proof of Theorem 21]). The identity (25) is easily verified. To tackle
convexity, for every i ∈ {0, 1} take (yi , wi ) from the intersection (25); equivalently,

(∀i ∈ {0, 1}) wi ∈ Ayi ∩ B(x − yi ). (26)

By Proposition 2.12,

⟨y0 − y1, w0 − w1⟩ = 0. (27)

Now let t ∈ [0, 1], set (yt , wt ) = (1 − t)(y0, w0) + t (y1, w1), and take (a, a∗) ∈ grA. Using
(26) and the monotonicity of A in (28d), we obtain

yt − a, wt − a∗


=

(1 − t)(y0 − a) + t (y1 − a), (1 − t)(w0 − a∗) + t (w1 − a∗)


(28a)

= (1 − t)2 
y0 − a, w0 − a∗


+ t2 

y1 − a, w1 − a∗


(28b)

+ (1 − t)t


y0 − a, w1 − a∗

+


y1 − a, w0 − a∗


(28c)

≥ (1 − t)t


y0 − a, w1 − a∗

+


y1 − a, w0 − a∗


. (28d)
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Thus, using again monotonicity of A and recalling (27), we obtain
y0 − a, w1 − a∗


+


y1 − a, w0 − a∗


= ⟨y0 − a, w1 − w0⟩ +


y0 − a, w0 − a∗


(29a)

+ ⟨y1 − a, w0 − w1⟩ +

y1 − a, w1 − a∗


(29b)

= ⟨y1 − y0, w0 − w1⟩ (29c)

+

y0 − a, w0 − a∗


+


y1 − a, w1 − a∗


(29d)

≥ ⟨y1 − y0, w0 − w1⟩ (29e)
= 0. (29f)

Combining (28) and (29), we obtain ⟨yt − a, wt − a∗⟩ ≥ 0. Since (a, a∗) is an arbitrary element
of grA and A is maximally monotone, we deduce that (yt , wt ) ∈ grA. A similar argument yields
(x − yt , wt ) ∈ grB. Therefore, (yt , wt ) is an element of the intersection (25). �

Before returning to the objects of interest, we record Passty’s [39, Theorem 21] as a simple
corollary.

Corollary 3.4 (Passty). For every x ∈ X, the set (A�B)x is convex.

Proof. Let x ∈ X . Since (y, w) → w is linear and

(y, w) ∈ grA

(x − y, w) ∈ grB


is convex
(Theorem 3.3), we deduce that

w ∈ X
(∃ y ∈ X) w ∈ Ay ∩ B(x − y)


is convex. (30)

On the other hand, a direct computation or [39, Lemma 2] implies that (A�B)x =


y∈X


Ay ∩

B(x − y)

. Altogether, (A�B)x is convex. �

Corollary 3.5. For every x ∈ X, the set (grA) ∩ ((x, 0) + gr(−B)) is convex.

Proof. On the one hand, −gr(−B ) = gr(−B). On the other hand, B is maximally monotone.
Altogether, Theorem 3.3 (applied with B instead of B) implies that (grA) ∩ ((x, 0) −

gr(−B )) = (grA) ∩ ((x, 0) + gr(−B)) is convex. �

Remark 3.6. Theorem 3.3 and Corollary 3.5 imply that the intersections (grA) ∩ ±(gr − B)

are convex. This somewhat resembles works by Martı́nez–Legaz (see [33, Theorem 2.1]) and
by Zălinescu [49], who encountered convexity when studying the Minkowski sum/difference
(grA) ± (gr − B).

Corollary 3.7 (Convexity). The sets grZ and grK are convex; consequently, Z and K are convex.

Proof. Combining Proposition 3.1(i) and Corollary 3.5 (with x = 0), we obtain the convexity
of grK. Hence grZ is convex by Proposition 3.1(v). It thus follows that Z and K are convex as
images of convex sets under linear transformations. �

Remark 3.8. Since Z = (A−1�B−1)(0) and K = (A�B )(0), the convexity of Z and K also
follows from Corollary 3.4.

Remark 3.9 (Connection to Eckstein and Svaiter’s “Extended Solution Set”). In [25,
Section 2.1], Eckstein and Svaiter defined in 2008 the extended solution set (for the primal
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problem) by

Se(A, B) :=

(z, w) ∈ X × X

w ∈ Bz, −w ∈ Az

. (31)

It is clear that grZ−1
= grK = Se(B, A) = −Se(A, B). Unaware of Passty’s work, they

proved in [25, Lemmas 1 and 2] (in the present notation) that Z = ranZ, and that grZ is
closed and convex. Their proof is very elegant and completely different from the above Passty-
like proof. In their 2009 follow-up paper [26], Eckstein and Svaiter generalize the notion of
the extended solution set to three or more operators; their corresponding proof of convexity in
[26, Proposition 2.2] is more direct and along Passty’s lines. We are grateful to the associate
editor for pointing out that the extension to three or more operators in [26] is a product space
reformulation of the corresponding result in [25] and that such results are significantly extended
in [15,21].

Remark 3.10 (Convexity of Z and K ). If Z is nonempty and a constraint qualification holds,
then A + B is maximally monotone (see, e.g., [5, Section 24.1]) and therefore Z = zer(A + B)

is convex. It is somewhat surprising that Z is always convex even without the maximal
monotonicity of A + B.

One may inquire whether or not Z is also closed, which is another standard property of zeros
of maximally monotone operators. The next example illustrates that Z may fail to be closed.

Example 3.11 (Z Need Not Be Closed!). Suppose that X = ℓ2, the real Hilbert space of square-
summable sequences. In [10, Example 3.17], the authors provide a monotone discontinuous
linear at most single-valued operator S on X such that S is maximally monotone and its adjoint
S∗ is a maximally monotone single-valued extension of −S. Hence domS is not closed. Now
assume that A = S and B = S∗. Then A + B is an operator that is zero on the dense proper
subspace Z = dom(A + B) = domS of X . Thus Z fails to be closed. Furthermore, in the
language of Passty’s parallel sums (see Remark 3.8), this also illustrates that the parallel sum
need not map a point to a closed set.

Remark 3.12. We do not know whether or not such counterexamples can reside in finite-
dimensional Hilbert spaces when domA ∩ domB ≠ ∅. On the one hand, in view of the
forthcoming Corollary 5.5(i), any counterexample must feature at least one operator that is
not paramonotone, which means that the operators cannot be simultaneously subdifferential
operators of functions in Γ . On the other hand, one has to avoid the situation when A + B is
maximally monotone, which happens when ridomA ∩ ridomB ≠ ∅. This means that neither is
one of the operators allowed to have full domain, nor can they simultaneously have relatively
open domains, which excludes the situation when both operators are maximally monotone linear
relations (i.e., maximally monotone operators with graphs that are linear subspaces, see [9]).

Remark 3.13. We note that K and Z are in general not maximally monotone. Indeed if Z, say, is
maximally monotone, then Corollary 3.7 and [9, Theorem 4.2] imply that grZ is actually affine
(i.e., a translate of a subspace) and so are Z and K (as range and domain of Z). However, the
set Z of Example 2.7 need not be an affine subspace (e.g., when U , V and Z coincide with the
closed unit ball in X ).

4. Reflected resolvents and splitting operators

We start with some useful identities involving resolvents and reflected resolvents (recall (5)).
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Proposition 4.1. Let C : X ⇒ X be maximally monotone. Then the following hold.
(i) RC−1 = −RC .

(ii) JC = JC .
(iii) RC− = Id − 2JC .

Proof. (i): By (6), we have RC−1 = 2JC−1 − Id = 2(Id− JC )− Id = Id−2JC = −(2JC − Id) =

−RC .
(ii): Indeed,

JC =

Id + (−Id) ◦ C ◦ (−Id)

−1 (32a)

=

(−Id) ◦ (Id + C) ◦ (−Id)

−1 (32b)

= (−Id)−1
◦ (Id + C)−1

◦ (−Id)−1 (32c)
= (−Id) ◦ JC ◦ (−Id) (32d)

= JC . (32e)

(iii): Using (6) and (ii), we have that RC− = 2JC− − Id = 2(Id − JC )− Id = Id − 2JC . �

Corollary 4.2 (Peaceman–Rachford Operator is Self-dual. See Eckstein’s [22, Lemma 3.5 on
p. 125]). The Peaceman–Rachford operators for (A, B) and (A, B)∗ = (A−1, B− ) coincide,
i.e., we have self-duality in the sense that

RB RA = RB− RA−1 . (33)

Consequently,

(∀λ ∈ [0, 1]) (1 − λ)Id + λRB RA = (1 − λ)Id + λRB− RA−1 . (34)

Proof. Using Proposition 4.1(i) and (iii), we obtain (33) RB− RA−1 = (Id − 2JB )(−RA) =

−RA + 2JB RA = (2JB − Id)RA = RB RA. Now (34) follows immediately from (33). �

Corollary 4.3 (Douglas–Rachford Operator is Self-dual. See Eckstein’s [22, Lemma 3.6 on
p. 133]). For the Douglas–Rachford operator

T(A,B) :=
1
2

Id +
1
2

RB RA (35)

we have

T(A,B) = JB RA + Id − JA = T
(A−1,B− )

. (36)

Proof. The left equality is a simple expansion while self-duality is (34) with λ =
1
2 . �

Remark 4.4 (Backward–backward Operator is not Self-dual). In contrast to Corollary 4.2, the
backward–backward operator is not self-dual: indeed, using (6) and Proposition 4.1(iii), we
deduce that

JB− JA−1 = (Id − JB )(Id − JA) = Id − JA + JB(JA − Id) = (JB − Id)(JA − Id). (37)

Thus if A ≡ 0 and domB is not a singleton (equivalently, JA = Id and ranJB is not a singleton),
then JB− JA−1 ≡ (JB − Id)0 ≡ JB0 ≠ JB = JB JA.
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For the rest of this paper, we set

T =
1
2

Id +
1
2

RB RA = JB RA + Id − JA. (38)

Clearly,

FixT = FixRB RA. (39)

Theorem 4.5. The mapping

Ψ : grK → FixT : (z, k) → z + k (40)

is a well defined bijection that is continuous in both directions, with Ψ−1: x → (JAx, x − JAx).

Proof. Take (z, k) ∈ grK. Then k ∈ Kz = (Az) ∩ (−Bz). Now k ∈ Az ⇔ z + k ∈ (Id + A)z ⇔

z = JA(z + k), and k ∈ (−Bz) ⇔ −k ∈ Bz ⇔ z − k ∈ (Id + B)z ⇔ z = JB(z − k). Set
x := z + k. Then JAx = JA(z + k) = z and hence RAx = 2JAx − x = 2z − (z + k) = z − k.
Thus,

T x = x − JAx + JB RAx = z + k − z + JB(z − k) = k + z = x, (41)

i.e., x ∈ FixT . It follows that Ψ is well defined.
Let us now show that Ψ is surjective. To this end, take x ∈ FixT . Set z := JAx as well as

k := (Id − JA)x = x − z. Clearly,

x = z + k. (42)

Now z = JAx ⇔ x ∈ (Id + A)z = z + Az ⇔ k = x − z ∈ Az. Thus,

k ∈ Az. (43)

We also have RAx = 2JAx − x = 2z − (z + k) = z − k; hence, x = T x = x − JAx + JB RAx ⇔

JAx = JB RAx ⇔ z = JB(z − k) ⇔ z − k ∈ (Id + B)z = z + Bz ⇔

k ∈ −Bz. (44)

Altogether, k ∈ (Az) ∩ (−Bz) = Kz ⇔ (z, k) ∈ grK. Hence Ψ is surjective.
In view of Fact 1.1 and since grK ⊆ grA, it is clear that Ψ is injective with the announced

inverse. �
The following result is a straight-forward consequence of Theorem 4.5.

Corollary 4.6. We have

(∀z ∈ Z) Kz = JA−1

J−1

A z ∩ FixT


(45)

and

(∀k ∈ K ) Zk = JA(J−1
A−1k ∩ FixT


. (46)

Corollary 4.7 (Combettes. See [20, Lemma 2.6(iii)]). JA(FixT ) = Z.

Proof. Set Q: X × X → X : (x1, x2) → x1. By Theorem 4.5 and Proposition 3.1(ii), JA(FixT ) =

QranΨ−1
= QdomΨ = Q(grK) = domK = Z . �



Author's personal copy

1076 H.H. Bauschke et al. / Journal of Approximation Theory 164 (2012) 1065–1084

Example 4.8 (See also [6, Fact A1]). Suppose that A = NU and B = NV , where U and V are
closed convex subsets of X such that U ∩ V ≠ ∅. Then PU (FixT ) = U ∩ V .

Corollary 4.9. (Id − JA)(FixT ) = K .

Proof. Either argue similarly to the proof of Corollary 4.7, or apply Corollary 4.7 to the dual and
recall that T is self-dual by Corollary 4.3. �

5. Paramonotonicity

Definition 5.1. A monotone operator C : X ⇒ X is paramonotone, if

x∗
∈ Cx

y∗
∈ Cy

x − y, x∗
− y∗


= 0

 ⇒ x∗
∈ Cy and y∗

∈ Cx . (47)

Remark 5.2. Paramonotonicity has proven to be a very useful property for finding solutions
of variational inequalities by iteration; see, e.g., [30,19,16,38,27]. Examples of paramonotone
operators abound: indeed, each of the following is paramonotone.

(i) ∂ f , where f ∈ Γ [30, Proposition 2.2].
(ii) C : X ⇒ X , where C is strictly monotone.

(iii) Rn
→ Rn : x → Cx + b, where C ∈ Rn×n , b ∈ Rn , C+ =

1
2 C +

1
2 CT , ker C+ ⊆ ker C ,

and C+ is positive semidefinite [30, Proposition 3.1].

For further examples, see [30]. When C is a continuous linear monotone operator, then C is
paramonotone if and only if C is rectangular (a.k.a. 3∗ monotone); see [3, Section 4]. It is
straight-forward to check that for C : X ⇒ X , we have

C is paramonotone ⇔ C−1 is paramonotone

⇔ C is paramonotone

⇔ C− is paramonotone. (48)

Theorem 5.3. Suppose that A and B are paramonotone. Then (∀z ∈ Z)Kz = K and (∀k ∈

K )Zk = Z.

Proof. Suppose that z1 and z2 belong to Z and that z1 ≠ z2. Take k1 ∈ Kz1 = Az1 ∩ (−Bz1)

and k2 ∈ Kz2 = Az2 ∩ (−Bz2). By Corollary 2.13,

⟨k1 − k2, z1 − z2⟩ = 0. (49)

Since A and B are paramonotone, we have k2 ∈ Az1 and −k2 ∈ Bz1; equivalently, k2 ∈ Kz1 .
It follows that Kz2 ⊆ Kz1 . Since the reverse inclusion follows in the same fashion, we see that
Kz1 = Kz2 . In view of Proposition 2.4(iv), Kz1 = K , which proves the first conclusion. Since A
and B are paramonotone so are A−1 and B− by (48). Therefore, the second conclusion follows
from what we already proved (applied to A−1 and B− ). �

Remark 5.4 (Recovering All Primal Solutions From One Dual Solution). Suppose that A and B
are paramonotone and we know one (arbitrary) dual solution, say k0 ∈ K . Then

Zk0 = A−1k0 ∩

B−1(−k0)


(50)
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recovers the set Z of all primal solutions, by Theorem 5.3. If A = ∂ f and B = ∂g, where f and
g belong to Γ , then, since (∂ f )−1

= ∂ f ∗ and (∂g)−1
= ∂g∗, we obtain a formula well known in

Fenchel duality, namely,

Z = ∂ f ∗(k0) ∩ ∂g∗(−k0). (51)

We shall revisit this setting in more detail in Section 7. In striking contrast, the complete recovery
of all primal solutions from one dual solution is generally impossible when at least one of the
operators is no longer paramonotone — see, e.g., Example 2.6 where one of the operators is even
a normal cone operator.

Corollary 5.5. Suppose A and B are paramonotone. Then the following hold.

(i) Z and K are closed.
(ii) grK and grZ are the “rectangles” Z × K and K × Z, respectively.

(iii) FixT = Z + K .
(iv) (Z − Z) ⊥ (K − K ).
(v) span (K − K ) = X ⇒ Z is a singleton.

(vi) span (Z − Z) = X ⇒ K is a singleton.

Proof. (i): Combine Theorem 5.3 and Proposition 2.4.
(ii): Clear from Theorem 5.3.
(iii): Combine (ii) with Theorem 4.5.
(iv): Combine Corollary 2.13 with Theorem 5.3.
(v): In view of (iv), we have that 0 = ⟨Z − Z , K − K ⟩ = ⟨Z − Z , span (K − K )⟩ =

⟨Z − Z , X⟩ ⇒ Z − Z = {0} ⇔ Z is a singleton.
(vi): This is verified analogously to the proof of (v). �

Corollary 5.6. Suppose that A and B are paramonotone. Then FixT = Z + K , Z = JA(Z + K )

and K = JA−1(Z + K ) = (Id − JA)(Z + K ).

Proof. Combine Corollary 5.5(ii) with Theorem 4.5. �

Remark 5.7 (Paramonotonicity is Critical). Various results in this section — e.g., Theorem 5.3,
Remark 5.4, Corollary 5.5(ii)–(vi) — fail if the assumption of paramonotonicity is omitted. To
generate these counterexamples, assume that A and B are as in Example 2.5 or Example 2.6.

6. Projection operators and solution sets

The following two facts regarding projection operators will be used in the sequel.

Fact 6.1 (See, e.g., [8, Proposition 2.6]). Let U and V be nonempty closed convex subsets of X
such that U ⊥ V . Then U + V is convex and closed, and PU+V = PU + PV .

Fact 6.2. Let S be a nonempty subset of X, and let y ∈ X. Then (∀x ∈ X)Py+S(x) =

y + PS(x − y).

Theorem 6.3. Suppose that A and B are paramonotone, that (z0, k0) ∈ Z × K , and that x ∈ X.
Then the following hold.

(i) Z + K is convex and closed.
(ii) PZ+K (x) = PZ (x − k0) + PK (x − z0).
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(iii) If (Z − Z) ⊥ K , then PZ+K (x) = PZ (x) + PK (x − z0).
(iv) If Z ⊥ (K − K ), then PZ+K (x) = PZ (x − k0) + PK (x).

Proof. (i): The convexity and closedness of Z and K follow from Corollaries 3.7 and 5.5(i). By
Corollary 5.5(iv),

(Z − z0) ⊥ (K − k0). (52)

Using Fact 6.1,

Z + K − z0 − k0 is convex and closed, and PZ+K−z0−k0 = PZ−z0 + PK−k0 . (53)

Hence Z + K is convex and closed. (ii): Using (53), Facts 6.1 and 6.2, we obtain

PZ+K x = P(z0+k0)+(Z+K−z0−k0)x (54a)

= z0 + k0 + P(Z−z0)+(K−k0)


x − (z0 + k0)


(54b)

= z0 + PZ−z0


(x − k0) − z0


+ k0 + PK−k0


(x − z0) − k0


(54c)

= PZ (x − k0) + PK (x − z0). (54d)

(iii): Using Facts 6.1 and 6.2, we have

PZ+K x = Pz0+(Z+K−z0)x (55a)
= z0 + P(Z−z0)+K (x − z0) (55b)
= z0 + PZ−z0(x − z0) + PK (x − z0) (55c)
= PZ x + PK (x − z0). (55d)

(iv): Argue analogously to the proof of (iii). �

Remark 6.4. Suppose that A and B are paramonotone and that 0 ∈ K . Then Corollary 5.5(iv)
implies that (Z − Z) ⊥ K − {0} = K and we thus may employ either item (ii) (with k0 = 0) or
item (iii) to obtain the formula for PZ+K .

However, if (Z − Z) ⊥ K , then the next two examples show — in strikingly different ways
since Z is either large or small — that we cannot conclude that 0 ∈ K .

Example 6.5. Fix u ∈ X and suppose that (∀x ∈ X)Ax = u and B = −A. Then A and B are
paramonotone, A + B ≡ 0, and hence Z = X . Furthermore, K = {u}. Thus if u ≠ 0, then
K ⊥̸ X = (Z − Z).

Example 6.6. Let U and V be closed convex subsets of X such that

0 ∉ U ∩ V and U − V = X. (56)

(For example, suppose that X = R and set U = V = [1, +∞[.) Now assume that (A, B) =

(NU , NV )∗. In view of Example 2.7, K = U ∩ V and Z = NU−V (0) = NX (0) = {0}. Hence Z
is a singleton and thus Z − Z = {0} ⊥ K while 0 ∉ K .

Theorem 6.7. Suppose that A and B are paramonotone, let k0 ∈ K , and let x ∈ X. Then the
following hold.

(i) JA PZ+K (x) = PZ (x − k0).
(ii) If (Z − Z) ⊥ K , then JA ◦ PZ+K = PZ .
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Proof. Take an arbitrary z0 ∈ Z . (i): Set z := PZ (x − k0). Using Theorems 6.3(ii) and 5.3, we
have

PZ+K x − z = PZ+K x − PZ (x − k0) = PK (x − z0) ∈ K = Kz ⊆ Az. (57)

Hence PZ+K x ∈ (Id + A)z ⇔ z = JA PZ+K x ⇔ PZ (x − k0) = JA PZ+K x .
(ii): This time, let us set z := PZ x . Using Theorems 6.3(iii) and 5.3, we have

PZ+K x − z = PZ+K x − PZ x = PK (x − z0) ∈ K = Kz ⊆ Az. (58)

Hence PZ+K x ∈ (Id + A)z ⇔ z = JA PZ+K x ⇔ PZ x = JA PZ+K x . �

Corollary 6.8. Suppose that A and B are paramonotone, and that 0 ∈ K . Then

PZ = JA PZ+K . (59)

Specializing the previous result to normal cone operators, we recover the consistent case of
[7, Corollary 3.9].

Example 6.9. Suppose that A = NU and B = NV , where U and V are closed convex subsets of
X such that U ∩ V ≠ ∅. Then Z = U ∩ V, K = NU−V (0), and

PZ = PU PZ+K = PU PFixT . (60)

Proof. This follows from Example 2.7, Corollaries 5.5(iii) and Corollary 6.8. �

7. Subdifferential operators

In this section, we assume that

A = ∂ f and B = ∂g, (61)

where f and g belong to Γ . We consider the primal problem

minimize
x∈X

f (x) + g(x), (62)

the associated Fenchel dual problem

minimize
x∗∈X

f ∗(x∗) + g∗(−x∗), (63)

the primal and dual optimal values

µ = inf( f + g)(X) and µ∗
= inf( f ∗

+ g∗∨)(X). (64)

Note that

µ ≥ −µ∗. (65)

Following [12,13], we say that total duality holds if µ = −µ∗
∈ R, the primal problem (62) has

a solution, and the dual problem (63) has a solution.

Theorem 7.1 (Total Duality). Suppose that A = ∂ f and B = ∂g, where f and g belong to Γ .
Then Z ≠ ∅ ⇔ total duality holds, in which case Z coincides with the set of solutions to the
primal problem (62).
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Proof. Observe that (∂ f )−1
= ∂ f ∗ and that (∂g)− = (∂g∗) = ∂(g∗∨).

“⇒”: Suppose that Z ≠ ∅, and let z ∈ Z . Then 0 ∈ ∂ f (z) + ∂g(z) ⊆ ∂( f + g)(z). Hence z
solves the primal problem (62), and

µ = f (z) + g(z). (66)

Take k ∈ K = Kz = (∂ f )(z) ∩ (−∂g)(z). First, we note that 0 ∈ (∂ f )−1(k) + (∂g)− (k) =

∂ f ∗(k) + ∂g∗∨(k) ⊆ ∂( f ∗
+ g∗∨)(k) and so k solves the Fenchel dual problem (63). Thus,

µ∗
= f ∗(k) + g∗∨(k). (67)

Moreover, k ∈ ∂ f (z) and −k ∈ ∂g(z), i.e., f (z)+ f ∗(k) = ⟨z, k⟩ and g(z)+ g∗(−k) = ⟨z, −k⟩.
Adding these equations gives 0 = f (z) + f ∗(k) + g(z) + g∗∨(k) = µ + µ∗. This verifies total
duality.

“⇐”: Suppose we have total duality. Then there exists x ∈ dom f ∩ domg and x∗
∈

dom f ∗
∩ domg∗∨ such that

f (x) + g(x) = µ = −µ∗
= − f ∗(x∗) − g∗∨(x∗) ∈ R. (68)

Hence 0 = ( f (x) + f ∗(x∗)) + (g(x) + g∗(−x∗)) ≥ ⟨x, x∗⟩ + ⟨x, −x∗⟩ = 0. Therefore, using
convex analysis and Proposition 2.4,

x∗
∈ ∂ f (x) and − x∗

∈ ∂g(x)


⇔ x∗
∈ Kx ⇔ x ∈ Zx∗ . (69)

Hence x ∈ Z .
Note that Z = zer(∂ f + ∂g) ⊆ zer∂( f + g) since gr(∂ f + ∂g) ⊆ gr∂( f + g). Hence Z is a

subset of the set of primal solutions. Conversely, if x is a primal solution and x∗ is a dual solution,
then (68) holds and the rest of the proof of “⇐” shows that x ∈ Z . Altogether, Z coincides with
the set of primal solutions. �

Remark 7.2 (Sufficient Conditions). On the one hand,

the primal problem has at least one solution (70)

if dom f ∩ domg ≠ ∅ and one of the following holds (see, e.g., [5, Corollary 11.15]): (i) f is
supercoercive; (ii) f is coercive and g is bounded below; (iii) 0 ∈ sri(dom f ∗

+ domg∗) (by,
e.g., [5, Proposition 15.13] and since (62) is the Fenchel dual problem of (63)). On the other
hand,

the sum rule ∂( f + g) = ∂ f + ∂g holds (71)

whenever one of the following is satisfied (see, e.g., [5, Corollary 16.38]): (i) (Attouch–Brezis
condition) R++(dom f − domg) is a closed linear subspace; (ii) dom f ∩ intdomg ≠ ∅;
(iii) domg = X ; (iv) X is finite-dimensional and ridom f ∩ ridomg ≠ ∅. If both (70) and
(71) hold, then Z ≠ ∅ and Z coincides with the set of primal solutions. Finally, we are grateful
to the associate editor for pointing out that [15, Section 4] contained related results in a more
general setting.

8. Algorithms and Eckstein–Ferris–Pennanen–Robinson duality

In this last section, we sketch first algorithmic consequences and then conclude by comment-
ing on the applicability of our work to a more general duality framework. Recall that

T =
1
2

Id +
1
2

RB RA = JB RA + Id − JA, (72)
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and that the set of primal solutions Z coincides with JA(FixT ) (see Corollary 4.7). This explains
the interest in finding fixed points of T . Moreover, if the nearest primal solution is of interest
(e.g., the problem of finding the projection onto the intersection of two nonempty closed convex
sets), then the following result may be helpful.

Theorem 8.1 (Abstract Algorithm). Suppose that A and B are paramonotone. Let (xn)n∈N be
a sequence such that (xn)n∈N converges (weakly or strongly) to x ∈ FixT and (JAxn)n∈N
converges (weakly or in norm) to JAx. Then the following hold.

(i) (∀k ∈ K )JAx = PZ (x − k).
(ii) If (Z − Z) ⊥ K , then JAx = PZ x.

Proof. Combine Corollary 5.5(iii) with Theorem 6.7. �
We provide three examples.

Example 8.2 (Douglas–Rachford Algorithm). Suppose that A and B are paramonotone and that
the sequence (xn)n∈N is generated by (∀n ∈ N)xn+1 = T xn . The hypothesis in Theorem 8.1 is
satisfied, and the convergence of the sequences is with respect to the weak topology [46]. See
also [2] for a much simpler proof and [5, Theorem 25.6] for a powerful generalization.

Example 8.3 (Halpern-type Algorithm). Suppose that A and B are paramonotone and that the
sequence (xn)n∈N is generated by (∀n ∈ N)xn+1 = (1 − λn)T xn + λn y, where (λn)n∈N is a
sequence of parameters in ]0, 1[ and y ∈ X is given. Under suitable assumptions on (λn)n∈N, it
is known (see, e.g., [28,47]) that xn → x := PFixT y with respect to the norm topology. Since
JA is (firmly) nonexpansive, it is clear that the hypothesis of Theorem 8.1 holds. Furthermore,
JAxn → JAx = JA PFixT y. Thus, if k0 ∈ K , then JAxn → PZ (y − k0) by Theorem 6.7(i). And
if (Z − Z) ⊥ K , then JAxn → PZ y by Theorem 6.7(ii).

Example 8.4 (Haugazeau-type Algorithm). This is similar to Example 8.3 in that xn → x :=

PFixT y with respect to the norm topology and where y ∈ X is given. For the precise description of
the (somewhat complicated) update formula for (xn)n∈N, we refer the reader to [5, Section 29.2]
or [4]; see also [29]. Once again, we have JAxn → JAx = JA PFixT y and thus, if k0 ∈ K ,
then JAxn → PZ (y − k0) by Theorem 6.7(i). And if (Z − Z) ⊥ K , then JAxn → PZ y by
Theorem 6.7(ii). Consequently, in the context of Example 6.9, we obtain PU xn → PU∩V y; in
fact, this is [8, Theorem 3.3], which is the main result of [8].

Turning to Eckstein–Ferris–Pennanen–Robinson duality, let us assume the following:

• Y is a real Hilbert space (and possibly different from X );
• C is a maximally monotone operator on Y ;
• L: X → Y is continuous and linear.

Around the turn of the millennium, Eckstein and Ferris [24], Pennanen [40] as well as
Robinson [41] considered the problem of finding zeros of

A + L∗C L . (73)

This framework is more flexible than the Attouch–Théra framework, which corresponds to
the case when Y = X and L = Id. (For an even more general framework, see [21].) Note
that just as Attouch–Théra duality relates to classical Fenchel duality in the subdifferential
case (see Section 7), the Eckstein–Ferris–Pennanen–Robinson duality pertains to classical
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Fenchel–Rockafellar duality for the problem of minimizing f +h ◦ L when f ∈ ΓX and h ∈ ΓY ,
and A = ∂ f and C = ∂h.

The results in the previous sections can be used in the Eckstein–Ferris–Pennanen–Robinson
framework thanks to items (ii) and (iii) of the following result, which allows us to set B = L∗C L .

Proposition 8.5. The following hold.

(i) If C is paramonotone, then L∗C L is paramonotone.
(ii) (Pennanen) If R++(ranL − domC) is a closed subspace of Y , then L∗C L is maximally

monotone.
(iii) If C is paramonotone and R++(ranL − domC) is a closed subspace of Y , then L∗C L is

maximally monotone and paramonotone.

Proof. (i): Take x1 and x2 in X , and suppose that x∗

1 ∈ L∗C Lx1 and x∗

2 ∈ L∗C Lx2. Then
there exist y∗

1 ∈ C Lx1 and y∗

2 ∈ C Lx2 such that x∗

1 = L∗y∗

1 and x∗

2 = L∗y∗

2 . Thus,
x1 − x2, x∗

1 − x∗

2


=

x1 − x2, L∗y∗

1 − L∗y∗

2


=

Lx1 − Lx2, y∗

1 − y∗

2


≥ 0 because C is
monotone. Hence L∗C L is monotone. Now suppose furthermore that


x1 − x2, x∗

1 − x∗

2


= 0.
Then


Lx1 − Lx2, y∗

1 − y∗

2


= 0 and the paramonotonicity of C yields y∗

2 ∈ C(Lx1) and
y∗

1 ∈ C(Lx2). Therefore, x∗

2 = L∗y∗

2 ∈ L∗C Lx1 and x∗

1 = L∗y∗

1 ∈ L∗C Lx2.
(ii): See [40, Corollary 4.4(c)].
(iii): Combine (i) and (ii). �
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