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Abstract
In this paper, we consider an iterative regularization scheme for linear ill-posed
equations in Banach spaces. As opposed to other iterative approaches, we
deal with a general penalty functional from Tikhonov regularization and take
advantage of the properties of the regularized solutions which where supported
by the choice of the specific penalty term. We present convergence and stability
results for the presented algorithm. Additionally, we demonstrate how these
theoretical results can be applied to L1- and TV -regularization approaches and
close the paper with a short numerical example.

(Some figures may appear in colour only in the online journal)

1. Introduction

Let X and Y denote real Banach spaces with topological dual spaces X ∗ and Y∗, respectively.
We consider the linear ill-posed operator equation

A x = y, x ∈ X , (1)

where A : X −→ Y describes a linear continuous operator with a non-closed range
R(A) := {A x ∈ Y : x ∈ X }, i.e. R(A) �= R(A). Additionally, we assume that only noisy data
yδ ∈ Y , with ‖yδ − y‖ � δ, δ > 0, and y ∈ Y are given. Consequently, we have to apply a
regularization strategy.

Certainly the most popular stabilization approach is Tikhonov regularization. Motivated
by its successful employment in various applications, the theory and the numerics of Tikhonov
regularization with general residual and penalty terms have become fields of active research
in the recent years; see, for example, [25, 6–9, 17, 14, 23] for some theoretical results as
well as for some applications in image and sparse reconstruction. This variational approach
represents nowadays a standard technique in the approximate determination of, in particular,
non-smooth parameters and images. On the other hand, the use of Tikhonov regularization
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for identification problems has a major drawback: as opposed to control problems, the choice
of the regularization parameter is crucial for the quality of the reconstructed solution. In
order to apply a parameter choice strategy, the Tikhonov functional has to be minimized
several times for different regularization parameters. In particular, very small regularization
parameters have to be taken into account, leading to increasing numerical instabilities and
costs. Therefore, iterative regularization methods seem to be a promising alternative: instead
of solving several (non-quadratic and ill-conditioned) minimization problems exactly, we apply
an iterative minimization process for the residual term and stop the algorithm whenever some
stopping criterion is satisfied. Hence, numerically, only one minimization problem has to be
solved inexactly, a fact which promises much less computational cost. However, the theoretical
treatment of such processes in the context of inverse problems is much more difficult. As a
consequence, the literature concerning iterative regularization methods is limited and it is
mainly restricted to the case of quadratic penalty terms (Hilbert space norms and semi-norms),
see [12, 13, 18]. Recently, some first iterative variants were developed in Banach spaces by
taking norms as penalty functionals, see [27, 26, 19, 15, 16].

In this paper, an iterative regularization approach for solving (1) is investigated. In
particular, motivated by [15], we deal for all δ � 0 with the following iterative scheme:
for a starting point x∗

0 ∈ X ∗ we set xδ
0 := G(x∗

0) and iterate for n � 0:

φ∗
n := A�Jp(Axδ

n − yδ );
x∗

n+1 := x∗
n − μnφ

∗
n ;

xδ
n+1 := G(x∗

n+1).

As usual for iterative regularization schemes, the process is terminated with an appropriate
stopping criterion, which will be specified later on. Here, we use the following notation:

• A� : Y∗ −→ X ∗ denotes the adjoint operator of A, i.e.

〈A�y∗, x〉 = 〈y∗, Ax〉, ∀x ∈ X , y∗ ∈ Y∗.

• For given 1 < p < +∞, the operator Jp : Y −→ Y∗ denotes the duality mapping with the
gauge function t �→ t p−1. Hence, when Y is additionally assumed to be smooth, φ∗

n is the
Gâteaux gradient of the functional x �→ 1

p‖A x − yδ‖p at the element xδ
n ∈ X for all n � 0.

• G : D(G) ⊆ X ∗ −→ X describes an operator which transports x∗
n ∈ X ∗ back into the

original space X . Its proper choice and the investigation of its influence on the outcomes
of the iterative regularization scheme represent the main purpose of this paper.

• In order to achieve a tolerable speed of convergence for the presented algorithm, a good
choice of the step size μn > 0 for n � 0 has to be taken into account.

Furthermore, for δ > 0, let N(δ, yδ ) denote the index where the iteration process is
stopped, assuming that this happens. Then xδ

N(δ,yδ )
is referred to as the regularized solution of

(1). For δ = 0, we omit writing the upper index for the sequence {x0
n}n�0 and let y0 := y. The

main goal of this paper is to present a general framework for the employment of this approach
concerning convergence and regularization. Nevertheless, we also suggest how to apply this
method to some particular penalty functionals, beyond the ones considered in the classical
Tikhonov regularization.

For some alternative approaches to iterative regularization methods for linear equations
in Banach spaces, we refer to [1], where the iterative regularization is used for general convex
problems in uniformly smooth and uniformly convex Banach spaces, and to [3], where the tools
involved rely on operator calculus, while for complexity and effectiveness issues regarding
convex optimization algorithms we refer the interested reader to [20].
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The paper is organized as follows: sections 2 and 3 motivate and give analytical
background for the specific choice of the operator G. This preliminary work is followed
in section 4 by a detailed specification of the iterative scheme under consideration. In
section 5, convergence and regularization properties of the algorithm are proved. An additional
accelerated iterative scheme, obtained via an improved choice of the step size, is given in
section 6. Finally, an application of the proposed method to regularization with L1- and TV -
penalty terms is given in section 7, along with a short numerical example.

2. Motivation—Tikhonov regularization

In order to get an idea about the choice of the operator G, we briefly consider Tikhonov
regularization with a general penalty functional P : X −→ R ∪ {+∞} assumed to be proper
(i.e. its effective domain, dom P := {x ∈ X : P(x) < +∞}, is supposed to be nonempty),
convex and lower semicontinuous.

Then, for a given regularization parameter α > 0, a regularized approximate solution xδ
α

of equation (1) is calculated as a minimizer of the Tikhonov functional:

T δ
α : X −→ R ∪ {+∞}, T δ

α (x) := 1

p
‖Ax − yδ‖p + αP(x).

Assume Y to be smooth and P to be Gâteaux differentiable on core(dom P), the algebraic
interior of dom P, and suppose further xδ

α ∈ core(dom P). Writing down the necessary
optimality condition, we consequently have

∇T δ
α

(
xδ
α

) = A�Jp
(
Axδ

α − yδ
) + α∇P

(
xδ
α

) = 0

or, equivalently,

∇P
(
xδ
α

) = − 1

α
A�Jp

(
Axδ

α − yδ
)
.

The above considerations suggest for an iterative scheme the choice

G := (∇P)−1,

provided that the Gâteaux gradient of P is invertible. However, the assumption of
differentiability of the penalty functional P seems to be too restrictive. In order to get an
iterative approach applicable to not necessarily differentiable penalty functionals, we will
make use of the notion of convex subdifferential. The convex subdifferential of P at x ∈ dom P
is the set

∂P(x) := {x∗ ∈ X ∗ : P(x̃) − P(x) − 〈x∗, x̃ − x〉 � 0 ∀x̃ ∈ X },
while for x �∈ dom P, ∂P(x) := ∅. Thus, ∂P : X ⇒ X ∗ represents a multi-valued operator
having as a domain

D(∂P) := {x ∈ X : ∂P(x) �= ∅} ⊆ dom P

and as a range

R(∂P) :=
⋃
x∈X

∂P(x).

Its inverse operator (∂P)−1 : X ∗ ⇒ X is the operator defined as

x ∈ (∂P)−1(x∗) ⇔ x∗ ∈ ∂P(x).

Consequently, D((∂P)−1) = R(∂P) and R((∂P)−1) = D(∂P). Hence, for our iterative
scheme we will choose

G : R(∂P) ⊆ X ∗ −→ X , G := (∂P)−1, (2)

3
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after we will preliminarily guarantee that (∂P)−1 is single-valued on its domain. Moreover,
before proving convergence and stability results, we have to ensure that the sequences {xδ

n}n�0

and {x∗
n}n�0 are well defined. In particular, the following questions have to be taken into

account.

(1) How can one find an appropriate penalty functional P such that the operator G defined in
(2) is single-valued on R(∂P)?

(2) Can we, in this case, always ensure that x∗
n ∈ R(∂P) for all n � 1? Or, even more, under

which conditions does R(∂P) = X ∗ hold?
(3) How to choose the step size μn for all n � 0?

The answers to these questions are given in the following sections.

3. Elements of convex analysis

Throughout the paper, we suppose the space X to be a reflexive Banach space and X ∗ its
topological dual space. We denote by w(X ,X ∗) (for short, w) the weak topology of X
induced by X ∗ and by w(X ∗,X ) (for short, w∗) the weak∗ topology of X ∗ induced by X . We
also denote by 〈x∗, x〉 the value of the linear continuous functional x∗ ∈ X ∗ at x ∈ X . For a set
S ⊆ X , we denote by int S and S its interior and closure, respectively. The indicator function
of S is defined as

δS : X −→ R ∪ {+∞}, δS(x) =
{

0, if x ∈ S,
+∞, otherwise,

while the convex subdifferential of δS,

NS : X ⇒ X ∗, NS(x) :=
{

{x∗ ∈ X ∗ : 〈x∗, x̃ − x〉 � 0 ∀x̃ ∈ S}, if x ∈ S,

∅, otherwise,

is called the normal cone of the set S. When S is a linear subspace, then for all x ∈ S,

NS(x) = {x∗ ∈ X ∗ : 〈x∗, x̃〉 = 0 ∀x̃ ∈ S} = S⊥,

the latter denoting the orthogonal space of S.
An important role in the following will be played by the notion of conjugate functional.

Definition 3.1. The conjugate functional of P : X −→ R ∪ {+∞} is P∗ : X ∗ −→ R ∪ {±∞}
defined as

P∗(x∗) := sup
x∈X

{〈x∗, x〉 − P(x)}, x∗ ∈ X ∗.

The conjugate of P is convex and weak∗ lower semicontinuous and in the case P is proper,
convex and lower semicontinuous, P∗ takes values in R∪{+∞}, being proper. More than that,
according to the theorem of Fenchel–Moreau (see, for instance, [30, theorem 2.3.3]), one has
under these hypotheses that P(x) = P∗∗(x) for all x ∈ X , where

P∗∗ : X −→ R ∪ {±∞}, P∗∗(x) := sup
x∗∈X ∗

{〈x∗, x〉 − P∗(x∗)}, x ∈ X ,

represents the biconjugate functional of P. As an immediate consequence of the definition, the
following holds.

Lemma 3.1. For arbitrary x ∈ X and x∗ ∈ X ∗, we have the so-called Young–Fenchel
inequality, i.e.

〈x∗, x〉 � P(x) + P∗(x∗).
Moreover, equality holds, i.e.

〈x∗, x〉 = P(x) + P∗(x∗)
if and only if x∗ ∈ ∂P(x).
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The following result is of interest too (see [30, theorems 2.4.2 and 2.4.4]).

Proposition 3.1. Let P : X −→ R ∪ {+∞} be given.

(i) It holds: x∗ ∈ ∂P(x) ⇒ x ∈ ∂P∗(x∗).
(ii) If P is proper, convex and lower semicontinuous, then

x∗ ∈ ∂P(x) ⇔ x ∈ ∂P∗(x∗).

According to statement (ii) of the above result, whenever P is proper, convex and lower
semicontinuous, one has that (∂P)−1 = ∂P∗. Hence, an appropriate choice for P is a proper,
convex and lower semicontinuous functional having as subdifferential of its conjugate a single-
valued operator. This is obviously the case when P∗ is Gâteaux differentiable, a property
which is definitively fulfilled for the class of functionals which we introduce in the following
[30, section 3.5].

Definition 3.2. Let s � 2. The functional P : X −→ R ∪ {+∞} is called s-convex if there
exists a constant Gs > 0 such that for ρ : R+ −→ R+, ρ(t) := Gs

s ts, one has

P ((1 − λ)x + λx̃) + λ(1 − λ)ρ(‖x − x̃‖) � (1 − λ)P(x) + λP(x̃)

for all x, x̃ ∈ X and all λ ∈ (0, 1).

The following characterization of s-convex functionals is taken from [30, corollary 3.5.11].

Theorem 3.1. Let P : X −→ R ∪ {+∞} be a proper, convex and lower semicontinuous
functional and 1 < s∗ � 2 � s < +∞ with (s∗)−1 + s−1 = 1. Then the following statements
are equivalent:

(i) P is s-convex;
(ii) there exists C1 > 0 such that for all x ∈ D(∂P), x∗ ∈ ∂P(x) and all x̃ ∈ X , we have

P(x̃) − P(x) − 〈x∗, x̃ − x〉 � C1

s
‖x̃ − x‖s;

(iii) there exists C2 > 0 such that for all x ∈ D(∂P), x∗ ∈ ∂P(x) and all x̃∗ ∈ X , we have

P∗(x̃∗) − P∗(x∗) − 〈x, x̃∗ − x∗〉 � C1−s∗
2

s∗ ‖x̃∗ − x∗‖s∗ ; (3)

(iv) dom P∗ = X ∗, P∗ is Fréchet differentiable on X ∗ and there exists C3 > 0 such that

‖∇P∗(x̃∗) − ∇P∗(x∗)‖ � C1−s∗
3 ‖x̃∗ − x∗‖s∗−1 (4)

for all x∗, x̃∗ ∈ X ∗.

Remark 3.1. If P is s-convex with ρ : R+ −→ R+, ρ(t) := Gs
s ts in definition 3.2, where

Gs > 0, then one can take in the previous result C1 = C2 := Gs and C3 := 2Gs
s .

Example 3.1. Assume that X is an s-convex space for some s ∈ [2,+∞). Then P : X −→ R,
P(x) := 1

s ‖x‖s is a proper, lower semicontinuous and s-convex functional and for all x∗ ∈ X ∗

one has P∗(x∗) = 1
s∗ ‖x∗‖s∗

, where s−1 + (s∗)−1 = 1. These types of penalty functionals
P were considered in [15]. We also note that Lq-spaces, 1 < q < +∞, are s-convex with
s = max{q, 2}.

5
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4. Choice of the step-size parameter and the algorithm

Before we present the algorithm in detail, we summarize the basic assumptions which we will
consider in the subsequent analysis.

(A1) Y is a smooth space.
(A2) X is a reflexive Banach space.
(A3) The functional P : X −→ R ∪ {+∞} is proper, lower semicontinuous and s-convex

(with ρ : R+ −→ R+, ρ(t) = Gs
s ts) for some exponent 2 � s < +∞.

(A4) There exists a solution x† ∈ dom P of equation (1), i.e. A x† = y holds.

Due to theorem 3.1, one has that for all x∗ ∈ X ∗, (∂P)−1(x∗) = ∂P∗(x∗) = {∇P∗(x∗)}
and thus the specific choice of G := (∂P)−1 = ∇P∗ from (2) provides a single-valued operator
on its domain, which in this case is the whole space X ∗. This means that, in each iteration
n � 0 of the regularization scheme, the element

xδ
n+1 := ∇P∗(x∗

n − μnφ
∗
n )

is well defined for arbitrary choices μn ∈ R and, according to proposition 3.1(ii), it holds

x∗
n − μnφ

∗
n ∈ ∂P

(
xδ

n+1

);
thus, xδ

n+1 ∈ D(∂P).
We now introduce Bregman distances, which have become a standard tool for the

convergence analysis in Banach spaces.

Definition 4.1. For given x∗ ∈ R(∂P), we define the Bregman distance 	P
x∗ : X ×

(∂P)−1(x∗) −→ [0,+∞] as being

	P
x∗ (x̃, x) := P(x̃) − P(x) − 〈x∗, x̃ − x〉.

Using proposition 3.1(ii) one has for all x̃ ∈ X and all x ∈ (∂P)−1(x∗) that

	P
x∗ (x̃, x) = P(x̃) + P∗(x∗) − 〈x∗, x̃〉.

Furthermore, for δ > 0 and n � 0, let the nth iterate xδ
n := ∇P∗(x∗

n) be given. As given above,
one has x∗

n ∈ ∂P
(
xδ

n

)
. We introduce the notation

	n := 	P
x∗

n

(
x†, xδ

n

) = P(x†) + P∗(x∗
n) − 〈x∗

n, x†〉 (5)

and, for μ > 0,

	μ := 	P
x∗

n−μ φ∗
n
(x†,∇P∗(x∗

n − μφ∗
n )) = P(x†) + P∗(x∗

n − μφ∗
n ) − 〈x∗

n − μφ∗
n , x†〉. (6)

In order to determine a proper step size μn > 0, we make the following evaluation:

	μ − 	n = P∗(x∗
n − μφ∗

n ) − P∗(x∗
n) + μ〈φ∗

n , x† − xδ
n + xδ

n〉
= P∗(x∗

n − μφ∗
n ) − P∗(x∗

n) + μ
〈
Jp

(
Axδ

n − yδ
)
, y − yδ + yδ − Axδ

n

〉 + μ〈φ∗
n , xδ

n〉
� P∗(x∗

n − μφ∗
n ) − P∗(x∗

n) − μ
(‖Axδ

n − yδ‖p − ‖Axδ
n − yδ‖p−1δ

) + μ〈φ∗
n , xδ

n〉.
The term on the right-hand side of the above inequality can be seen as a function of μ. Hence,
a natural choice for the step size μn would be to take it as the minimum of the function

fn : R+ −→ R ∪ {+∞}, fn(μ) := P∗(x∗
n − μφ∗

n ) − μCδ
n + μ〈φ∗

n , xδ
n〉, (7)

in the case this exists, where

Cδ
n := ∥∥Axδ

n − yδ
∥∥p − ‖Axδ

n − yδ‖p−1δ.

We refer the reader to section 6 for more details with respect to this idea.

6
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On the other hand, we consider here a further estimate of 	μ − 	n by utilizing the
s-convexity of P. More precisely, from theorem 3.1 we get

	μ − 	n � P∗(x∗
n − μφ∗

n ) − P∗(x∗
n) − μCδ

n + 〈
μφ∗

n , xδ
n

〉
� − μCδ

n + G1−s∗
s

s∗ ‖φ∗
n‖s∗

μs∗
.

We further assume that Cδ
n > 0 and φ∗

n �= 0 and consider the following upper bound of
G1−s∗

s ‖φ∗
n‖s∗

:

Ĉδ
n := max

{
G1−s∗

s ‖φ∗
n‖s∗

,Cδ
nμ̄

1
1−s ‖Axδ

n − yδ‖ p−s
s−1

}
> 0,

where μ̄ ∈ (0,+∞] represents an a priori given upper bound for the step size. Hence, we get
the following estimate:

	μ − 	n � −μCδ
n + μs∗

s∗ Ĉδ
n,

while the step size we choose will be the unique minimizer of the function

gn : R+ −→ R, gn(μ) := −μCδ
n + μs∗

s∗ Ĉδ
n.

This follows by an easy calculation and has the following formulation:

μn =
(

Cδ
n

Ĉδ
n

)s−1

= min

{(
Cδ

n

G1−s∗
s ‖φ∗

n‖s∗

)s−1

,
(
μ̄

1
s−1 ‖Axδ

n − yδ‖ s−p
s−1

)s−1

}

= min

{(
Cδ

n

)s−1
Gs

‖φ∗
n‖s

, μ̄‖Axδ
n − yδ‖s−p

}
.

Hence, by denoting 	n+1 := 	μn , it holds

	n+1 − 	n = 	μn − 	n � −1

s

(
Cδ

n

)s

(
Ĉδ

n

)s−1 < 0. (8)

Let us now present the algorithm under consideration in detail.

Algorithm 4.1.

(S0) Initialization: choose the starting point x∗
0 ∈ X ∗, x0 = xδ

0 := ∇P∗(x∗
0), an upper bound

μ̄ ∈ (0,∞] and a parameter τ > 1. Set n := 0.
(S1) STOP: if for δ > 0 the discrepancy criterion

∥∥A xδ
n − yδ

∥∥ � τ δ is fulfilled or we have
A xn = y for δ = 0.

(S2) Calculate

φ∗
n := A�Jp

(
Axδ

n − yδ
);

Cδ
n := ∥∥Axδ

n − yδ
∥∥p−1(∥∥Axδ

n − yδ
∥∥ − δ

);
μn := min

{(
Cδ

n

)s−1
Gs

‖φ∗
n‖s

, μ̄
∥∥Axδ

n − yδ
∥∥s−p

}
.

(S3) Calculate the new iterate

x∗
n+1 := x∗

n − μnφ
∗
n ;

xδ
n+1 := ∇P∗(x∗

n+1).

Set n := n + 1 and go to step (S1).

7
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Remark 4.1. One can note that, if for n � 0 the stopping criterion ‖A xδ
n − yδ‖ � τ δ for δ > 0

and A xn = y for δ = 0 is not fulfilled, then we have Cδ
n > 0. Furthermore, we can choose τ

arbitrarily close to 1. Moreover, it holds φ∗
n �= 0. Indeed, assuming the contrary, one would

have that xδ
n ∈ argmin 1

p‖A(·) − yδ‖p = argmin‖A(·) − yδ‖. Thus,∥∥Axδ
n − yδ

∥∥ � ‖Ax† − yδ‖ = ‖y − yδ‖ � δ,

which contradicts the fact that
∥∥A xδ

n − yδ
∥∥ > τ δ. Consequently, algorithm 4.1 is well defined.

Furthermore, for δ > 0, we denote by N(δ, yδ ) the index on which the iteration process
stops, namely ∥∥Axδ

N(δ,yδ ) − yδ
∥∥ � τδ <

∥∥Axδ
n − yδ

∥∥ for 0 � n < N(δ, yδ ).

The existence of such an index, whenever δ > 0, will be shown in the following.
One can also note that according to (8) whenever 0 < N(δ, yδ ), one has for all

0 � n < N(δ, yδ ) that

	P
x∗

n+1

(
x†, xδ

n+1

) − 	P
x∗

n

(
x†, xδ

n

) = 	n+1 − 	n < 0;
hence,

	P
x∗

n+1

(
x†, xδ

n+1

)
< 	P

x∗
n

(
x†, xδ

n

)
.

We want to emphasize that this result holds for the arbitrary solution x† of equation (1).
The proof of the following preliminary result follows on the lines of the one given for

[15, lemma 4.1].

Lemma 4.1. Assume that (A1)–(A4) are fulfilled and that for δ > 0 algorithm 4.1 stops with
index N(δ, yδ ) > 0. Then, for all 0 � n < N(δ, yδ ), the following statements are true.

(i) If δ > 0, then

μn ∈
[

min

{
(1 − τ−1)s−1Gs

‖A‖s
, μ̄

}
, μ̄

] ∥∥Axδ
n − yδ

∥∥s−p

and

−gn(μn) � 1 − τ−1

s
μn

∥∥Axδ
n − yδ

∥∥p

� 1 − τ−1

s
min

{
(1 − τ−1)s−1Gs

‖A‖s
, μ̄

} ∥∥Axδ
n − yδ

∥∥s
.

(ii) If δ = 0, then

μn ∈
[

min

{
Gs

‖A‖s
, μ̄

}
, μ̄

]
‖Axn − y‖s−p

and

−gn(μn) = 1

s
μn‖Axn − y‖p � 1

s
min

{
Gs

‖A‖s
, μ̄

}
‖Axn − y‖s.

We apply these results for proving the following.

Lemma 4.2. Assume that (A1)–(A4) are fulfilled, let x∗
0 ∈ X ∗ be the starting point of

algorithm 4.1 and let
{
xδ

n

}
n�0 be the sequence generated by it, for δ � 0. The following

assertions are true.

8
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(i) For δ > 0, the algorithm stops after a finite number N(δ, yδ ) of iterations and there exists
a constant C > 0 (not depending on δ) such that

N(δ, yδ ) � Cδ−s.

If N := N(δ, yδ ) > 0, then there exist constants Cτ , C̃τ > 0 such that

N−1∑
n=0

μn

∥∥Axδ
n − yδ

∥∥p � Cτ	
P
x∗

0

(
x†, xδ

0

)
and

N−1∑
n=0

‖Axδ
n − yδ‖s � C̃τ	

P
x∗

0

(
x†, xδ

0

)
.

(ii) For δ = 0, denoting by N := N(0, y) the index where algorithm 4.1 stops (the value
N = +∞ is here also allowed), if N > 0, there exist constants C0, C̃0 > 0 such that

N−1∑
n=0

μn‖Axn − y‖p � C0	
P
x∗

0
(x†, x0) and

N−1∑
n=0

‖Axn − y‖s � C̃0	
P
x∗

0
(x†, x0).

Proof.

(i) Let δ > 0. Assuming that algorithm 4.1 does not stop after a finite number of iterations,
one has, for all k > 0,

	P
x∗

0

(
x†, xδ

0

)
� 	P

x∗
0

(
x†, xδ

0

) − 	P
x∗

k

(
x†, xδ

k

)
=

k−1∑
n=0

(
	P

x∗
n

(
x†, xδ

n

) − 	P
x∗

n+1

(
x†, xδ

n+1

))
� −

k−1∑
n=0

gn(μn). (9)

Using lemma 4.1(i), one further gets, for all k > 0,

	P
x∗

0

(
x†, xδ

0

)
� 1 − τ−1

s
min

{
(1 − τ−1)s−1Gs

‖A‖s
, μ̄

}
kτ sδs,

which leads to a contradiction. Hence, N(δ, yδ ) exists; it is finite and, for

C :=
	P

x∗
0

(
x†, xδ

0

)
1−τ−1

s min
{

(1−τ−1)s−1Gs

‖A‖s , μ̄
}
τ s

,

the inequality N(δ, yδ ) � C δ−s is fulfilled. Assuming that N = N(δ, yδ ) > 0, from (9)
and lemma 4.1(i), one also has

	P
x∗

0

(
x†, xδ

0

)
� −

N−1∑
n=0

gn(μn) � 1 − τ−1

s

N−1∑
n=0

μn

∥∥Axδ
n − yδ

∥∥p

and

	P
x∗

0

(
x†, xδ

0

)
� −

N−1∑
n=0

gn(μn)

� 1 − τ−1

s

N−1∑
n=0

min

{
(1 − τ−1)s−1Gs

‖A‖s
, μ̄

}∥∥Axδ
n − yδ

∥∥s
,

which proves assertion (i).

9
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(ii) Let δ = 0. In analogy to (9), one has, for all k > 0,

	P
x∗

0
(x†, x0) � −

k−1∑
n=0

gn(μn)

and, via lemma 4.1(ii), we further have

	P
x∗

0
(x†, x0) � 1

s

k−1∑
n=0

μn‖Axn − y‖p

and

	P
x∗

0
(x†, x0) � 1

s
min

{
Gs

‖A‖s
, μ̄

} k−1∑
n=0

μn‖Axn − y‖s.

From here the conclusion follows if both a finite stopping index N = N(0, y) exists and
if the algorithm does not stop. �

Remark 4.2. Whenever in the previous result one has for δ � 0 that N(δ, yδ ) > 0, it holds that
	P

x∗
0
(x†, xδ

0) > 0. Indeed, otherwise one would have that x∗
0 ∈ ∂P(x†) ⇔ x† = ∇P∗(x∗

0) = xδ
0.

In this case, for δ > 0, the discrepancy criterion
∥∥A xδ

0 −yδ
∥∥ � τδ would be fulfilled, while for

δ = 0 it would hold A x0 = y. Hence, the algorithm would stop in both cases with N(δ, yδ ) = 0.

5. Convergence results

We discuss the convergence properties of the algorithm and start with the noiseless case
δ = 0. We omit giving the proof of the following result, as it follows in analogy to the one of
theorem 5.1 in [15], by decisively using the s-convexity of the penalty functional P and the
statements in lemma 4.1(ii).

Theorem 5.1. Assume that (A1)–(A4) are fulfilled and let δ = 0. Then algorithm 4.1 stops
either after a finite number N := N(0, y) of iterations with xN satisfying A xN = y or the
sequence {xn}n�0 converges to a solution of (1).

Next we give a characterization of the limit point of the sequence {xn}n�0 generated by
algorithm 4.1 when δ = 0 in the case it does not stop after a finite number of iterations. In
the following result, N (A) := {x ∈ X : Ax = 0} denotes the kernel of the linear continuous
operator A.

Theorem 5.2. Assume that (A1)–(A4) are fulfilled, take x∗
0 ∈ X ∗ and x0 := ∇P∗(x∗

0) ∈ X .

(i) The minimization problem

inf 	P
x∗

0
(x, x0) subject to A x = y (10)

has a unique optimal solution x̄ which fulfills, if int(dom P) ∩ {x ∈ X : A x = y} �= ∅,

x∗
0 ∈ ∂P(x̄) + N (A)⊥. (11)

(ii) If, for δ = 0, algorithm 4.1 having as a starting point x∗
0 ∈ X ∗ does not stop after a finite

number of iterations and the sequence {xn}n�0 generated by it converges to an element
belonging to int(dom P), then this limit is nothing else than the unique optimal solution
of (10).

10
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Proof.

(i) Denote by γ := inf{	P
x∗

0
(x, x0) : A x = y} ∈ [0,+∞). Then for all k � 1 there exists

zk ∈ X such that A zk = y and

γ � 	P
x∗

0
(zk, x0) < γ + 1

k
.

By theorem 3.1 one has that Gs
s ‖zk − x0‖s � γ + 1 for all k � 1; thus, {zk}k�1 is bounded.

Then there exists a subsequence {zkl }l�1 which converges to x̄ ∈ X in the weak topology
of X and, since A−1({y}) := {x ∈ X : A x = y} is convex and (weakly) closed, it follows
that A x̄ = y. Using the (weak) lower semicontinuity of P, it holds

γ � lim inf
l→+∞

	P
x∗

0
(zkl , x0)

= lim inf
l→+∞

(P(zkl ) − P(x0) − 〈x∗
0, zkl − x0〉)

� P(x̄) − P(x0) − 〈x∗
0, x̄ − x0〉 = 	P

x∗
0
(x̄, x0) � γ ,

which means that x̄ is an optimal solution of (10). The uniqueness of x̄ follows from the
s-convexity of P. Thus,

0 ∈ ∂
(
	P

x∗
0
(·, x0) + δA−1({y})

)
(x̄).

Since int(dom 	P
x∗

0
(·, x0)) ∩ A−1({y}) = int(dom P) ∩ A−1({y}) �= ∅, by [5, theorem 7.5],

one has, equivalently, that

0 ∈ ∂	P
x∗

0
(·, x0)(x̄) + NA−1({y})(x̄) = ∂P(x̄) − x∗

0 + NA−1({y})(x̄),

which is further equivalent to

x∗
0 ∈ ∂P(x̄) + NA−1({y})(x̄).

For the normal cone NA−1({y})(x̄), we have the following representation:

NA−1({y})(x̄) = Nx̄+N (A)(x̄) = {x∗ ∈ X ∗ : 〈x∗, z〉 � 0, ∀z ∈ N (A)} = N (A)⊥

and in this way relation (11), namely

x∗
0 ∈ ∂P(x̄) + N (A)⊥

follows. We proved actually more, namely that x̄ ∈ dom P ∩ A−1({y}) is an optimal
solution of (10) if and only if (11) holds.

(ii) Let x̃ ∈ int(dom P) such that A x̃ = y and xn → x̃ as n → +∞. According to
algorithm 4.1, one has for all n � 0 that x∗

n − x∗
0 ∈ R(A∗) and xn = ∇P∗(x∗

n), which
is equivalent to x∗

n ∈ ∂P(xn). Since x̃ ∈ int(dom P), one has that ∂P is locally bounded
in x̃ (see [22]) and this means that {x∗

n}n�0 is bounded. Thus, there exists a subsequence
{x∗

nl
}l�0, which converges to an element x̃∗ ∈ X ∗ in the weak∗ topology of X ∗. As

∂P is norm-to-weak∗ upper semicontinuous at x̃ (see [22]), it holds x̃∗ ∈ ∂P(x̃). Thus,
x̃∗ − x∗

0 ∈ R(A∗)
w∗

= N (A)⊥, which implies that x∗
0 ∈ ∂P(x̃) + N (A)⊥. According to

the proof of item (i), x̃ is the unique optimal solution of (10). �

In order to show that algorithm 4.1 describes in fact a regularization method we replace
the smoothness assumption on Y by the following stronger one:

(A1′) The space Y is uniformly smooth.

Then we can prove the following.

11
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Theorem 5.3. Assume that (A1′), (A2)–(A4) are fulfilled and that, for δ = 0, algorithm 4.1
does not stop after a finite number of iterations and the sequence {xn}n�0 generated by it
converges to x̄ ∈ int(dom P). If {xδ

n}n�0 is the sequence generated by algorithm 4.1 for δ > 0,
then it holds xδ

N(δ,yδ )
→ x̄ as δ → 0.

Proof. We change the notation and write x∗δ

n for the iterates inX ∗ when working with noisy data
yδ and x∗

n when working with exact data y. Since Jp is norm-to-norm uniformly continuous on
bounded subsets of Y , one can see that for all n � 0, as the step size μn depends continuously
on δ (see (S2) in algorithm 4.1), xδ

n → xn and x∗δ

n → x∗
n as δ → 0. By assumptions, one has

that N(δ, yδ ) → +∞ as δ → 0. Let n � 0 be a fixed index. Then for all δ > 0 such that
n < N(δ, yδ ), one has, by theorem 3.1, that

Gs

s

∥∥x̄ − xδ
N(δ,yδ )

∥∥s � 	P
x∗δ

N(δ,yδ )

(
x̄, xδ

N(δ,yδ )

)
< 	P

x∗δ
n

(
x̄, xδ

n

) = P(x̄) − P
(
xδ

n

) − 〈
x∗δ

n , x̄ − xδ
n

〉
.

Let δ → 0 and, so

lim sup
δ→0

Gs

s

∥∥x̄ − xδ
N(δ,yδ )

∥∥s � P(x̄) − P(xn) − 〈x∗
n, x̄ − xn〉. (12)

Thus, (12) holds for all n � 0. Furthermore, as x̄ ∈ int(dom P) and ∂P is locally bounded and
norm-to-weak∗ upper semicontinuous at x̄, there exists a subsequence {x∗

nl
}l�0 converging to

x̄∗ in the weak∗ topology of X ∗ such that x̄∗ ∈ ∂P(x̄). Thus, due to (12), for all l � 0,

lim sup
δ→0

Gs

s

∥∥x̄ − xδ
N(δ,yδ )

∥∥s � P(x̄) − P(xnl ) − 〈x∗
nl
, x̄ − xnl 〉.

We let l converge to +∞ which leads to

lim sup
δ→0

Gs

s

∥∥x̄ − xδ
N(δ,yδ )

∥∥s � 0.

Consequently, xδ
N(δ,yδ )

→ x̄ as δ → 0. This concludes the proof. �

Example 5.1. Assume that (A1) is fulfilled, X is an s-convex space for some 1 < s < +∞ and
(1) has a solution. Then P : X −→ R, P(x) := 1

s ‖x − x�‖s for x� ∈ X an a priori guess fulfills
(A2). For all x∗ ∈ X ∗ it holds ∇P∗(x∗) = x� + JX

∗
s∗ (x∗), where JX

∗
s∗ : X ∗ −→ X denotes the

corresponding duality mapping with the gauge function t �→ ts∗−1 and s−1 + (s∗)−1 = 1. We
set x∗

0 := 0. Then x0 = x� and

	P
x∗

0
(x, x0) = P(x) − P(x0) − 〈x∗

0, x − x0〉 = P(x) = 1

s
‖x − x�‖s.

Hence, for δ = 0, for this choice of the penalty functional the sequence {xn}n�0 converges to
the x�-minimum-norm solution of equation (1), provided the algorithm does not stop after a
finite number of iterations.

6. On an accelerated approach

In this section, we shortly discuss an accelerated version of algorithm 4.1, for which the choice
of the step size is done by minimizing on a certain interval the function fn : R+ −→ R,

fn(μ) := P∗(x∗
n − μφ∗

n ) − μCδ
n + μ〈x∗

n, xδ
n〉,

already introduced in (7). This gives the rise to the following algorithm.

12
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Algorithm 6.1.

(S0) Initialization: choose the starting point x∗
0 ∈ X ∗, x0 = xδ

0 := ∇P∗(x∗
0), an upper bound

μ̄ ∈ (0,+∞) and a parameter τ > 1. Set n := 0.
(S1) STOP: when δ > 0, if the discrepancy criterion

∥∥A xδ
n − yδ

∥∥ � τ δ is fulfilled or, when
δ = 0, if A xn = y.

(S2) Calculate

φ∗
n := A�Jp(Axδ

n − yδ );
Cδ

n := ‖Axδ
n − yδ‖p−1

(‖Axδ
n − yδ‖ − δ

) ;
μ̄n := μ̄‖Axδ

n − yδ‖s−p.

(S3) If f ′
n(μ̄n) < 0, set μn := μ̄n. Otherwise, take μn as being the greatest μ ∈ (0, μ̄n] such

that f ′
n(μ) = 0.

(S4) Calculate the new iterate

x∗
n+1 := x∗

n − μnφ
∗
n ;

xδ
n+1 := ∇P∗(x∗

n+1).

Set n := n + 1 and go to step (S1).

Remark 6.1. Assuming that (A1)–(A4) are fulfilled, according to remark 4.1, if for n � 0
algorithm 6.1 does not stop, then Cδ

n > 0 and φ∗
n �= 0. For all μ ∈ R, it holds

f ′
n(μ) = −〈φ∗

n ,∇P∗(x∗
n − μφ∗

n ) − xδ
n〉 − Cδ

n

and, so f ′
n(0) = −Cδ

n < 0. Due to the fact that ∇P∗ is Lipschitz continuous, f ′
n is continuous

and one can easily see that f ′
n is increasing on [0,+∞). Consequently, in (S3), μn is taken as

a minimizer of fn on [0, μ̄n]. It is worthwhile to note that, when f ′
n(μ̄n) � 0, the function can

have more than one minimum on this interval.

By denoting with μ̃n the minimizer of gn on [0,+∞), which is in fact the step size
considered in algorithm 4.1, and noting that μ̃n ∈ (0, μ̄n], one has

	P
x∗

n+1

(
x†, xδ

n+1

) − 	P
x∗

n

(
x†, xδ

n

)
� fn(μn) − P∗(x∗

n)

� fn(μ̃n) − P∗(x∗
n) � gn(μ̃n).

Thus, according to lemma 4.2, when δ > 0 the algorithm stops after a finite number of
iterations N(δ, yδ ), which fulfills N(δ, yδ ) � C δ−s for a positive constant C > 0, while in the
case N(δ, yδ ) > 0, there exists a constant C̃τ such that

N(δ,yδ )∑
n=0

∥∥Axδ
n − yδ

∥∥s � C̃τ	
P
x∗

0

(
x†, xδ

0

)
.

When δ = 0, denoting by N := N(0, y) the index where algorithm 6.1 stops (the value
N = +∞ is here also allowed), in the case N > 0, there exists a constant C̃0 > 0 such that

N−1∑
n=0

‖Axn − y‖s � C̃0	
P
x∗

0
(x†, x0).

Due to this fact, theorems 5.1 and 5.2 remain valid for algorithm 6.1, too. Unfortunately, we
are not aware if this applies also for theorem 5.3, as the continuous dependence of the step
size μn considered in algorithm 6.1 on δ is at this moment an open question.

13
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7. Applications and numerical results

Taking a closer look at algorithm 4.1, one can see that for δ � 0 the determination in step (S3)
of xδ

n+1 via

xδ
n+1 := ∇P∗(x∗

n+1), (13)

for n � 0, implies knowledge of the conjugate functional P∗ and of its Gâteaux gradient ∇P∗.
Alternatively, one can try to calculate xδ

n+1 as follows. One has

xδ
n+1 = ∇P∗(x∗

n+1) ⇔ x∗
n+1 ∈ ∂P

(
xδ

n+1

)
⇔ 0 ∈ ∂(P − 〈x∗

n+1, ·〉)
(
xδ

n+1

)
⇔ xδ

n+1 = arg min{P(x) − 〈x∗
n+1, x〉}.

Thus, xδ
n+1 can be determined as the unique minimizer of the functional

x �→ P(x) − 〈x∗
n+1, x〉 = P(x) − 〈x∗

n, x〉 + μn〈φ∗
n , x〉.

Remark 7.1. Assume δ = 0. By considering the finite-dimensional setting X = R
m and

Y = R
k with m > k, and constant step size μn ≡ 1, the determination of xn+1 as the unique

minimizer of

x �→ P(x) − 〈x∗
n+1, x〉 + 1

2α
‖x − xn‖2

for α > 0 (see for instance [29] and the references therein) gives rise to the so-called linearized
Bregman method for solving the constraint minimization problem:

inf P(x) subject to Ax = y.

For a more involved version of this, we refer to [28], where an additional control of the step
size μn was applied.

We consider next two examples which are of interest in the field of application of
regularization approaches.

7.1. Sparse reconstruction

For  ⊂ R
d a bounded domain and X := L2() one can consider as penalty functional

Pβ : L2() −→ R,

Pβ (x) := ‖x‖L1() + 1

2β
‖x‖2

L2()
, (14)

where β > 0. Obviously, Pβ is 2-convex with G2 = β−1. As given above, for x∗ ∈ L2() one
has that

∇P∗
β (x∗) = arg min

x∈L2()

{
‖x‖L1() + 1

2β
‖x‖2

L2()
− 〈x∗, x〉

}

= arg min
x∈L2()

{
β‖x‖L1() + 1

2
‖x − βx∗‖2

L2()

}

=
⎧⎨
⎩

β(x∗(t) − 1), if x∗(t) > 1
0, if |x∗(t)| � 1
β(x∗(t) + 1), if x∗(t) < −1

a.e. on .

The operator ∇P∗
β is a version of the so-called soft-threshold (shrinkage) operator, which has

been applied in several fields for sparse reconstruction.

14
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Remark 7.2. Assuming additionally that Y is a Hilbert space, via

xδ
n+1 := ∇P∗

β

(
1

β

(
xδ

n − A∗(Axδ
n − yδ

)))
,

one introduces the so-called iterative soft-threshold algorithm (see [11]), which is widely used
in sparse reconstruction for minimizing the Tikhonov functional:

T δ
β (x) := 1

2‖Ax − yδ‖2 + β‖x‖L1().

This corresponds to step (S3) in algorithm 4.1, by identifying x∗
n with xδ

n and by taking as step
size μn ≡ 1, for n � 0. The sequence {xδ

n}n�0 converges to a minimizer xδ
α of T δ

α , even if the
constant step size provides slow convergence for this algorithm.

The above remark points out the following: instead of minimizing a Tikhonov functional
several times for different regularization parameters α > 0, we suggest here an iterative
regularization scheme with almost the same numerical amount in each iteration step, which
promises faster convergence because of the step size control and for which only one incomplete
minimization is applied. This observation emphasizes the chances of saving numerical costs
by applying the presented iterative regularization approach.

7.2. TV regularization

For  ⊂ R
d a bounded domain we denote by TV : L2() −→ R ∪ {+∞} the extension of

the total variation from BV () (see [2]) to X := L2(), by defining it as being equal to +∞
for x ∈ L2()\BV (). For β > 0, the penalty functional Pβ : L2() −→ R ∪ {+∞},

Pβ (x) := TV (x) + 1

2β
‖x‖2

L2()
, (15)

fits into the framework considered in this paper, being proper, lower semicontinuous and
2-convex with G2 = β−1. As opposed to the previous example, ∇P∗

β here is not explicitly
known. Nevertheless, as given above, one can determine xδ

n+1, for δ � 0 and n � 0 as being

xδ
n+1 = arg min

{
TV (x) + 1

2β
‖x‖2

L2()
− 〈x∗

n+1, x〉
}

,

which is again equivalent to

xδ
n+1 = arg min

{
βTV (x) + 1

2‖x − βx∗
n+1‖2

L2()

}
. (16)

This is the well-known ROF model (see [24]) in image denoising, while for solving this
minimization problem there exists a various number of algorithms, like, for example, the
projected gradient method of [10] and its acceleration FPG [4]. At first glance, it seems not to
be very attractive to apply the minimization (16) in each iteration step. However, first of all,
one can note that the operator A does not occur in this minimization problem, which means that
the numerical effort for solving it is not that high. On the other hand, even modern algorithms
such as ISTA (see [11]) and its acceleration FISTA (see [4]) for determining a minimizer of
the Tikhonov functional

T δ
β (x) := βTV (x) + 1

2‖Ax − yδ‖2,

for β > 0, apply a solution of the ROF model (16) in each iteration step.
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Table 1. Reconstruction errors for the sample function x†
1.

β = 1 β = 100 β = 10 000

δrel N(δ, yδ )
‖xδ

N−x†
1‖

‖x†
1‖ N(δ, yδ )

‖xδ
N−x†

1‖
‖x†

1‖ N(δ, yδ )
‖xδ

N−x†
1‖

‖x†
1‖

0.01 759 0.2115 1528 0.1901 134 352 0.4391
10−3 8203 0.0596 12 314 0.0581 260 545 0.0639
10−4 20 217 0.0070 30 803 0.0069 239 080 0.0071

7.3. Numerical results

We shortly recall the situation. Motivated by the above considerations, we set X = Y =
L2(0, 1) and deal with the linear benchmark operator of integration, e.g., A : X −→ Y is
given as

[Ax](t) :=
∫ t

0
x(τ ) dτ, t ∈ [0, 1].

We set p = 2 and apply an equidistant discretization with K = 1000 subintervals. Let
ϕ j = χ(t j−1,t j ), 1 � j � K, with t j := j/K, 0 � j � K, describe the piecewise constant ansatz
functions. Then we approximate

x(t) ≈
K∑

j=1

x jϕ j(t) and y(t) ≈
K∑

j=1

y jϕ j(t), t ∈ [0, 1].

For the discretization of the data y ∈ Y , we can choose the functional values of y ∈ Y at the
right-end points of the K subintervals, i.e. we set y j := y(t j), 1 � j � K. In order to simulate
noisy data we perturb the exact data with random Gaussian noise for different relative noise
levels δrel = 10−4 · · · 10−2.

We consider the sample functions

x†
1(t) :=

⎧⎪⎪⎨
⎪⎪⎩

5, t ∈ [0.25, 0.27],
−3, t ∈ [0.4, 0.45],
4, t ∈ [0.7, 0.73],
0, else.

and x†
2(t) :=

⎧⎨
⎩

3, t ∈ [0.15, 0.3],
−5, t ∈ [0.55, 0.75],
0, else.

In particular, x†
i , i = 1, 2, are chosen such that no discretization error occurs. For the

discrepancy criterion, we set τ := 1.2, and x∗
0 ≡ 0 is taken as the starting point (hence,

we get x0 = xδ
0 = 0 for both situations considered here). The number of iterations was limited

by nmax = 106.
For the approximate determination of x†

1, we apply the penalty Pβ from (14) with different
choices for the parameter β. The needed iteration numbers N(δ, yδ ) as well as the relative error
of the regularized solutions can be found in table 1. In particular, for β = 10 000 the iteration
number is much higher than in the other two cases. This fact is devoted to a phenomenon
called stagnation: even if x∗

n+1 �= x∗
n in each iteration, because of the structure of the shrinkage

operator, it might happen that xδ
n+1 = xδ

n. To avoid such effects a technique called kicking (see
[21]) can be applied, which is not done here. In figure 1, we see the reconstruction of x†

1 on
the interval [0.22, 0.3] for δrel = 10−2 and the different values for the parameter β. Here, the
influence of the choice of β can be described as follows: the larger β, the sharper the zero part
of the function x†

1 to be reconstructed, the price to be paid for it being the larger oscillations
on the non-zero part. This is a well-known effect of the L1-regularization.
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Figure 1. Exact versus regularized solution of x†
1 on the interval [0.22, 0.3].

Table 2. Reconstruction errors for the sample function x†
2.

β = 1 β = 100 β = 10 000

δrel N(δ, yδ )
‖xδ

N−x†
2‖

‖x†
2‖ N(δ, yδ )

‖xδ
N−x†

2‖
‖x†

2‖ N(δ, yδ )
‖xδ

N−x†
2‖

‖x†
2‖

0.01 132 0.1668 213 0.1623 3613 0.1223
10−3 1380 0.0725 1116 0.0714 10 164 0.0559
10−4 19 327 0.0175 10 608 0.0161 25 246 0.0139

We now turn to the second sample function x†
2 and apply the penalty functional Pβ from

(15). Here, for solving the ROF model, the FPG algorithm [4] is applied. Additionally, in order
to save numerical costs, we store the final primal and dual variables inside the FPG algorithm
and use them as (good) initial guess in the next iteration step for solving the new ROF model.
The numerical results for different noise levels δrel and different β are presented in table 2.
Based on the specific structure of x†

2, one can note an increased quality of the reconstructed
solutions with growing β, combined with higher costs for solving the ROF models in the first
iteration steps (this is because x∗

n is multiplied by β and hence it becomes larger when β is
increased). An illustration of this observation is given in figure 2. Here, the reconstruction of
x†

2 on the intervals [0.25, 0.35] and [0.5, 0.6] for δrel = 10−2 depending on β is shown. As we
can see, the identification of the jumps is sharper the larger we choose β.

Summarizing these numerical results, we observe that our iterative regularization method
for specific penalty terms points out the same properties of a solution of equation (1) as when
we apply a Tikhonov regularization strategy with the same penalty functional. Hence, because
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Figure 2. Exact versus regularized solution of x†
2 on [0.25, 0.35] (left) and on [0.5, 0.6] (right).

of the expected less numerical costs, the application of such iterative approaches is quite
promising from the numerical point of view.

8. Summary

Motivated by the chances of reducing numerical costs, we presented an iterative regularization
approach which can be considered as an alternative to Tikhonov regularization with
s-convex penalty terms. Convergence and regularization properties were shown, as well as
some applications in image and sparse reconstruction were provided. Since the presented
algorithm is closely related to well-established methods for minimizing non-smooth Tikhonov
functionals, we understand our presentation also as a motivation for considering the following
question: Whenever an algorithm minimizes a (non-smooth) Tikhonov functional, does this
approach (with possible small modifications) have the potential of being itself an iterative
regularization scheme? The answer to this question seems to be of high interest for further
numerical applications.
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