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Abstract. The aim of this paper is to develop an efficient algorithm for solving a
class of unconstrained nondifferentiable convex optimization problems in finite dimen-
sional spaces. To this end we formulate first its Fenchel dual problem and regularize it
in two steps into a differentiable strongly convex one with Lipschitz continuous gradient.
The doubly regularized dual problem is then solved via a fast gradient method with the
aim of accelerating the resulting convergence scheme. The theoretical results are finally
applied to an l1 regularization problem arising in image processing.
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1 Introduction
In this paper we are interested in solving a specific class of unconstrained convex opti-
mization problems in finite dimensional spaces. Generally, when characterizing optimal-
ity, the convexity allows to make use of powerful results in convex analysis, separation
theorems and the (Fenchel) conjugate theory here included (see [1, 17, 18]). In convex
optimization these are the ingredients for assigning a dual optimization problem via the
perturbation approach to a primal one. When strong duality holds, solving the dual
problem instead is a natural way to obtain an optimal solution to the primal prob-
lem, too. As weak duality is always fulfilled, for guaranteeing strong duality, so-called
regularity conditions are needed (see, for example, [5, 6, 18]).

When considering an unconstrained convex and differentiable minimization problem,
there are already plenty of promising methods available (such as the steepest descent
method, Newton’s method or, in an appropriate setting, fast gradient methods, see [13])
for solving it. However, a lot of situations occur when the objective function of the opti-
mization problem to be solved is nondifferentiable. Therefore, the convex subdifferential
is used instead, not only as a tool for theoretically characterizing optimality, but also as
the counterpart of the gradient in different numerical methods. However, the classical
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methods which solve unconstrained convex and nondifferentiable minimization problems
have a rather slow convergence.

The aim of this paper is to develop in finite dimensional spaces an efficient algorithm
for solving an unconstrained optimization problem having as objective the sum of a con-
vex function with the composition of another convex function with a linear operator. To
this end we are not relying on subgradient schemes, since their complexity can not be
better than O

(
1
ε2

)
iterations, where ε > 0 is the desired accuracy for the objective value

(see [13]). Instead, we show that it is possible to solve the corresponding Fenchel dual
problem efficiently and to reconstruct in this way an approximately optimal solution
to the primal one. To this end we make use of a double smoothing technique, in fact
a generalization of the double smoothing approach employed by Devolder, Glineur and
Nesterov in [10] for a special class of convex constrained optimization problems. This
technique makes use of the structure of the dual problem and assumes the regularization
of its objective function into a differentiable strongly convex one with Lipschitz contin-
uous gradient. The regularized dual is then solved by a fast gradient method and this
gives rise to a sequence of dual variables which solve the non-regularized dual objective
in O

(
1
ε ln

(
1
ε

))
iterations. In addition, the norm of the gradient of the objective of the

regularized dual decreases by the same rate of convergence, a fact which is crucial in
view of reconstructing an approximately optimal solution to the primal optimization
problem.

The algorithm provided in this paper requires two matrix-vector multiplications and
the determination of the proximal mappings of the functions occurring in the primal
objective, however, by treating the linear continuous operator separately, which other-
wise would require expensive operator inversions. This aspect represents an important
distinction compared to the majority of the splitting algorithms, exceptions in this sense
being the primal-dual algorithms recently introduced in [7] and [8]. Even if the determi-
nation of the proximal mappings may be restrictive, for a large class of functions arising
in different applications exact formulae for these are available.

The structure of the paper is the following. In the forthcoming section we introduce
the class of convex optimization problems which we deal with throughout this paper,
provide its Fenchel dual optimization problem and discuss some duality issues. In Sec-
tion 3 we apply the smoothing technique introduced in [14–16] to the dual objective
function in order to make it strongly convex and differentiable with Lipschitz contin-
uous gradient. In Section 4 the regularized dual problem is solved via an efficient fast
gradient method. Additionally, we investigate the convergence of the dual iterates to
an optimal dual solution with a given accuracy and show how to reconstruct from it an
approximately optimal primal solution. Finally, in Section 5, an l1 regularized linear
inverse problem is solved via the presented approach, an application in image processing
is discussed and comparisons with the popular iterative schemes from [7] and [8] are
undertaken.

2 Preliminaries and problem formulation
In the following we are considering the space Rn endowed with the the Euclidean topol-
ogy, i. e. ‖x‖ =

√
〈x, x〉 =

√
xTx for all x ∈ Rn. By 1

n we denote the vector in Rn
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with all entries equal to 1. For a subset C of Rn we denote by clC and riC its closure
and relative interior, respectively. The indicator function of the set C is the function
δC : Rn → R := R∪{±∞} defined by δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise.
For a function f : Rn → R we denote by dom f := {x ∈ Rn : f(x) < +∞} its effective
domain. We call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ Rn. The conjugate
function of f is f∗ : Rn → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ Rn} for all p ∈ Rn. The
biconjugate function of f is f∗∗ : Rn → R, f∗∗(x) = sup {〈x, p〉 − f∗(p) : p ∈ Rn} and,
when f is proper, convex and lower semicontinuous, according to the Fenchel-Moreau
Theorem, one has f = f∗∗. The (convex) subdifferential of the function f at x ∈ Rn
is the set ∂f(x) = {p ∈ Rn : f(y) − f(x) ≥ pT (y − x) ∀y ∈ Rn}, if f(x) ∈ R, and is
taken to be the empty set, otherwise. For a linear operator A : Rn → Rm, the operator
A∗ : Rm → Rn is the adjoint operator of A and is defined by 〈A∗y, x〉 = 〈y,Ax〉 for all
x ∈ Rn and all y ∈ Rm.

For a nonempty, convex and closed set C ⊆ Rn we consider the projection op-
erator PC : Rn → C defined as x 7→ arg minz∈C ‖x− z‖. Having two func-
tions f, g : Rn → R, their infimal convolution is defined by f�g : Rn → R,
(f�g)(x) = infy∈Rn {f(y) + g(x− y)} for all x ∈ Rn. The Moreau envelope of the
function f : Rn → R of parameter γ > 0 is defined as the infimal convolution

γf(x) := f�
( 1

2γ ‖·‖
2
)

(x) = inf
y∈Rn

{
f(y) + 1

2γ ‖x− y‖
2
}
∀x ∈ Rn.

The proximal point of f at x ∈ Rn denotes the unique minimizer of the optimization
problem

inf
y∈Rn

{
f(y) + 1

2 ‖x− y‖
2
}
.

We say that the function f : Rn → R is strongly convex with parameter ρ > 0 if for all
x, y ∈ Rn and all λ ∈ (0, 1) it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− ρ

2λ(1− λ)‖x− y‖2.

In this work we are dealing with optimization problems of the type

(P ) inf
x∈Rn

{f(x) + g(Ax)}, (1)

where f : Rn → R and g : Rm → R are proper, convex and lower semicontinuous
functions and A : Rn → Rm is a linear operator fulfilling A(dom f) ∩ dom g 6= ∅.
Furthermore, we assume that dom f and dom g are bounded.

Remark 1. The assumption that dom f and dom g are bounded can be weakened in
the sense that it is sufficient to assume that dom f is bounded. In this situation, in the
formulation of (P ) the function g can be replaced by g+ δcl(A(dom f)), which is a proper,
convex and lower semicontinuous function with bounded effective domain. For another
iterative method designed for optimization problems which assumes the minimization
of a convex function over a convex and bounded feasible set and relying on the use of
proximal mappings we refer the reader to [12].

On the other hand, one should also notice that the counterparts of the assumptions
considered in [10] in our setting would ask for closedness for the effective domains of
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the functions f and g, too. However, we will be able to employ the double smoothing
technique for (P ) without being obliged to impose this assumption.

According to [5, 6], the Fenchel dual problem to (P ) is nothing else than

(D) sup
p∈Rm

{−f∗(A∗p)− g∗(−p)}, (2)

where f∗ : Rn → R and g∗ : Rm → R denote the conjugate functions of f and g,
respectively. We denote the optimal objective values of the optimization problems (P )
and (D) by v(P ) and v(D), respectively.

The conjugate functions of f and g can be written as

f∗(q) = sup
x∈dom f

{〈q, x〉 − f(x)} = − inf
x∈dom f

{〈−q, x〉+ f(x)} ∀q ∈ Rn

and

g∗(p) = sup
x∈dom g

{〈p, x〉 − g(x)} = − inf
x∈dom g

{〈−p, x〉+ g(x)} ∀p ∈ Rm,

respectively. In the framework considered above, according to [4, Proposition A.8],
the optimization problems arising in the formulation of f∗(q) for all q ∈ Rn and g∗(p)
for all p ∈ Rm are solvable, fact which implies that dom f∗ = Rn and dom g∗ = Rm,
respectively.

By writing the dual problem (D) equivalently as the infimum optimization problem

inf
p∈Rm

{f∗(A∗p) + g∗(−p)},

one can easily see that the Fenchel dual problem of the latter is

sup
x∈Rn
{−f∗∗(x)− g∗∗(Ax)},

which, by the Fenchel-Moreau Theorem, is nothing else than

sup
x∈Rn
{−f(x)− g(Ax)}.

In order to guarantee strong duality for this primal-dual pair it is sufficient to ensure
that (see, for instance, [5]) 0 ∈ ri(A∗(dom g∗) + dom f∗). As f∗ has full domain, this
regularity condition is automatically fulfilled, which means that v(D) = v(P ) and the
primal optimization problem (P ) has an optimal solution. Due to the fact that f and g
are proper and A(dom f) ∩ dom g 6= ∅, this further implies v(D) = v(P ) ∈ R. Later we
will assume that the dual problem (D) has an optimal solution, too, and that an upper
bound of its norm is known.

Denote by θ : Rm → R, θ(p) = f∗(A∗p) + g∗(−p), the objective function of (D).
Hence, the latter can be equivalently written as

(D) − inf
p∈Rm

θ(p). (3)
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Since in general we can neither guarantee the smoothness of p 7→ f∗(A∗p) nor of p 7→
g∗(−p), the dual problem (D) is a nondifferentiable convex optimization problem. Our
goal is to solve this problem efficiently and to obtain from here an optimal solution
to (P ). To this end, we are not relying on subgradient-type schemes, due to their
slow rates of convergence equal to O

(
1
ε2

)
, but we are applying instead some smoothing

techniques introduced in [14–16]. More precisely, we regularize first the functions p 7→
f∗(A∗p) and p 7→ g∗(−p), by taking into account the definitions of the two conjugates,
in order to obtain a smooth approximation of the objective of (3) with a Lipschitz
continuous gradient. Then we solve the regularized dual problem by making use of a fast
gradient method (see [15]) and generate in this way a sequence of dual variables which
approximately solves the problem (D) with a rate of convergence of O

(
1
ε

)
. Since similar

properties cannot be ensured for the primal optimization problem (P ), the solving of
this problem being actually our goal, we apply a second regularization to the objective
function of (3). This will allow us to make use of a fast gradient method for smooth and
strongly convex functions given in [13] for solving the regularized dual, which implicitly
will solve both the dual problem (D) and the primal problem (P ) approximately in
O
(

1
ε ln

(
1
ε

))
iterations.

3 The double smoothing approach

3.1 First smoothing

For a positive real number ρ > 0 the function p 7→ f∗(A∗p) = supx∈Rn {〈A∗p, x〉 − f(x)}
can be approximated by

f∗ρ (A∗p) = sup
x∈Rn

{
〈A∗p, x〉 − f(x)− ρ

2 ‖x‖
2
}
, (4)

while, given µ > 0, the function p 7→ g∗(−p) = supx∈Rn {〈−p, x〉 − g(x)} can be approx-
imated by

g∗µ(−p) = sup
x∈Rm

{
〈−p, x〉 − g(x)− µ

2 ‖x‖
2
}
. (5)

For each p ∈ Rm the maximization problems which occur in the formulations of f∗ρ (A∗p)
and g∗µ(−p) have unique solution (see, for instance, [4, Proposition A.8 and Proposition
B.10]), since their objectives are proper, strongly concave (see [11, Proposition B.1.1.2])
and upper semicontinuous functions.

In order to determine the gradient of the functions p 7→ f∗(A∗p) and p 7→ g∗(−p),
we are going to make use of the Moreau envelope of the functions f and g, respectively.
Indeed, for all p ∈ Rm we have

−f∗ρ (A∗p) = − sup
x∈Rn

{
〈A∗p, x〉 − f(x)− ρ

2 ‖x‖
2
}

= inf
x∈Rn

{
−〈A∗p, x〉+ f(x) + ρ

2 ‖x‖
2
}

= inf
x∈Rn

{
f(x) + ρ

2

∥∥∥∥A∗pρ − x
∥∥∥∥2}
− ‖A

∗p‖2

2ρ =
1
ρ f

(
A∗p

ρ

)
− ‖A

∗p‖2

2ρ .
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As the Moreau envelope is continuously differentiable (see [1, Proposition 12.29]), p 7→
−f∗ρ (A∗p) is continuously differentiable, as well, and it holds for all p ∈ Rm

−∇(f∗ρ ◦A∗)(p) = A

ρ
∇

1
ρ f

(
A∗p

ρ

)
− AA∗p

ρ
=A

ρ

(
ρ

(
A∗p

ρ
− xρ,p

))
− AA∗p

ρ
=−Axρ,p,

which means that

∇(f∗ρ ◦A∗)(p) = Axρ,p,

where xρ,p ∈ Rn is the proximal point of 1
ρf at A∗p

ρ , namely the unique element in Rn
fulfilling

1
ρ f

(
A∗p

ρ

)
= f(xρ,p) + ρ

2

∥∥∥∥A∗pρ − xρ,p
∥∥∥∥2
.

By taking into account the nonexpansiveness of the proximal point mapping (see [1,
Proposition 12.27]), for p, q ∈ Rm it holds∥∥∥∇(f∗ρ ◦A∗)(p)−∇(f∗ρ ◦A∗)(q)

∥∥∥ = ‖Axρ,p −Axρ,q‖ ≤ ‖A‖ ‖xρ,p − xρ,q‖

≤ ‖A‖
∥∥∥∥A∗pρ − A∗q

ρ

∥∥∥∥ ≤ ‖A‖2ρ
‖p− q‖ ,

thus ‖A‖
2

ρ is the Lipschitz constant of p 7→ ∇(f∗ρ ◦A∗)(p).
For the function p 7→ g∗(−p) one can proceed analogously. For all p ∈ Rm one has

−g∗µ(−p) = inf
x∈Rm

{
g(x) + µ

2

∥∥∥∥− pµ − x
∥∥∥∥2
}
− ‖p‖

2

2µ =
1
µ g

(
− p
µ

)
− ‖p‖

2

2µ ,

which is a continuously differentiable function such that

−∇g∗µ(−·)(p) = − 1
µ
∇

1
µ g

(
− p
µ

)
− p

µ
= − 1

µ

(
µ

(
− p
µ
− xµ,p

))
− p

µ
= xµ,p,

thus,

∇g∗µ(−·)(p) = −xµ,p,

where xµ,p ∈ Rm is the proximal point of 1
µg at − p

µ , namely the unique element in Rm
fulfilling

1
µ g

(
− p
µ

)
= g(xµ,p) + µ

2

∥∥∥∥− pµ − xµ,p
∥∥∥∥2
.

For p, q ∈ Rm it holds∥∥∥∇g∗µ(−·)(p)−∇g∗µ(−·)(q)
∥∥∥ = ‖−xµ,p + xµ,q‖ ≤

∥∥∥∥− pµ + q

µ

∥∥∥∥ ≤ 1
µ
‖−p+ q‖ ,

so that 1
µ is the Lipschitz constant of p 7→ ∇g∗µ(−·)(p).
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Remark 2. If f is strongly convex with parameter ρ > 0, there is no need to apply
the first regularization for p 7→ f∗(A∗p), as this function is already differentiable with
a Lipschitz continuous gradient having a Lipschitz constant given by ‖A‖

2

ρ . The same
applies for p 7→ g∗(−p), if g is strongly convex with parameter µ > 0, in this case the
Lipschitz constant of its gradient being given by 1

µ .

The constants Df := sup
{
‖x‖2

2 : x ∈ dom f
}
and Dg := sup

{
‖x‖2

2 : x ∈ dom g
}
will

play an important role in the upcoming convergence schemes. Since dom f and dom g
are bounded, Df and Dg are real numbers.

Proposition 3. For all p ∈ Rm it holds

f∗ρ (A∗p) ≤ f∗(A∗p) ≤ f∗ρ (A∗p) + ρDf and g∗µ(−p) ≤ g∗(−p) ≤ g∗µ(−p) + µDg.

Proof. For p ∈ Rm one has

f∗ρ (A∗p) = 〈A∗p, xρ,p〉 − f(xρ,p)−
ρ

2 ‖xρ,p‖
2 ≤ 〈A∗p, xρ,p〉 − f(xρ,p) ≤ f∗(A∗p)

≤ sup
x∈dom f

{
〈A∗p, x〉 − f(x)− ρ

2 ‖x‖
2
}

+ sup
x∈dom f

{
ρ

2 ‖x‖
2
}

= f∗ρ (A∗p) + ρDf .

The other estimates follow similarly.

For ρ > 0 and µ > 0 let be θρ,µ : Rm → R defined by θρ,µ(p) = f∗ρ (A∗p) + g∗µ(−p).
The function θρ,µ is differentiable with a Lipschitz continuous gradient

∇θρ,µ(p) = ∇(f∗ρ ◦A∗)(p) +∇g∗µ(−·)(p) = Axρ,p − xµ,p

having as Lipschitz constant L(ρ, µ) := ‖A‖2

ρ + 1
µ .

Summing up the inequalities from Proposition 3, we get

θρ,µ(p) ≤ θ(p) ≤ θρ,µ(p) + ρDf + µDg ∀p ∈ Rm. (6)

Further, for p ∈ Rm we have

θρ,µ(p) = f∗ρ (A∗p) + g∗µ(−p)

= 〈p,Axρ,p〉 − f(xρ,p)−
ρ

2 ‖xρ,p‖
2 − 〈p, xµ,p〉 − g(xµ,p)−

µ

2 ‖xµ,p‖
2

and from here

f(xρ,p) + g(xµ,p)− v(D) = 〈p,∇θρ,µ(p)〉+ (−v(D)− θρ,µ(p))− ρ

2 ‖xρ,p‖
2 − µ

2 ‖xµ,p‖
2 .

Thus

|f(xρ,p) + g(xµ,p)− v(D)| ≤ |〈p,∇θρ,µ(p)〉|+ |v(D) + θρ,µ(p)|+ ρDf + µDg. (7)
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Since v(P ) ≥ v(D) (weak duality) and |θρ,µ(p) + v(D)|
(6)
≤ |θ(p) + v(D)|+ρDf+µDg,

we conclude that

f(xρ,p) + g(xµ,p)− v(P ) ≤ |〈p,∇θρ,µ(p)〉|+ |θ(p) + v(D)|+ 2ρDf + 2µDg. (8)

Following the ideas in [10], we further consider for the regularized optimization problem
(for ρ > 0 and µ > 0)

inf
p∈Rm

θρ,µ(p) (9)

the following fast gradient scheme (see [15, scheme (3.11)]):

Init.: Choose w0 ∈ Rm and set k := 0.
For k ≥ 0 : Compute θρ,µ(wk) and ∇θρ,µ(wk).

Find pk = arg min
w∈Rm

{
〈∇θρ,µ(wk), w − wk〉+ L(ρ, µ)

2 ‖w − wk‖2
}
.

Find zk = arg min
w∈Rm

{
L(ρ, µ) ‖w0 − w‖2

+
k∑
i=0

i+ 1
2 [θρ,µ(wi) + 〈∇θρ,µ(wi), w − wi〉]

}
.

Set wk+1 := 2
k + 3zk + k + 1

k + 3pk.

Assuming that p∗S ∈ Rm is an optimal solution of (9), it follows that ∇θρ,µ(p∗S) = 0.
Thus, due to the properties of the above convergence scheme provided in [15], we have

θρ,µ(pk)− θρ,µ(p∗S) ≤ 4L(ρ, µ) ‖p0 − p∗S‖
2

(k + 1)(k + 2) ∀ k ≥ 0. (10)

When p∗ ∈ Rm is an optimal solution to (D), from (6) we get that θρ,µ(pk) ≥ θ(pk) −
ρDf − µDg for all k ≥ 0 and θρ,µ(p∗S) ≤ θρ,µ(p∗) ≤ θ(p∗) = −v(D). Hence, we obtain

θρ,µ(pk)− θρ,µ(p∗S) ≥ θ(pk)− ρDf − µDg + v(D),

which further implies that

θ(pk) + v(D) ≤ θρ,µ(pk)− θρ,µ(p∗S) + ρDf + µDg

(10)
≤ 4L(ρ, µ) ‖p0 − p∗S‖

2

(k + 1)(k + 2) + ρDf + µDg

for all k ≥ 0. Now, in order to guarantee θ(pk) + v(D) ≤ ε, namely that pk is a solution
of the dual problem (D) with ε-accuracy, we can force all three terms in the above
inequality to be less than or equal to ε

3 . By taking

ρ := ρ(ε) = ε

3Df
and µ := µ(ε) = ε

3Dg
,

this means that the amount of iterations k needed in order to satisfy ε-optimality for
the dual iterate depends on the relation

4L(ρ, µ) ‖p0 − p∗S‖
2

(k + 1)(k + 2) ≤ ε

3 .
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Since the Lipschitz constant L(ρ, µ) = ‖A‖2

ρ + 1
µ is of order 1

ε , the rate of convergence
for θ(pk) + v(D) ≤ ε is O

(
1
ε

)
.

Further, according to (8), in order to gain an accuracy for the primal optimization
problem proportional to ε > 0, one has only to ensure that |〈pk,∇θρ,µ(pk)〉| is lower
than or equal to O(ε). However, by [13, Theorem 2.1.5], we have

‖∇θρ,µ(pk)‖2 ≤ 2L(ρ, µ)(θρ,µ(pk)− θρ,µ(p∗S)),

hence, from (10),

‖∇θρ,µ(pk)‖ ≤
2
√

2L(ρ, µ) ‖p0 − p∗S‖√
(k + 1) (k + 2)

∀ k ≥ 0.

This means that the norm of the gradient ∇θρ,µ(pk) decreases with an order being
O
(

1
ε2

)
. In order to achieve for the primal optimization problem an accuracy which is

proportional to ε via the estimation (8), we need k = O
(

1
ε2

)
iterations. This conver-

gence is slow as compared to our aimed rate of convergence of O
(

1
ε ln

(
1
ε

))
and it is

not better than the rate of convergence of the subgradient approach.
From another point of view, in order to get a feasible solution to the primal opti-

mization problem (P ), it is necessary to investigate the distance between Axρ,pk and
xµ,pk , since the functions f and g ◦ A have to share the same argument (which would
be xρ,pk , if ‖∇θρ,µ(pk)‖ = ‖Axρ,pk − xµ,pk‖ = 0). Therefore, the norm of the gradi-
ent ‖∇θρ,µ(pk)‖ is an indicator for an approximately feasible solution. Thus, in order
to obtain an approximately optimal solution to (P ), it is not sufficient to ensure the
convergence for θ(pk) + v(D) to zero, but also a good convergence for the decrease of
‖∇θρ,µ(pk)‖.

3.2 Second smoothing

In the following a second regularization is applied to θρ,µ, as done in [10], in order to
make it strongly convex, fact which will allow us to use a fast gradient scheme with
a better convergence rate for ‖∇θρ,µ‖. Therefore, adding the strongly convex function
κ
2 ‖·‖

2 to θρ,µ for some positive real number κ gives rise to the following regularization
of the objective function

θρ,µ,κ : Rm → R, θρ,µ,κ(p) := θρ,µ(p) + κ

2 ‖p‖
2 = f∗ρ (A∗p) + g∗µ(−p) + κ

2 ‖p‖
2 ,

which is strongly convex with modulus κ > 0 (cf. [11, Proposition B.1.1.2]). We further
deal with the optimization problem

inf
p∈Rm

θρ,µ,κ(p). (11)

By taking into account [4, Proposition A.8 and Proposition B.10], the optimization
problem (11) has an unique element. The function θρ,µ,κ is differentiable and for all
p ∈ Rm it holds

∇θρ,µ,κ(p) = ∇
(
θρ,µ(·) + κ

2 ‖·‖
2
)

(p) = Axρ,p − xµ,p + κp.

This gradient is Lipschitz continuous with constant L(ρ, µ, κ) := ‖A‖2

ρ + 1
µ + κ.

9



4 Solving the doubly regularized dual problem

4.1 An appropriate fast gradient method

Denote by p∗DS the unique optimal solution to optimization problem (11). Further, let
p∗ ∈ Rm be an optimal solution to the dual optimization problem (D) and assume that
the upper bound

‖p∗‖ ≤ R (12)

is available for some nonzero R ∈ R+.
We apply to the doubly regularized dual problem (11) the fast gradient method [13,

Algorithm 2.2.11]

Initialization: Set w0 = p0 := 0 ∈ Rm

For k ≥ 0 : Set pk+1 := wk −
1

L(ρ, µ, κ)∇θρ,µ,κ(wk). (FGM)

Set wk+1 := pk+1 +
√
L(ρ, µ, κ)−

√
κ√

L(ρ, µ, κ) +
√
κ

(pk+1 − pk).

By taking into account [13, Theorem 2.2.3] we obtain a sequence (pk)k≥0 ⊆ Rm satisfying

θρ,µ,κ(pk)− θρ,µ,κ(p∗DS) ≤
(
θρ,µ,κ(0)− θρ,µ,κ(p∗DS) + κ

2 ‖0− p
∗
DS‖

2
)(

1−
√

κ

L(ρ, µ, κ)

)k
≤ (θρ,µ,κ(0)− θρ,µ,κ(pDS∗) + κ

2 ‖p
∗
DS‖

2) e−k
√

κ
L(ρ,µ,κ)

= (θρ,µ(0)− θρ,µ(p∗DS)) e−k
√

κ
L(ρ,µ,κ) ∀k ≥ 0. (13)

Since p∗DS is the unique optimal solution to (11), we have∇θρ,µ,κ(p∗DS) = 0 and therefore
[13, Theorem 2.1.5] yields

‖∇θρ,µ,κ(pk)‖2 ≤ 2L(ρ, µ, κ) (θρ,µ,κ(pk)− θρ,µ,κ(p∗DS))
(13)
≤ 2L(ρ, µ, κ)(θρ,µ(0)− θρ,µ(p∗DS)) e−k

√
κ

L(ρ,µ,κ) ∀k ≥ 0. (14)

Due to the strong convexity of θρ,µ,κ with modulus κ > 0, Theorem 2.1.8 in [13] states

‖pk − p∗DS‖
2 ≤ 2

κ
(θρ,µ,κ(pk)− θρ,µ,κ(p∗DS))

(13)
≤ 2
κ

(θρ,µ(0)− θρ,µ(p∗DS)) e−k
√

κ
L(ρ,µ,κ) ∀k ≥ 0. (15)

We will show in the following that the rates of convergence for the decrease of
‖∇θρ,µ(pk)‖ and θ(pk) + v(D) are the same, namely equal to O

(
1
ε ln

(
1
ε

))
. This will us

allow to efficiently recover approximately optimal solutions to the initial optimization
problem (P ).

10



4.2 Convergence of θ(pk) to −v(D)
Using again [13, Theorem 2.1.8] we obtain

‖p∗DS‖
2 ≤ 2

κ
(θρ,µ,κ(0)− θρ,µ,κ(p∗DS)) = 2

κ

(
θρ,µ(0)− θρ,µ(p∗DS)− κ

2 ‖p
∗
DS‖

2
)
,

which implies that

‖p∗DS‖
2 ≤ 1

κ
(θρ,µ(0)− θρ,µ(p∗DS)) . (16)

On the other hand, in the light of (13) it holds for all k ≥ 0

θρ,µ(pk)− θρ,µ(p∗DS) ≤ (θρ,µ(0)− θρ,µ(p∗DS)) e−k
√

κ
L(ρ,µ,κ) + κ

2
(
‖p∗DS‖

2 − ‖pk‖2
)
. (17)

Investigating the last term in the relation above we get for all k ≥ 0

‖p∗DS‖
2 − ‖pk‖2 = (‖p∗DS‖ − ‖pk‖) (‖p∗DS‖+ ‖pk‖)

≤ ‖p∗DS − pk‖ (‖p∗DS‖+ ‖pk‖)
≤ ‖p∗DS − pk‖ (2 ‖p∗DS‖+ ‖pk − p∗DS‖)
= ‖p∗DS − pk‖

2 + 2 ‖p∗DS‖ ‖p∗DS − pk‖
(15),(16)
≤ 2

κ
(θρ,µ(0)− θρ,µ(p∗DS)) e−k

√
κ

L(ρ,µ,κ)

+2
√

2
κ

(θρ,µ(0)− θρ,µ(p∗DS)) e−
k
2
√

κ
L(ρ,µ,κ)

≤ 2 + 2
√

2
κ

(θρ,µ(0)− θρ,µ(p∗DS)) e−
k
2
√

κ
L(ρ,µ,κ) .

Inserting this estimate into (17), we obtain for all k ≥ 0

θρ,µ(pk)− θρ,µ(p∗DS) ≤ (θρ,µ(0)− θρ,µ(p∗DS))
(
e−k

√
κ

L(ρ,µ,κ) + (1 +
√

2) e−
k
2
√

κ
L(ρ,µ,κ)

)
≤ (2 +

√
2) (θρ,µ(0)− θρ,µ(p∗DS)) e−

k
2
√

κ
L(ρ,µ,κ) . (18)

Further, we have θρ,µ(0)
(6)
≤ θ(0) and

θρ,µ(p∗DS)
(6)
≥ θ(p∗DS)− ρDf − µDg ≥ θ(p∗)− ρDf − µDg,

and, from here,

θρ,µ(0)− θρ,µ(p∗DS) ≤ θ(0)− θ(p∗) + ρDf + µDg. (19)

Additionally, we conclude that

θρ,µ(p∗DS) ≤ θρ,µ(p∗DS) + κ

2 ‖p
∗
DS‖

2 ≤ θρ,µ(p∗) + κ

2 ‖p
∗‖2

(6)
≤ θ(p∗) + κ

2 ‖p
∗‖2

11



and, therefore, for all k ≥ 0

θρ,µ(pk)− θρ,µ(p∗DS)
(6)
≥ θ(pk)− ρDf − µDg − θ(p∗)−

κ

2 ‖p
∗‖2 . (20)

In conclusion, we obtain for all k ≥ 0

θ(pk)− θ(p∗)
(20)
≤ ρDf + µDg + κ

2 ‖p
∗‖2 + θρ,µ(pk)− θρ,µ(p∗DS)

(12),(18)
≤ ρDf + µDg + κ

2R
2 + (2 +

√
2) (θρ,µ(0)− θρ,µ(p∗DS)) e−

k
2
√

κ
L(ρ,µ,κ)

(19)
≤ ρDf + µDg + κ

2R
2

+(2 +
√

2) (θ(0)− θ(p∗) + ρDf + µDg) e
− k2
√

κ
L(ρ,µ,κ) . (21)

Next we fix ε > 0. In order to get θ(pk) + v(D) ≤ ε for a certain amount of iterations
k, we force all four terms in (21) to be less than or equal to ε

4 . Therefore, we choose

ρ := ρ(ε) = ε

4Df
, µ := µ(ε) = ε

4Dg
, κ := κ(ε) = ε

2R2 . (22)

With these new parameters we can simplify (21) to

θ(pk) + v(D) ≤ 3ε
4 + (2 +

√
2)
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) .

As we see, the second term in the expression on the right-hand side of the above estimate
determines the number of iterations which is needed to obtain ε-accuracy for the dual
objective function θ. Indeed, we have

ε

4 ≥ (2 +
√

2)
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ)

⇔ e
k
2
√

κ
L(ρ,µ,κ) ≥ 4(2 +

√
2)

ε

(
θ(0)− θ(p∗) + ε

2

)
⇔ k

2

√
κ

L(ρ, µ, κ) ≥ ln
(

4(2 +
√

2)
(
θ(0)− θ(p∗) + ε

2
)

ε

)

⇔ k ≥ 2

√
L(ρ, µ, κ)

κ
ln
(

4(2 +
√

2)
(
θ(0)− θ(p∗) + ε

2
)

ε

)
(23)

iterations. A closer look on L(ρ,µ,κ)
κ shows that

L(ρ, µ, κ)
κ

= ‖A‖
2

ρκ
+ 1
µκ

+ 1 (22)= 8 ‖A‖2DfR
2

ε2
+ 8DgR

2

ε2
+ 1

= 1 + 8R2

ε2

(
‖A‖2Df +Dg

)
,

hence, in order to obtain an approximately optimal solution to (D), we need k =
O
(

1
ε ln

(
1
ε

))
iterations.

12



4.3 Convergence of ‖∇θρ,µ(pk)‖ to 0

As it follows from (8), guaranteeing ε-optimality for the objective values of θ is not
sufficient for solving the initial primal optimization problem with a good convergence
rate in the absence of a similar behavior of ‖∇θρ,µ(pk)‖ = ‖Axρ,pk − xµ,pk‖. In the fol-
lowing we show that the fast gradient method (FGM) applied to the doubly regularized
function θρ,µ,κ furnishes the desired properties for the decrease of ‖∇θρ,µ(pk)‖.

It holds

‖∇θρ,µ(pk)‖ = ‖∇θρ,µ,κ(pk)− κpk‖ ≤ ‖∇θρ,µ,κ(pk)‖+ κ ‖pk‖ ∀k ≥ 0. (24)

Having a closer look on the first term in the right-hand side of the previous estimate,
one can notice that

‖∇θρ,µ,κ(pk)‖
(14)
≤
√

2L(ρ, µ, κ) (θρ,µ(0)− θρ,µ(p∗DS)) e−
k
2
√

κ
L(ρ,µ,κ)

(19)
≤
√

2L(ρ, µ, κ)
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) ∀k ≥ 0. (25)

On the other hand, the second term in the right-hand side of (24) can be estimated via

‖pk‖ = ‖pk − p∗DS + p∗DS‖ ≤ ‖pk − p∗DS‖+ ‖p∗DS‖
(15)
≤
√

2
κ

(θρ,µ(0)− θρ,µ(p∗DS)) e−
k
2
√

κ
L(ρ,µ,κ) + ‖p∗DS‖

(19)
≤
√

2
κ

(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) + ‖p∗DS‖ . (26)

Furthermore, in order to gain an upper bound for the norm of p∗DS , we notice that

θ(p∗) + κ

2 ‖p
∗‖2

(6)
≥ θρ,µ(p∗) + κ

2 ‖p
∗‖2 ≥ θρ,µ(p∗DS) + κ

2 ‖p
∗
DS‖

2

(6)
≥ θ(p∗DS)− ρDf − µDg + κ

2 ‖p
∗
DS‖

2

≥ θ(p∗)− ρDf − µDg + κ

2 ‖p
∗
DS‖

2 ,

which implies κ
2 ‖p

∗
DS‖

2 ≤ κ
2 ‖p

∗‖2 + ρDf + µDg, or, equivalently,

‖p∗DS‖
2 ≤ ‖p∗‖2 + 2ρ

κ
Df + 2µ

κ
Dg.

Hence,

‖p∗DS‖ ≤
√
‖p∗‖2 + 2ρ

κ
Df + 2µ

κ
Dg

(22)=
√
‖p∗‖2 + ε

2κ + ε

2κ
(22)=

√
‖p∗‖2 + 2R2

(12)
≤
√

3R, (27)

13



which, combined with (24), (25) and (26), provides the following estimate for the norm
of the gradient of θρ,µ(pk) for any k ≥ 0:

‖∇θρ,µ(pk)‖ ≤
(√

L(ρ, µ, κ) +
√
κ

)√
2
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) +

√
3κR

(22)=
(√

L(ρ, µ, κ) +
√
κ

)√
2
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) +

√
3ε

2R . (28)

For ε > 0 fixed, the first term in (28) decreases by the iteration counter k, while, in
order to ensure that ‖∇θρ,µ(pk)‖ ≤ ε

R , we have to pass

ε

R
≥
(√

L(ρ, µ, κ) +
√
κ

)√
2
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) +

√
3ε

2R

⇔ (2−
√

3)ε
2R ≥

(√
L(ρ, µ, κ) +

√
κ

)√
2
(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ)

⇔ k ≥ 2

√
L(ρ, µ, κ)

κ
ln


(√

L(ρ, µ, κ) +
√
κ
)√

8R2(θ(0)− θ(p∗) + ε
2)

(2−
√

3)ε


⇔ k ≥ 2

ε

√
ε2 + 8R2(‖A‖2Df +Dg)

· ln


(√

L(ρ, µ, κ) +
√
κ
)√

8R2(θ(0)− θ(p∗) + ε
2)

(2−
√

3)ε


⇔ k ≥ 2

ε

√
ε2 + 8R2(‖A‖2Df +Dg)

· ln


(√

4 ‖A‖2Df + 4Dg + ε2

2R2 +
√

ε2

2R2

)√
8R2(θ(0)− θ(p∗) + ε

2)

(2−
√

3)ε
3
2


⇔ k ≥ 2

ε

√
ε2 + 8R2(‖A‖2Df +Dg)

3
2 ln

 3
√

8R2(θ(0)− θ(p∗) + ε
2)

(2−
√

3)
2
3 ε


+ ln

√4 ‖A‖2Df + 4Dg + ε2

2R2 +

√
ε2

2R2

 (29)

iterations of the fast gradient method (FGM). In the above estimate, we used that
L(ρ,µ,κ)

κ = 1 + 8R2

ε2 (‖A‖2Df + Dg) and L(ρ, µ, κ) = 4‖A‖2Df
ε + 4Dg

ε + ε
2R2 (see (22)).

Resuming the achievements in the last two subsections, it follows that k = O
(

1
ε ln

(
1
ε

))
iterations are needed to guarantee

θ(pk) + v(D) ≤ ε and ‖∇θρ,µ(pk)‖ ≤
ε

R
(30)

with a rate of convergence which is very similar except for constant factors.
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4.4 How to construct an approximately primal optimal solution

Next, by making use of the approximate dual solution pk, for k ≥ 0, we construct
an approximately primal optimal solution for the initial problem (P ) and investigate
its accuracy. To this end we will make use of the sequences (xρ,pk)k≥0 ⊆ dom f and
(xµ,pk)k≥0 ⊆ dom g which are delivered by the algorithmic scheme (FGM). We will
prove that, given a fixed accuracy ε > 0, we are able to reconstruct an approximately
primal optimal solution such that, for ρ and µ chosen as in (22), one gets

|f(xρ,pk) + g(xµ,pk)− v(D)| ≤ 4ε, (31)

‖Axρ,pk − xµ,pk‖ ≤
ε

R
, (32)

in the same complexity of iterations as needed in order to satisfy (30). By means of weak
duality, i. e. v(D) ≤ v(P ), (31) would imply that f(xρ,pk) + g(xµ,pk) ≤ v(P ) + 4ε, which
would further mean that xρ,pk ∈ dom f and xµ,pk ∈ dom g fulfilling (31) as well as (32)
can be seen as approximately optimal and feasible solutions to the primal optimization
problem (P ) with an accuracy which is proportional to ε. Let k := k(ε) be the smallest
index satisfying (23) and (29), thus guaranteeing (30).

Now let us prove the validity of the inequalities above. As∇θρ,µ(pk) = Axρ,pk−xµ,pk ,
relation (32) follows directly from (30). Thus, we have to prove only that (31) is true.

To this aim, we notice first that, since θρ,µ(pk) + v(D)
(6)
≤ θ(pk) + v(D) ≤ ε and

θρ,µ(pk) + v(D)
(6)
≥ θ(pk)− ρDf − µDg + v(D)

(22)= θ(pk) + v(D)︸ ︷︷ ︸
≥0

− ε2 ≥ −
ε

2 ,

we have |θρ,µ(pk) + v(D)| ≤ ε. From (7) it follows

|f(xρ,pk) + g(xµ,pk)− v(D)| ≤ ‖pk‖ ‖∇θρ,µ(pk)‖+ ε+ ρDf + µDg

(22)
≤ ‖pk‖ ‖∇θρ,µ(pk)‖+ 2ε

(30)
≤ ε

R
‖pk‖+ 2ε

In order to get an upper bound for ‖pk‖, we use (26) and (27), so that

‖pk‖ ≤
√

2
κ

(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) +

√
3R

(22)= 2R
√

1
ε

(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) +

√
3R,

and, consequently, we obtain

|f(xρ,pk) + g(xµ,pk)− v(D)| ≤ 2
√
ε

(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) + (

√
3 + 2)ε.
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Since k = k(ε) was chosen in order to fulfill (29), it verfies

k ≥ 2

√
L(ρ, µ, κ)

κ
ln

2
√
ε
(
θ(0)− θ(p∗) + ε

2
)

(2−
√

3)ε


⇔ 4ε ≥ 2

√
ε

(
θ(0)− θ(p∗) + ε

2

)
e−

k
2
√

κ
L(ρ,µ,κ) + (

√
3 + 2)ε,

thus (31) holds.

4.5 Existence of an optimal solution

In this section we will study the convergence behavior of the primal sequences produced
by the fast gradient method converge to an optimal solution of (P ) when ε ↓ 0. Let
(εn)n≥0 ⊆ R+ be a decreasing sequence of positive scalars with limn→∞ εn = 0. For
each n ≥ 0 we can make k = k(εn) iterations of the double smoothing algorithm (FGM)
with smoothing parameters ρεn , µεn and κεn given by (22) in order to have (31) and
(32) satisfied. For n ≥ 0 we denote

x̄n := xρεn ,pk(εn) ∈ dom f and ȳn := xµεn ,pk(εn) ∈ dom g.

Due to the boundedness of dom f and dom g, there exist a subsequence of indices
(nl)l≥0 ⊆ (n)n≥0, x̄ ∈ Rn and ȳ ∈ Rm such that

x̄nl
l→∞−→ x̄ ∈ cl(dom f) and ȳnl

l→∞−→ ȳ ∈ cl(dom g).

In view of relation (32) we obtain

0 ≤ ‖Ax̄nl − ȳnl‖ ≤
εnl
R
, (33)

for each l ≥ 0. For l→ +∞ in (33) we get Ax̄ = ȳ. Furthermore, due to (31), we have

f(x̄nl) + g(ȳnl) ≤ v(D) + 4εnl ∀l ≥ 0

and, by using the lower semicontinuity of f and g, we obtain

f(x̄) + g(Ax̄) ≤ lim inf
l→∞

{f(x̄nl) + g(ȳnl)} ≤ lim
l→∞
{v(D) + 4εnl} = v(D) ≤ v(P ).

By taking into account that v(P ) < +∞, it follows that x̄ ∈ dom f and Ax̄ ∈ dom g,
thus x̄ is an optimal solution of the primal problem (P ).

5 An example in image processing
In this section we are solving a linear inverse problem which arises in the field of signal
and image processing by means of the double smoothing algorithm developed in the
preceding sections. For a given matrix A ∈ Rn×n describing a blur operator and a given
vector b representing the blurred and noisy image the task is to estimate the unknown
original image x∗ ∈ Rn fulfilling

Ax = b.
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To this end we solve the following nonsmooth l1 regularized convex optimization problem

(P ) inf
x∈S
{‖Ax− b‖1 + λ ‖x‖1}, (34)

where S ⊆ Rn is an n-dimensional cube representing the range of the pixels and λ > 0
is the regularization parameter. The problem to be solved can be equivalently written
as

(P ) inf
x∈Rn

{f(x) + g(Ax)},

for f : Rn → R, f(x) = λ ‖x‖1 +δS(x) and g : Rn → R, g(y) = ‖y − b‖1 +δS(y) (one has
that A(S) ⊆ S, since for x ∈ S the pixels of the blurred picture Ax have naturally the
same range). Thus both functions f and g are proper, convex and lower semicontinuous
and have bounded effective domains.

Since each pixel furnishes a greyscale value which is between 0 and 255, a natural
approach for the convex set S would be the n-dimensional cube [0, 255]n ⊆ Rn. In order
to reduce the Lipschitz constants which appear in the developed approach, we scale all
the pictures used within this section so that each of their pixels ranges in the intervall[
0, 1

10

]
.

In this section we concretely look at the 256 × 256 cameraman test image, which
is part of the image processing toolbox in Matlab. The dimension of the vectorized
and scaled cameraman test image is n = 2562 = 65536. By making use of the Matlab
functions imfilter and fspecial, this image is blurred as follows:

1 H=f s p e c i a l ( ’ gauss ian ’ , 9 , 4 ) ; % gauss ian b lur o f s i z e 9 t imes 9
2 % and standard dev i a t i on 4
3 B=im f i l t e r (X,H, ’ conv ’ , ’ symmetric ’ ) ; % B=observed b lur red image
4 % X=o r i g i n a l image

In row 1 the function fspecial returns a rotationally symmetric Gaussian lowpass filter
of size 9×9 with standard deviation 4. The entries of H are nonnegative and their sum
adds up to 1. In row 3 the function imfilter convolves the filter H with the image
X ∈ R256×256 and outputs the blurred image B ∈ R256×256 . The boundary option
"symmetric" corresponds to reflexive boundary conditions.

Thanks to the rotationally symmetric filter H, the linear operator A ∈ Rn×n given
by the Matlab function imfilter is symmetric, too. Since each entry in B can be seen
as a convex combination of elements in X with coefficients in H, we have A(S) ⊆ S.

Due to the specific structure of A, its norm can be computed via the real spectral
decomposition and it shows that ‖A‖2 = 1. After adding a zero-mean white Gaussian
noise with standard deviation 10−4, we obtain the blurred and noisy image b ∈ Rn
which is shown in Figure 5.1.

One should also notice that, as both functions occurring in the formulation of (P )
are nondifferentiable, the classical iterative shrinkage thresholding algorithm and its
variants (see [2,3,9]) cannot be taken into account for solving this optimization problem.
Indeed, in this situation the double smoothing technique is our first choice for solving
(P ) with an optimal first-order method.
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original

original

blurred and noisy

Figure 5.1: The 256× 256 cameraman test image

The dual optimization problem in minimization form is

(D) − inf
p∈Rn

{f∗(A∗p) + g∗(−p)}

and, due to the fact that x′ := 1
201

n ∈ ri(S) ∩A(ri(S)), it has an optimal solution (see,
for instance, [5, 6]). By taking into consideration (22), the smoothing parameters are
taken

ρ = ε

4Df
, µ = ε

4Dg
, κ = ε

2R2 , (35)

for Df = Dg = sup
{
‖x‖2

2 : x ∈
[
0, 1

10

]n}
= 327.68 and R = 0.05, while the accuracy is

chosen to be ε = 0.04.
In the following we show that the proximal points can be exactly calculated in each

iteration of the algorithm, due to the fact that they occur as optimal solutions of some
separable convex optimization problems. Indeed, since for k ≥ 0

1
ρ f

(
A∗wk
ρ

)
= inf

x∈Rn

{
f(x) + ρ

2

∥∥∥∥A∗wkρ
− x

∥∥∥∥2}
= inf

x∈[0, 1
10 ]n

{
λ ‖x‖1 + ρ

2

∥∥∥∥A∗wkρ
− x

∥∥∥∥2}
,

the proximal point of 1
ρf at A∗wk

ρ fulfills

xρ,wk = arg min
x∈[0, 1

10 ]n

{
n∑
i=1

[
λ |xi|+

ρ

2

((A∗wk)i
ρ

− xi
)2]}

and its calculation requires the solving of the following one-dimensional convex opti-
mization problem for i = 1, . . . , n:

inf
xi∈[0, 1

10 ]

{
λxi + ρ

2

((A∗wk)i
ρ

− xi
)2}

,

which has as unique optimal solution P[0, 1
10 ]
(

1
ρ ((A∗wk)i − λ)

)
. Thus,

xρ,wk = P[0, 1
10 ]n

(1
ρ

(A∗wk − λ1n)
)
.
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On the other hand, since for k ≥ 0

1
µ g

(
−wk
µ

)
= inf

x∈Rn

{
g(x) + µ

2

∥∥∥∥−wkµ − x
∥∥∥∥2
}

= inf
x∈[0, 1

10 ]n

{
‖x− b‖1 + µ

2

∥∥∥∥−wkµ − x
∥∥∥∥2
}

= inf
x∈[0, 1

10 ]n

{
n∑
i=1

[
|xi − bi|+

µ

2

(
−(wk)i

µ
− xi

)2]}
,

the calculation of the proximal point of 1
µg at −wkµ requires the solving of the following

one-dimensional convex optimization problem for i = 1, . . . , n:

inf
xi∈[0, 1

10 ]

{
|xi − bi|+

µ

2

(
−(wk)i

µ
− xi

)2}
.

For a fixed k ≥ 0 we consider for i = 1, ..., n the function hi : R → R, hi(z) =
|z − bi|+ µ

2

(
− (wk)i

µ − z
)2
. For for i = 1, ..., n the optimal solution of the above problem

is the projection of the unique global minimum (cf. [4, Proposition A.8 and Proposition
B.10]) zi of hi on

[
0, 1

10

]
. For i = 1, ..., n we have

0 ∈ ∂hi(zi) = ∂

(
|· − bi|+

µ

2

(
−(wk)i

µ
− ·
)2)

(zi) = ∂ (|· − bi|) (zi)− µ
(
−(wk)i

µ
− zi

)
,

which is equivalent to

−(wk)i ∈ ∂ (|· − bi|) (zi) + µzi =


1 + µzi : zi > bi

[−1 + µbi, 1 + µbi] : zi = bi

−1 + µzi : zi < bi

.

Hence, the unique global minimum zi can be calculated as follows

zi =



−(wk)i + 1
µ

: (wk)i < −1− µbi

bi : −1− µbi ≤ (wk)i ≤ 1− µbi
1− (wk)i

µ
: (wk)i > 1− µbi

.

All in all, the proximal point of g of parameter 1
µ at −wkµ is for z = (z1, ..., zn)T given

by

xµ,wk = P[0, 1
10 ]n (z) .

In the context of solving the problem (34) we compared the double smoothing approach
(DS) for ε = 0.04 with the algorithm based on skew splitting (SS) proposed in [7] with
parameters ε = 1

4 and γk = γ = 3
5 , for any k ≥ 1, and with the primal-dual algorithm

(PD) from [8] with parameters θ = 1, σ = 1 and τ = 0.999. The parameters considered
for the three approaches provide the best results when solving (34).

19



PD
50

 = 14.550744 SS
50

 = 22.735875 DS
50

 = 15.387098

PD
100

 = 10.686990 SS
100

 = 15.939589 DS
100

 = 7.408624

Figure 5.2: Results furnished by the primal-dual (PD), the skew splitting (SS) and the
double smoothing (DS) algorithms after 50 and 100 iterations.

As it is the case for (DS), the algorithms (SS) and (PD), designed for solving nons-
mooth convex optimization problems, require the calculation of the proximal points of
the functions, as well. However, the skew splitting method (SS) uses four matrix-vector
multiplications per iteration, whereas (PD) and (DS) only two.

The output of these three algorithms after 50 and 100 iterations, along with the
corresponding objective values, provided by Figure 5.2. They show that the double
smoothing approach when solving (34) outperforms the other two algorithms, fact illus-
trated by the objective values and by the improvement in signal-to-noise ratio (ISNR)
values. Recall that the improvement in signal-to-noise ratio (ISNR) is defined as

ISNR(k) = 10 log10

(
‖x− b‖2

‖x− xk‖2

)
,

where x, b and xk denote the original, observed and estimated image at iteration k,
respectively. Figure 5.3 shows the evolution of the objective values and of the improve-
ment in signal-to-noise ratio within the first 100 iterations.
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Figure 5.3: The evolution of the values of the objective function and of the ISNR for the
primal-dual (PD), the skew splitting (SS) and the double smoothing (DS) algorithms
after 100 iterations.

6 Conclusions
The subject of this paper can be summarized as a development of a first-order method
for solving unconstrained nondifferentiable convex optimization problems in finite di-
mensional spaces having as objective the sum of a convex function with the composition
of another convex function with a linear operator. The provided method assumes the
minimization of the doubly regularized Fenchel dual objective and allows to reconstruct
an approximately optimal primal solution in O

(
1
ε ln

(
1
ε

))
iterations which outperforms

the classical subgradient approach.
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