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Abstract

Modelling of convex optimization in the face of data uncertainty often gives
rise to families of parametric convex optimization problems. This motivates
us to present, in this paper, a duality framework for a family of parametric
convex optimization problems. By employing conjugate analysis, we present
robust duality for the family of parametric problems by establishing strong
duality between associated dual pair. We first show that robust duality holds
whenever a constraint qualification holds. We then show that this constraint
qualification is also necessary for robust duality in the sense that the con-
straint qualification holds if and only if robust duality holds for every linear
perturbation of the objective function. As an application, we obtain a robust
duality theorem for the best approximation problems with constraint data
uncertainty under a strict feasibility condition.
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1 Introduction

Consider the family of (primal) conical convex optimization problems of the form

{(Pu)}u∈U :

{
minx∈X{f(x) : x ∈ S, gu(x) ∈ −C}

}
u∈U ,

where the cone-constraint depends on a parameter u, which belongs to a given set
U , S ⊆ X is a nonempty convex set, C ⊆ Y is a nonempty convex cone, f : X →
R∪{+∞} is a proper convex function and for each u ∈ U , gu : X → Y is a C-convex
function, and X and Y are Hausdorff locally convex spaces. Parametric family of
optimization problems of the form {(Pu)}u∈U often arises in scientific modelling of
real-world decision problems [1,12,17] and covers optimization problems in the face
of data uncertainty [14,15].

A robust primal solution of the family {(Pu)}u∈U is obtained by solving the single
problem:

(RP ) min
x∈X
{f(x) : x ∈ S, gu(x) ∈ −C, ∀u ∈ U},

where the constraints are enforced for every parameter u in the prescribed set U . By
associating the Lagrangian dual for each parameter u, we form the family of dual
optimization problems:{

sup
y∗∈C∗

inf
x∈S
{f(x) + 〈y∗, gu(x)〉}

}
u∈U

.

A robust dual solution is obtained by solving the single dual problem:

(ODP ) sup
(u,y∗)∈U×C∗

inf
x∈S
{f(x) + 〈y∗, gu(x)〉},

where the supremum is taken over all (u, y∗) ∈ U × C∗. As usual, for an attained
infimum (supremum) instead of inf (sup) we write min (max).

Robust duality for the family {(Pu)}u∈U states that

min
x∈X
{f(x) : x ∈ S, gu(x) ∈ −C, ∀u ∈ U} = max

(u,y∗)∈U×C∗
inf
x∈S
{f(x) + 〈y∗, gu(x)〉}

whenever (RP ) attains its minimum. The significance of this robust duality is that
the dual problem can be solved easily for some classes of robust convex problems. For
instance, the dual of a robust best approximation problem with affine parameterized
data uncertainty is a finite dimensional convex optimization, for details see [16]. For
related results in the uncertainty free cases, see [20].

As an illustration, consider the simple uncertain least squares optimization prob-
lem

min{1
2
(x2

1 + x2
2) : a1x1 + a2x2 ≤ b},

where b ∈ R and the constraint data (a1, a2) ∈ R2 is uncertain and it belongs to the
uncertainty set U . The effect of uncertain data can be captured by the parameterized
problem

{(P1u)}u∈U
{

min{1
2
(x2

1 + x2
2) : a1(u)x1 + a2(u)x2 ≤ b}

}
u∈U

.
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A solution of the problem

(RP1) min{1
2
(x2

1 + x2
2) : a1(u)x1 + a2(u)x2 ≤ b ∀u ∈ U}

gives us a primal robust solution with “the worst primal objective value”. On the
other hand, for each u ∈ U , the corresponding Lagrangian dual problem of (P1u) is

sup
y∗∈R+

inf
x∈R2
{1

2
(x2

1 + x2
2) + y∗(a1(u)x1 + a2(u)x2 − b)}.

A solution of the problem

(ODP1) sup
(u,y∗)∈U×R+

inf
x∈R2
{1

2
(x2

1 + x2
2) + y∗(a1(u)x1 + a2(u)x2 − b)}

gives us the dual robust solution with “the best dual objective value.” Thus, the
robust strong duality for the family {(P1u)}u∈U reads:

min{1
2
(x2

1 + x2
2) : a1(u)x1 + a2(u)x2 ≤ b ∀u ∈ U}

= max
(u,y∗)∈U×R+

inf
x∈R2
{1

2
(x2

1 + x2
2) + y∗(a1(u)x1 + a2(u)x2 − b)}

and states that “primal worst value” equals to the “dual best value” and both the
primal worst value and the dual best values are attained.

The purpose of this paper is to establish a complete characterization of robust
duality by employing the conjugate duality theory. We first prove robust duality
using a new robust subdifferential condition. For related conditions we refer the
reader to [14]. Then we establish that the subdifferential condition is in some sense
the weakest condition guaranteeing robust duality for the given family {(Pu)}u∈U .
As an application, we derive robust duality for a constrained best approximation
problem in the face of constraint data uncertainty under a strict feasibility condition.

The outline of the paper is as follows. Section 2 presents some preliminaries of
convex analysis, which aim to make the paper self-contained. Section 3 introduces
a so-called general robust subdifferential condition, which further provides a basic
constraint qualification condition for the existence of robust duality for the primal-
dual pair (RP )−(ODP ). Section 4 presents robust duality for a best approximation
model problem under data uncertainty.

2 Preliminaries: Conjugate Analysis

Consider two Hausdorff locally convex vector spaces X and Y and their topolog-
ical dual spaces X∗ and Y ∗, respectively, endowed with the corresponding weak∗

topologies, and denote by 〈x∗, x〉 = x∗(x) the value at x ∈ X of the continuous
linear functional x∗ ∈ X∗. Consider also the projection function PrX : X × Y → X,
defined by PrX(x, y) = x ∀(x, y) ∈ X × Y . Let R := R ∪ {±∞}. Given a subset S
of X, by intS we denote its interior and by δS : X → R,

δS(x) =

{
0, if x ∈ S,

+∞, otherwise,
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its indicator function.
Having a function f : X → R we use the classical notations for domain dom f :=

{x ∈ X : f(x) < +∞}, epigraph epi f := {(x, r) ∈ X ×R : f(x) ≤ r} and conjugate
function f ∗ : X∗ → R, f ∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X}. The conjugate
function of the indicator function of a set S ⊆ X is the so-called support function
of S, σS : X∗ → R, σS(x∗) = supx∈S〈x∗, x〉.

For a function f : X → R and its conjugate one has the Young-Fenchel’s in-
equality f ∗(x∗) + f(x) ≥ 〈x∗, x〉 for all x ∈ X and x∗ ∈ X∗. We call f proper if
f(x) > −∞ ∀x ∈ X and dom f 6= ∅. We say that f is convex, if epi f is a convex
set and that f is lower semicontinuous, if epi f is closed.

For f : X → R proper, if f(x) ∈ R the (convex) subdifferential of f at x is
∂f(x) := {x∗ ∈ X∗ : f(y)−f(x) ≥ 〈x∗, y−x〉 ∀y ∈ X}, while if f(x) = +∞ we take
by convention ∂f(x) := ∅. The normal cone of a nonempty set S ⊆ X at x ∈ X is
NS(x) := ∂δS(x).

For a proper function f : X → R one can also prove that for x ∈ X and x∗ ∈ X∗

x∗ ∈ ∂f(x)⇔ f(x) + f ∗(x∗) ≤ 〈x∗, x〉 ⇔ f(x) + f ∗(x∗) = 〈x∗, x〉.

Given two proper functions f, g : X → R, the infimal convolution of f and g is
defined by f�g : X → R, (f�g)(x) = inf{f(y) + g(x− y) : y ∈ X}. If there is an
y ∈ X such that (f�g)(x) = f(y) + g(x− y) we say that the infimal convolution is
exact at x.

When f : X → R is a given function, then one has for each λ > 0

epi(λf)∗ = λ epi f ∗.

When f, g : X → R are proper functions with dom f ∩ dom g 6= ∅, then

epi(f + g)∗ = epi f ∗ + epi g∗ (1)

if and only if

(f + g)∗(x∗) = min{f ∗(y∗) + g∗(x∗ − y∗) : y∗ ∈ X∗} ∀x∗ ∈ X∗ (2)

For sufficient conditions, both of interiority- and closedness-type, for (1) and (2) we
refer the reader to [3, 10, 21]. The ones to which we make appeal throughout this
paper, for f and g proper and convex functions with dom f ∩dom g 6= ∅, are, on the
one hand,

f or g is continuous at a point in dom f ∩ dom g

and, one the other hand (see also [8, 19]),

f, g are lower semicontinuous and epi f ∗ + epi g∗ is weak∗-closed.

When C ⊆ Y is a convex cone and g : X → Y is a given function, then the set
epiC g := {(x, y) ∈ X × Y : y ∈ g(x) + C} is called C-epigraph of g. In analogy to
the notions considered for scalar functions, we say that g is C-convex, if epiC g is a
convex set and that g is C-epi closed, if epiC g is a closed set. The C-epi closedness
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is the weakest among the notions given in the literature that aim to extend the
lower semicontinuity for scalar functions to vector functions (for more on this topic,
see [3]).

We close the section by stating a weak duality result for the family of functions
Φu : X × Y → R, where u is taken in a given uncertainty set U , which will prove to
be useful later in the paper.

Proposition 1 Let the family of functions Φu : X × Y → R, for u ∈ U , be given.
For each x∗ ∈ X∗ it holds

inf
x∈X
{ sup
u∈U
{Φu(x, 0) + 〈x∗, x〉} } ≥ sup

(u,y∗)∈U×Y ∗
{−Φ∗u(−x∗, y∗)}.

Proof. Let x∗ ∈ X∗, x ∈ X and y∗ ∈ Y ∗ be fixed. For each u ∈ U , by Young-
Fenchel’s inequality, we have

Φu(x, 0) + 〈x∗, x〉 ≥ −Φ∗u(−x∗, y∗),

which implies
sup
u∈U
{Φu(x, 0) + 〈x∗, x〉} ≥ sup

u∈U
{−Φ∗u(−x∗, y∗)}.

From here the conclusion follows automatically.

3 A Constraint Qualification for Robust Duality

In this section we first introduce a constraint qualification ensuring robust duality
as a particularization of a more general subdifferential condition. We also show that
the constraint qualification is also a characterization of robust duality, in the sense
that the constraint qualification holds if and only if robust duality holds for every
linear perturbation of the objective function of (RP).

Throughout this section, we assume that dom f ∩ A 6= ∅ where A := {x ∈ S :
gu(x) ∈ −C, ∀u ∈ U}. Note that, by definition, the following inclusion is always
satisfied

∂(f + δA)(x) ⊇
⋃

u∈U ,y∗∈C∗,
(y∗gu)(x)=0

∂(f + (y∗gu) + δS)(x), ∀x ∈ dom f ∩ A, (3)

where (y∗gu)(x) := 〈y∗, gu(x)〉 for all x ∈ X.
We now introduce the Robust Basic Subdifferential Condition as follows:

(RBSC) ∂(f + δA)(x) =
⋃

u∈U ,y∗∈C∗,
(y∗gu)(x)=0

∂(f + (y∗gu) + δS)(x), ∀x ∈ dom f ∩ A,

where C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C} denotes the dual cone of C, and for all
y∗ ∈ Y ∗, (y∗gu)(·) := 〈y∗, gu(·)〉.

We begin by first showing that the robust basic subdifferential condition (RBSC)
is sufficient for robust duality.
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Theorem 2 Assume that dom f ∩ A 6= ∅ and that (RBSC) is fulfilled. Then,
whenever f attains its minimum over A,

min
x∈A

f(x) = max
(u,y∗)∈U×C∗

inf
x∈S
{f(x) + 〈y∗, gu(x)〉}.

Proof. Define Φu : X × Y → R by Φu(x, y) = f(x) + δ{z∈S:gu(z)∈y−C}(x). Then Φu

is a proper function. For all (x∗, y∗) ∈ X∗ × Y ∗, it holds

Φ∗u(x
∗, y∗) =

{
(f + ((−y∗)gu) + δS)∗(x∗), if y∗ ∈ −C∗,

+∞, otherwise.

Thus, the conclusion will follow if we show that

min
x∈X
{sup
u∈U

Φu(x, 0)} = max
(u,y∗)∈U×Y ∗

{−Φ∗u(0, y
∗)}.

We claim that, for each x ∈ dom f ∩ A,

PrX∗

⋃
u∈U

∂Φu(x, 0) =
⋃

u∈U ,y∗∈C∗,(y∗gu)(x)=0

∂(f + (y∗gu) + δS)(x). (4)

Granting this, (RBSC) can be rewritten as

∂

(
sup
u∈U

Φu(·, 0)

)
(x) = PrX∗

⋃
u∈U

∂Φu(x, 0), ∀x ∈ dom

(
sup
u∈U

Φu(·, 0)

)
.

Denote by x̄ the minimum of sup
u∈U

Φu(·, 0) over X, which is obviously an element in

dom sup
u∈U

Φu(·, 0) = dom f ∩ A. Then 0 ∈ ∂

(
sup
u∈U

Φu(·, 0)

)
(x̄). Since (RBSC) is

fulfilled, there exist ȳ∗ ∈ Y ∗ and ū ∈ U such that (0, ȳ∗) ∈ ∂Φū(x̄, 0). Thus,

sup
u∈U

Φu(x̄, 0) = f(x̄) = Φū(x̄, 0) = −Φ∗ū(0, ȳ
∗),

which, by taking into consideration Proposition 1, implies that

min
x∈X
{sup
u∈U

Φu(x, 0)} = sup
u∈U

Φu(x̄, 0) = max
(u,y∗)∈U×Y ∗

{−Φ∗u(0, y
∗)}.

To verify (4), let x ∈ dom f ∩ A. Choosing an arbitrary

x∗ ∈
⋃

u∈U ,y∗∈C∗,(y∗gu)(x)=0

∂(f + (y∗gu) + δS)(x),

there exist ū ∈ U and ȳ∗ ∈ C∗ such that (ȳ∗gū)(x) = 0 and x∗ ∈ ∂(f+(ȳ∗gū)+δS)(x).
Hence,

(f + (ȳ∗gū) + δS)∗(x∗) + (f + (ȳ∗gū) + δS)(x) = 〈x∗, x〉.

This gives us that
Φ∗ū(x

∗,−ȳ∗) + Φū(x, 0) = 〈x∗, x〉
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or, equivalently, (x∗,−ȳ∗) ∈ ∂Φū(x, 0). Thus, x∗ ∈ PrX∗
⋃
u∈U ∂Φu(x, 0).

To show the opposite inclusion, let x∗ ∈ PrX∗
⋃
u∈U ∂Φu(x, 0). Then, there exist

ȳ∗ ∈ Y ∗ and ū ∈ U such that Φ∗ū(x
∗, ȳ∗) + Φū(x, 0) = 〈x∗, x〉. Thus y∗ ∈ −C∗ and

(f + ((−ȳ∗)gū) + δS)∗(x∗) + f(x) = 〈x∗, x〉. By Young-Fenchel’s inequality one has

0 ≥ (f + ((−ȳ∗)gū) + δS)∗(x∗) + f(x) + ((−ȳ∗)gū)(x) + δS(x)− 〈x∗, x〉 ≥ 0.

This shows us that x∗ ∈ ∂(f + ((−ȳ∗)gū) + δS)(x) and, consequently,

x∗ ∈
⋃

u∈U ,y∗∈C∗,(y∗gu)(x)=0

∂(f + (y∗gu) + δS)(x).

In the following we show that (RBSC) is in some sense the weakest condition
for robust duality.

Theorem 3 Assume that dom f ∩A 6= ∅. Then the following statements are equiv-
alent:

(i) (RBSC) is fulfilled.

(ii) For each x∗ ∈ X∗ such that f + 〈x∗, ·〉 attains its minimum over A it holds

min
x∈A
{f(x) + 〈x∗, x〉} = max

(u,y∗)∈U×C∗
inf
x∈S
{f(x) + 〈x∗, x〉+ 〈y∗, gu(x)〉}.

Proof. “(i)⇒ (ii).” Let x∗ ∈ X∗ be such that f + 〈x∗, ·〉 attains its minimum over
X. Then, ii holds by applying Theorem 2 with f replaced by f + 〈x∗, ·〉.
“(ii)⇒ (i).” Let x̄ ∈ dom f ∩ A be fixed. It follows from (3) that

∂(f + δA)(x̄) ⊇
⋃

u∈U ,y∗∈C∗,
(y∗gu)(x̄)=0

∂(f + (y∗gu) + δS)(x̄).

This means that we have to prove only the opposite inclusion. To see this, let
x∗ ∈ ∂(f+δA)(x̄). This is equivalent to the condition that 0 ∈ ∂(f+δA+〈−x∗, ·〉)(x̄).
So, x̄ is a minimum of the function f + 〈−x∗, ·〉 over A. Consequently, by (ii), there
exist ȳ∗ ∈ C∗ and ū ∈ U such that

f(x̄) + 〈−x∗, x̄〉 = min
x∈A
{f(x) + 〈−x∗, x〉} = inf

x∈S
{f(x) + 〈−x∗, x〉+ 〈ȳ∗, gū(x)〉}.

As x̄ ∈ A, in particular, we have f(x̄) + 〈−x∗, x̄〉 ≤ f(x̄) + 〈−x∗, x̄〉 + 〈ȳ∗, gū(x̄)〉
which implies that (ȳ∗gū)(x̄) ≥ 0. Note that ȳ∗ ∈ C∗ and gū(x̄) ∈ −C. It follows
that (ȳ∗gū)(x̄) = 0. This shows that x̄ is a minimum of the function f + 〈−x∗, ·〉+
(ȳ∗gū) + δS over X, and so,

0 ∈ ∂
(
f + 〈−x∗, ·〉+ (ȳ∗gū) + δS

)
(x̄).

Hence, x∗ ∈ ∂
(
f + (ȳ∗gū) + δS

)
(x̄).

In the special case when U is a singleton, we obtain the following characterization
for Lagrangian duality established in [4, 6].

7



Corollary 4 Assume that dom f ∩A 6= ∅. Then the following statements are equiv-
alent:

(i) For each x∗ ∈ X∗ one has

min
x∈A

(f + 〈x∗, ·〉)(x) = max
y∗∈C∗

inf
x∈S
{f(x) + 〈x∗, x〉+ 〈y∗, g(x)〉}.

(ii) For each x ∈ dom f ∩ A, it holds

∂(f + δA)(x) =
⋃

y∗∈C∗,(y∗g)(x)=0

∂(f + (y∗g) + δS)(x) ∀x ∈ dom f ∩ A.

Proof. The conclusion follows from Theorem 3 by letting U = {u}.
When taking f identical to zero in (RBSC), this turns into what we call to be

the Robust Basic Constraint Qualification:

(RBCQ) NA(x) =
⋃

u∈U ,y∗∈C∗,
(y∗gu)(x)=0

∂((y∗gu) + δS)(x) ∀x ∈ A.

The next theorem completely characterizes via (RBCQ) the existence of robust
duality.

Theorem 5 Assume that dom f ∩A 6= ∅. Then, the following statements are equiv-
alent:

(i) (RBCQ) is fulfilled.

(ii) For each x∗ ∈ X∗ that attains its minimum over A it holds

min
x∈A
〈x∗, x〉 = max

(u,y∗)∈U×C∗
inf
x∈S
{〈x∗, x〉+ 〈y∗, gu(x)〉}.

(iii) For each proper function f : X → R that attains its minimum over A and
such that (f + δA)∗(0) = (f ∗�σA)(0) and the infimal convolution is exact at 0
it holds

min
x∈A

f(x) = max
(u,y∗)∈U×C∗

inf
x∈S
{f(x) + 〈y∗, gu(x)〉}.

Proof. The equivalence “(i)⇔ (ii)” follows as a direct consequence of Theorem 3.
“(iii)⇒ (ii).” Consider an x∗ ∈ X∗ that attains its minimum over A and f(x) :=

〈x∗, x〉. As f is continuous, (2) implies that (f + δA)∗(0) = (f ∗�σA)(0) = σA(−x∗)
and the infimal convolution is exact at 0, thus

min
x∈A
〈x∗, x〉 = max

(u,y∗)∈U×C∗
inf
x∈S
{〈x∗, x〉+ 〈y∗, gu(x)〉}.

“(i) ⇒ (iii).” Consider a proper function f : X → R that attains its minimum
over A at x̄ ∈ A and such that (f+δA)∗(0) = (f ∗�σA)(0) and the infimal convolution
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is exact at 0. Then f(x̄) = −(f + δA)∗(0) and there exists some x∗ ∈ X∗ fulfilling
(f + δA)∗(0) = f ∗(x∗) + σA(−x∗). Obviously, dom f ∩ A 6= ∅. Thus f(x̄) ∈ R. By
using Young-Fenchel’s inequality we get

0 = f(x̄) + f ∗(x∗)− 〈x∗, x̄〉+ δA(x̄) + σA(−x∗)− 〈−x∗, x̄〉 ≥ 0,

which implies that f(x̄)+f ∗(x∗) = 〈x∗, x̄〉 or, equivalently, x∗ ∈ ∂f(x̄) and also that
δA(x̄) + σA(−x∗) = 〈−x∗, x̄〉 or, equivalently, −x∗ ∈ ∂A(x̄) = NA(x̄).

According to (RBCQ), there exist ū ∈ U and ȳ∗ ∈ C∗ such that (ȳ∗gū)(x̄) = 0
and −x∗ ∈ ∂((ȳ∗gū) + δS)(x̄). Consequently, ((ȳ∗gū) + δS)∗(−x∗) = 〈−x∗, x̄〉 =
−f ∗(x∗)− f(x̄). This yields

f(x̄) = −f ∗(x∗)− ((ȳ∗gū) + δS)∗(−x∗) ≤ −(f + (ȳ∗gū) + δS)∗(0)

= inf
x∈S
{f(x) + 〈ȳ∗, gū(x)〉} ≤ sup

(u,y∗)∈U×C∗
inf
x∈S
{f(x) + 〈y∗, gu(x)〉} ≤ inf

x∈A
f(x) = f(x̄),

where the first inequality holds as h∗1(x∗) + h∗2(−x∗) ≥ (h1 + h2)∗(0) for any proper
functions h1, h2. This completes the proof.

Remark 1 The assumption made on the proper function f : X → R in Theorem 5
(iii), namely, that (f +δA)∗(0) = (f ∗�σA)(0) and the infimal convolution is exact at
0, is nothing else than asking for the existence of strong duality for the optimization
problem

inf
x∈X
{f(x) + δA(x)}

and its Fenchel dual
sup
x∗∈X∗

{−f ∗(x∗)− σA(−x∗)}.

For f proper and convex and A a convex set (as already seen, S convex and gu
C-convex for all u ∈ U guarantees this), this is the case whenever f is continuous at
some element in dom f ∩ A (see, for instance, [21]). Additionally, when f is lower
semicontinuous and A is closed (as already seen, S closed and gu C-epi closed for all
u ∈ U guarantees this), this is the case when epi f ∗+epi σA is weak∗-closed (see [8]),
but also when f ∗�σA is lower semicontinuous and exact at zero (see [7]).

In the light of the above remarks, one can notice that Theorem 5 extends [6, The-
orem 5] (see also [5, Theorem 10] for a similar result) to parameterized constrained
optimization problems.

Remark 2 It should also be noted that, if S is a convex and closed set and gu is
a C-convex and C-epi closed function for each u ∈ U such that A 6= ∅, then the
following closed convex condition used in [18]⋃

u∈U ,y∗∈C∗

epi((y∗gu) + δS)∗ is weak∗- closed and convex. (5)

is a sufficient condition for (RBCQ).
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4 Best Approximation under data Uncertainty

In this section, we apply our robust duality theory to best approximation problem
under data uncertainty. Consider the uncertainty sets Ui ⊆ L2[0, 1]×R, i = 1, ...,m,
and the best approximation problem

inf
x∈L2[0,1]

{
1

2

∫ 1

0

x(t)2dt :

∫ 1

0

ai(t)x(t)dt ≤ βi, i = 1, ...,m

}
, (6)

where the input data (ai, βi) is uncertain and (ai, βi) ∈ Ui for i = 1, ...,m. In
the uncertainty free case, this best approximation model problem aims at finding
a solution of minimum norm in L2[0, 1] for a finite linear inequality system which
have extensively studied (for example see [9,11,13,20]). By denoting with 〈·, ·〉 and
‖ · ‖ the inner product and the norm on L2[0, 1], respectively, we consider the robust
dual pair,

(RP ) inf
x∈L2[0,1]

{
1

2
‖x‖2 : 〈ai, x〉 ≤ βi, ∀(ai, βi) ∈ Ui, i = 1, ...,m

}
and

(ODP ) sup
(ai,βi)∈Ui,λi≥0,

i=1,...,m

inf
x∈L2[0,1]

{
1

2
‖x‖2 +

〈
m∑
i=1

λiai, x

〉
−

m∑
i=1

λiβi

}

or, equivalently (since
(

1
2
‖ · ‖2

)∗
= 1

2
‖ · ‖2),

(ODP ) sup
(ai,βi)∈Ui,λi≥0,

i=1,...,m

−1

2

∥∥∥∥∥
m∑
i=1

λiai

∥∥∥∥∥
2

−
m∑
i=1

λiβi

 .

Denote the feasible set of the problem (RP ) by

A := {x ∈ L2[0, 1] : 〈ai, x〉 ≤ βi, ∀(ai, βi) ∈ Ui, i = 1, ...,m}.

Next we furnish some simple sufficient conditions under which the Robust Basic
Constraint Qualification is valid.

Theorem 6 Assume that the sets Ui, i = 1, ...,m, are convex and compact and that
the following Slater-type condition is fulfilled:

∃x′ ∈ L2[0, 1] such that 〈ai, x′〉 < βi ∀(ai, βi) ∈ Ui, i = 1, ...,m.

Then (RBCQ) holds.

Proof. In order to prove that (RBCQ) is valid, according to Remark 2, it is enough
to prove that the set

⋃
(ai,βi)∈Ui,λi≥0,

i=1,...,m

epi

(
m∑
i=1

λi(〈ai, ·〉 − βi)

)∗
=

⋃
(ai,βi)∈Ui,λi≥0,

i=1,...,m

m∑
i=1

epi (〈λiai, ·〉 − λiβi)∗

10



=
⋃

(ai,βi)∈Ui,λi≥0,
i=1,...,m

m∑
i=1

(
{λiai} × [λiβi,+∞)

)
=

m∑
i=1

⋃
λi≥0

⋃
(ai,βi)∈Ui

{λiai} × [λiβi,+∞)

is (weak-) closed and convex.
To this end, consider for i = 1, ...,m, the function gi : L2[0, 1] → R, gi(x) =

sup(ai,βi)∈Ui{〈ai, x〉− βi}. The full domain of gi is a consequence of the compactness
of Ui and, since gi is convex and lower semicontinuous, it is actually continuous, for
i = 1, ...,m (see [?, Theorem 2.2.20]). Thus the feasible set of the problem (RP )
can be written as A := {x ∈ L2[0, 1] : gi(x) ≤ 0, i = 1, ...,m}.

Next, we calculate the conjugate function of gi, i = 1, ...,m. For i = 1, ....m and
x∗ ∈ L2[0, 1] it holds

g∗i (x
∗) = sup

x∈L2[0,1]

{
〈x∗, x〉 − sup

(ai,βi)∈Ui
{〈ai, x〉 − βi}

}
= sup

x∈L2[0,1]

min
(ai,βi)∈Ui

{〈x∗ − ai, x〉+ βi}

= − inf
x∈L2[0,1]

max
(ai,βi)∈Ui

{−〈x∗ − ai, x〉 − βi}.

Due to a minimax theorem (see, for instance, [21, Theorem 2.10.2]), we have

g∗i (x
∗) = − max

(ai,βi)∈Ui
inf

x∈L2[0,1]
{−〈x∗ − ai, x〉 − βi}

= min
(ai,βi)∈Ui

sup
x∈L2[0,1]

{〈x∗ − ai, x〉+ βi}

which means that g∗i (x
∗) = +∞, if x∗ 6∈ PrL2[0,1] Ui, being equal to min{βi : (x∗, βi) ∈

Ui}, otherwise. Consequently.

epi g∗i =
⋃

(ai,βi)∈Ui

{ai} × [βi,+∞) = Ui + ({0} × R+), i = 1, ...,m,

and, hence,

⋃
(ai,βi)∈Ui,λi≥0,

i=1,...,m

epi

(
m∑
i=1

λi(〈ai, ·〉 − βi)

)∗
=

m∑
i=1

⋃
λi≥0

epi(λigi)
∗

=
⋃
λi≥0,

i=1,...,m

m∑
i=1

epi(λigi)
∗ =

⋃
λi≥0,

i=1,...,m

epi

(
m∑
i=1

λigi

)∗
,

where the last equality follows from (1) by taking into account that the functions
gi are continuous, for i = 1, ...,m. Due to the Slater-type condition and using again
the compactness of the uncertainty sets, we have that

gi(x
′) < 0 for all i = 1, ...,m,

11



fact which, via [3, Theorem 8.2, Theorem 8.3 and Remark 8.4], implies that

⋃
(ai,βi)∈Ui,λi≥0,

i=1,...,m

epi

(
m∑
i=1

λi(〈ai, ·〉 − βi)

)∗
=

⋃
λi≥0,

i=1,...,m

epi

(
m∑
i=1

λigi

)∗
= epiσA

and furnishes, finally, the (weak-) closeness and the convexity of

⋃
(ai,βi)∈Ui,λi≥0,

i=1,...,m

epi

(
m∑
i=1

λi(〈ai, ·〉 − βi)

)∗
.

Consequently, as pointed out in Remark 2, (RBCQ) holds.
This means that, under the hypotheses of Theorem 6, the statement (iii) in

Theorem 5 is true. Taking further into consideration that the objective function of
(RP ) is continuous and coercive, we see that (RP ) attains its minimum over A (see,
for instance [2, Proposition 11.14]). Hence,

min
x∈L2[0,1]

{
1

2
‖x‖2 : 〈ai, x〉 ≤ βi ∀(ai, βi) ∈ Ui, i = 1, ...,m

}

= max
(ai,βi)∈Ui,λi≥0,

i=1,...,m

−1

2

∥∥∥∥∥
m∑
i=1

λiai

∥∥∥∥∥
2

−
m∑
i=1

λiβi

 .
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