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Abstract. In this paper we propose an algorithm for solving systems of coupled
monotone inclusions in Hilbert spaces. The operators arising in each of the inclusions of
the system are processed in each iteration separately, namely, the single-valued are eval-
uated explicitly (forward steps), while the set-valued ones via their resolvents (backward
steps). In addition, most of the steps in the iterative scheme can be executed simulta-
neously, this making the method applicable to a variety of convex minimization prob-
lems. The numerical performances of the proposed splitting algorithm are emphasized
through applications in average consensus on colored networks and image classification
via support vector machines.
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1 Introduction and problem formulation
In recent years several splitting algorithms have emerged for solving monotone inclusion
problems involving parallel sums and compositions with linear continuous operators,
which eventually are reduced to finding the zeros of the sum of a maximally monotone
operator and a cocoercive or a monotone and Lipschitz continuous operator. The later
problems were solved by employing in an appropriate product space forward-backward
or forward-backward-forward algorithms, respectively, and gave rise to so-called primal-
dual splitting methods (see [11,14,17,29] and the references therein).
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Recently, one can remark the interest of researchers in solving systems of monotone
inclusion problems [1, 4, 16]. This is motivated by the fact that convex optimization
problems arising, for instance, in areas like image processing [9], multifacility location
problems [12, 21], average consensus in network coloring [22, 23] and support vector
machines classification [19] are to be solved with respect to multiple variables, very
often linked in different manners, for instance, by linear equations.

The present research is motivated by the investigations made in [1]. The authors
propose there an algorithm for solving coupled monotone inclusion problems, where the
variables are linked by some operators which satisfy jointly a cocoercivity property. The
iterative scheme in [1] relies on a forward-backward algorithm applied in an appropriate
product space and it is employed in the solving of a class of convex optimization problems
with multiple variables where some of the functions involved need to be differentiable.
Our aim is to overcome the necessity of having differentiability for some of the functions
occurring in the objective of the convex optimization problems in [1]. To this end we
consider first a more general system of monotone inclusions, for which the coupling
operator satisfies a Lipschitz continuity property, along with its dual system of monotone
inclusions in an extended sense of the Attouch-Théra duality (see [2]). The simultaneous
solving of the primal and dual system of monotone inclusions is reduced to the problem
of finding the zeros of the sum of a maximally monotone operator and a monotone and
Lipschitz continuous operator in an appropriate product space. The latter problem is
solved by a forward-backward-forward algorithm, fact that allows us to provide for the
resulting iterative scheme, which proves to have a high parallelizable formulation, both
weak and strong convergence assertions.

The problem under consideration is as follows.

Problem 1.1. Let m ≥ 1 be a positive integer, (Hi)1≤i≤m be real Hilbert spaces and
for i = 1, ...,m let Bi : H1 × . . .×Hm → Hi be a µi-Lipschitz continuous operator with
µi ∈ R++ jointly satisfying the monotonicity property

(∀(x1, . . . , xm) ∈ H1 × . . .×Hm)(∀(y1, . . . , ym) ∈ H1 × . . .×Hm)
m∑
i=1
〈xi − yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi

≥ 0. (1.1)

For every i = 1, . . . ,m, let Gi be a real Hilbert space, Ai : Gi → 2Gi a maximally
monotone operator, Ci : Gi → 2Gi a monotone operator such that C−1

i is νi-Lipschitz
continuous with νi ∈ R+ and Li : Hi → Gi a linear continuous operator. The problem
is to solve the system of coupled inclusions (see (2.4) for the definition of the parallel
sum of two operators)

find x1 ∈ H1, . . . , xm ∈ Hm such that


0 ∈ L∗1(A1�C1)(L1x1) +B1(x1, . . . , xm)
...
0 ∈ L∗m(Am�Cm)(Lmxm) +Bm(x1, . . . , xm)

(1.2)
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together with its dual system

find v1 ∈ G1, . . . , vm ∈ Gm such that
(∃x1 ∈ H1, . . . ,∃xm ∈ Hm)



0 = L∗1v1 +B1(x1, . . . , xm)
...
0 = L∗mvm +Bm(x1, . . . , xm)
v1 ∈ (A1�C1)(L1x1)
...
vm ∈ (Am�Cm)(Lmxm)

. (1.3)

We say that (x1, . . . , xm, v1, . . . , vm) ∈ H1× . . .×Hm×G1 . . .×Gm is a primal-dual
solution to Problem 1.1, if

0 = L∗i vi +Bi(x1, . . . , xm) and vi ∈ (Ai�Ci)(Lixi), i = 1, . . . ,m. (1.4)

If (x1, . . . , xm, v1, . . . , vm) ∈ H1 × . . . × Hm × G1 . . . × Gm is a primal-dual solution to
Problem 1.1, then (x1, . . . , xm) is a solution to (1.2) and (v1, . . . , vm) is a solution to
(1.3). Notice also that

(x1, . . . , xm) solves (1.2)⇔ 0 ∈ L∗i (Ai�Ci)(Lixi) +Bi(x1, . . . , xm), i = 1, . . . ,m⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that
{

0 = L∗i vi +Bi(x1, . . . , xm), i = 1, . . . ,m
vi ∈ (Ai�Ci)(Lixi), i = 1, . . . ,m. .

Thus, if (x1, . . . , xm) is a solution to (1.2), then there exists (v1, . . . , vm) ∈ G1 × . . .Gm
such that (x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem 1.1 and, if
(v1, . . . , vm) ∈ G1 × . . .Gm is a solution to (1.3), then there exists (x1, . . . , xm) ∈
H1 × . . . ×Hm such that (x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem
1.1.

The paper is organized as follows. In the next section we give some necessary no-
tations and preliminary results in order to facilitate the reading of the manuscript.
In Section 3 we formulate the primal-dual splitting algorithm for solving Problem 1.1
and investigate its convergence behaviour, while in Section 4 applications to solving
primal-dual pairs of convex optimization problems are presented. Finally, in Section
5, we present two applications of the proposed algorithm addressing the average con-
sensus problem on colored networks and the classification of images via support vector
machines.

2 Notations and preliminaries
Let us recall some elements of convex analysis and monotone operator theory which are
needed in the sequel (see [3, 5, 6, 20,25,30]).

For every real Hilbert space occurring in the paper we generically denote its inner
product with 〈·|·〉 and the associated norm with ‖·‖ =

√
〈·|·〉. In order to avoid confusion,

when needed, appropriate indices for the inner product and norm are used. The symbols
⇀ and → denote weak and strong convergence, respectively. Further, R+ denotes the
set of nonnegative real numbers, R++ the set of strictly positive real numbers and
R = R ∪ {±∞} the extended real-line.
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Let H be a real Hilbert space. The indicator function δC : H → R of a set C ⊆ H is
defined by δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise. If C is convex, we denote
by sqriC := {x ∈ C : ∪λ>0λ(C − x) is a closed linear subspace of H} its strong quasi-
relative interior. Notice that we always have intC ⊆ sqriC (in general this inclusion
may be strict). If H is finite-dimensional, then sqriC coincides with riC, the relative
interior of C, which is the interior of C with respect to its affine hull.

For a function f : H → R we denote by dom f := {x ∈ H : f(x) < +∞} its effective
domain and call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ H. We denote by
Γ(H) the set of proper, convex and lower semicontinuous functions f : H → R. The
conjugate function of f is f∗ : H → R, f∗(u) = sup {〈u, x〉 − f(x) : x ∈ H} for all u ∈ H
and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The function f is said to be γ-strongly convex
with γ > 0, if f − γ/2‖ · ‖2 is convex. The (convex) subdifferential of the function f at
x ∈ H is the set ∂f(x) = {u ∈ H | (∀y ∈ H) 〈y − x | u〉 + f(x) ≤ f(y)

}
, if f(x) ∈ R,

and is taken to be the empty set, otherwise. The infimal convolution of two proper
functions f, g : H → R is defined by

f � g : H → R, f � g(x) = inf
y∈H
{f(y) + g(x− y)} .

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by Proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) + 1

2γ ‖y − x‖
2
}
. (2.1)

We have Moreau’s decomposition formula

Proxγf +γ Prox(1/γ)f∗ ◦γ−1 Id = Id, (2.2)

where operator Id denotes the identity on the underlying Hilbert space.
Let 2H be the power set of H, M : H → 2H a set-valued operator and γ > 0.

We denote by zerM = {x ∈ H : 0 ∈ Mx} the set of zeros of M and by graM =
{(x, u) ∈ H×H : u ∈Mx} the graph of M . We say that the operator M is monotone if
〈x− y|u− v〉 ≥ 0 for all (x, u), (y, v) ∈ graM and it is said to be maximally monotone
if there exists no monotone operator N : H → 2H such that graN properly contains
graM . The operator M is said to be uniformly monotone with modulus φM : R+ →
R+ ∪ {+∞}, if φM is increasing, vanishes only at 0, and 〈x− y|u− v〉 ≥ φM (‖x− y‖)
for all (x, u), (y, v) ∈ graM . A prominent representative of the class of uniformly
monotone operators are the strongly monotone operators. We say that M is γ-strongly
monotone, if 〈x− y, u− v〉 ≥ γ‖x− y‖2 for all (x, u), (y, v) ∈ graM .

The inverse of M is M−1 : H → 2H, u 7→ {x ∈ H : u ∈ Mx}. The resolvent of an
operatorM : H → 2H is JM : H → 2H, JM = (Id +M)−1. IfM is maximally monotone,
then JM : H → H is single-valued and maximally monotone (cf. [3, Proposition 23.7
and Corollary 23.10]). We have (see [3, Proposition 23.18])

JγM + γJγ−1M−1 ◦ γ−1 Id = Id . (2.3)

A single-valued operatorM : H → H is said to be γ-cocoercive, if 〈x−y,Mx−My〉 ≥
γ‖Mx−My‖2 for all (x, y) ∈ H×H, while M is γ-Lipschitz continuous (here we allow
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also γ = 0 in order to comprise also the zero operator), if ‖Mx−My‖ ≤ γ‖x−y‖ for all
(x, y) ∈ H ×H. Obviously, every γ-cocoercive operator is monotone and γ−1-Lipschitz
continuous.

The parallel sum of two set-valued operators M, N : H → 2H is defined as

M �N : H → 2H,M �N =
(
M−1 +N−1

)−1
. (2.4)

If f ∈ Γ(H), then ∂f : H → 2H is a maximally monotone operator and (∂f)−1 = ∂f∗.
Moreover, Jγ∂f = (IdH+γ∂f)−1 = Proxγf .

Finally, we notice that for f = δC , where C ⊆ H is a nonempty convex and closed
set, it holds

J∂δC
= ProxδC

= PC , (2.5)
where PC : H → C denotes the projection operator on C (see [3, Example 23.3 and
Example 23.4]).

When G is a another real Hilbert space and L : H → G is a linear continuous
operator, then the norm of L is defined as ‖L‖ = sup{‖Lx‖ : x ∈ H, ‖x‖ ≤ 1}, while
L∗ : G → H, defined by 〈Lx|y〉 = 〈x|L∗y〉 for all (x, y) ∈ H × G, denotes the adjoint
operator of L.

3 The primal-dual splitting algorithm
The aim of this section is to provide an algorithm for solving Problem 1.1 and to furnish
weak and strong convergence results for the sequences generated by it. The proposed
iterative scheme has the property that each single-valued operator is processed explicitly,
while each set-valued operator is evaluated via its resolvent. Absolutely summable
sequences make the algorithm error-tolerant.

Algorithm 3.1.
For every i = 1, . . . ,m let (a1,i,n)n≥0, (b1,i,n)n≥0, (c1,i,n)n≥0 be absolutely summable
sequences in Hi and (a2,i,n)n≥0, (b2,i,n)n≥0, (c2,i,n)n≥0 absolutely summable sequences
in Gi. Furthermore, set

β = max


√√√√ m∑
i=1

µ2
i , ν1, . . . , νm

+ max
i=1,...,m

‖Li‖ , (3.1)

let ε ∈]0, 1/(β + 1)[ and (γn)n≥0 be a sequence in [ε, (1− ε)/β]. For every i = 1, . . . ,m
let the initial points xi,0 ∈ Hi and vi,0 ∈ Gi be chosen arbitrary and set

(∀n ≥ 0)



For i = 1, . . . ,m
yi,n = xi,n − γn(L∗i vi,n +Bi(x1,n, . . . , xm,n) + a1,i,n)
wi,n = vi,n − γn(C−1

i vi,n − Lixi,n + a2,i,n)
pi,n = yi,n + b1,i,n
ri,n = JγnA

−1
i
wi,n + b2,i,n

qi,n = pi,n − γn(L∗i ri,n +Bi(p1,n, . . . , pm,n) + c1,i,n)
si,n = ri,n − γn(C−1

i ri,n − Lipi,n + c2,i,n)
xi,n+1 = xi,n − yi,n + qi,n
vi,n+1 = vi,n − wi,n + si,n.

5



The following theorem establishes the convergence of Algorithm 3.1 by showing
that its iterative scheme can be reduced to the error-tolerant version of the forward-
backward-forward algorithm of Tseng (see [28]) recently provided in [11].

Theorem 3.1. Suppose that Problem 1.1 has a primal-dual solution. For the sequences
generated by Algorithm 3.1 the following statements are true:

(i) (∀i ∈ {1, . . . ,m})
∑
n≥0
‖xi,n − pi,n‖2Hi

< +∞ and
∑
n≥0
‖vi,n − ri,n‖2Gi

< +∞.

(ii) There exists a primal-dual solution (x1, . . . , xm, v1, . . . , vm) to Problem 1.1 such
that:

(a) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi, pi,n ⇀ xi, vi,n ⇀ vi and ri,n ⇀ vi as n→ +∞.
(b) if C−1

i , i = 1, ...,m, is uniformly monotone and there exists an increasing
function φB : R+ → R+ ∪ {+∞} vanishing only at 0 and fulfilling

(∀(x1, . . . , xm) ∈ H1 × . . .×Hm)(∀(y1, . . . , ym) ∈ H1 × . . .×Hm)
m∑
i=1
〈xi − yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi

≥

φB
(
‖(x1, . . . , xm)− (y1, . . . , ym)‖

)
, (3.2)

then (∀i ∈ {1, . . . ,m}) xi,n → xi, pi,n → xi, vi,n → vi and ri,n → vi as
n→ +∞.

Proof. We introduce the real Hilbert space H = H1× . . .×Hm endowed with the inner
product and associated norm defined for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈H as

〈x|y〉H =
m∑
i=1
〈xi|yi〉Hi

and ‖x‖H =

√√√√ m∑
i=1
‖xi‖2Hi

, (3.3)

respectively. Furthermore, we consider the real Hilbert space G = G1 × . . . × Gm en-
dowed with inner product and associated norm defined for v = (v1, . . . , vm), w =
(w1, . . . , wm) ∈ G as

〈v|w〉G =
m∑
i=1
〈vi|wi〉Gi

and ‖v‖G =

√√√√ m∑
i=1
‖vi‖2Gi

, (3.4)

respectively. Let us now consider the Hilbert space K = H×G endowed with the inner
product and associated norm defined, for (x,v), (y,w) ∈ K, as

〈(x,v)|(y,w)〉K = 〈x|y〉H + 〈v|w〉G and ‖(x,v)‖K =
√
‖x‖2H + ‖v‖2G , (3.5)

respectively. Consider the set-valued operator

A : K→ 2K,

(x1, . . . , xm, v1, . . . , vm) 7→ (0, . . . , 0, A−1
1 v1, . . . , A

−1
m vm)
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and the single-valued operator

B : K→ K,
(x1, . . . , xm, v1, . . . , vm) 7→ (L∗1v1 +B1(x1, . . . , xm), . . . , L∗mvm +Bm(x1, . . . , xm),

C−1
1 v1 − L1x1, . . . , C

−1
m vm − Lmxm)

We set

x = (x1, . . . , xm, v1, . . . , vm). (3.6)

Then

x ∈ zer(A + B)⇔



0 = L∗1v1 +B1(x1, . . . , xm)
...
0 = L∗mvm +Bm(x1, . . . , xm)
0 ∈ A−1

1 v1 + C−1
1 v1 − L1x1

...
0 ∈ A−1

m vm + C−1
m vm − Lmxm

⇔



0 = L∗1v1 +B1(x1, . . . , xm)
...
0 = L∗mvm +Bm(x1, . . . , xm)
v1 ∈ (A−1

1 + C−1
1 )−1(L1x1)

...
vm ∈ (A−1

m + C−1
m )−1(Lmxm)

⇔



0 = L∗1v1 +B1(x1, . . . , xm)
...
0 = L∗mvm +Bm(x1, . . . , xm)
v1 ∈ (A1�C1)(L1x1)
...
vm ∈ (Am�Cm)(Lmxm)

.

Consequently, x = (x1, . . . , xm, v1, . . . , vm) is a zero of the sum A + B if and only if
(x1, . . . , xm, v1, . . . , vm) is a primal-dual solution to Problem 1.1. As already noticed,
in this case, (x1, . . . , xm) solves the primal system (1.2) and (v1, . . . , vm) solves its dual
system (1.3). Therefore, in order to determine a primal-dual solution to Problem 1.1,
it is enough to find a zero of A + B.

Further, we will determine the nature of the operators A and B. Since the operators
Ai, i = 1, ...,m, are maximally monotone, A is maximally monotone, too (cf. [3, Propo-
sition 20.22 and Proposition 20.23]). Furthermore, by [3, Proposition 23.16], for all
γ ∈ R++ and all (x1, . . . , xm, v1, . . . , vm) ∈ K we have

JγA(x1, . . . , xm, v1, . . . , vm) = (x1, . . . , xm, JγA−1
1
v1, . . . , JγA−1

m
vm). (3.7)
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Coming now to B, let us prove first that this operator is monotone. Let
(x1, . . . , xm, v1, . . . , vm) and (y1, . . . , ym, w1, . . . , wm) be two points in K. Using (1.1)
and the monotonicity of C−1

i , i = 1, . . . ,m, we obtain

〈(x1, . . . , xm, v1, . . . , vm)− (y1, . . . , ym, w1, . . . , wm)|
B(x1, . . . , xm, v1, . . . , vm)−B(y1, . . . , ym, w1, . . . , wm)〉K

= 〈(x1 − y1, . . . , xm − ym, v1 − w1, . . . , vm − wm)|(
B1(x1, . . . , xm)−B1(y1, . . . , ym) + L∗1(v1 − w1), . . . ,
Bm(x1, . . . , xm)−Bm(y1, . . . , ym) + L∗m(vm − wm),
C−1

1 v1 − C−1
1 w1 − L1(x1 − y1), . . . , C−1

m vm − C−1
m wm − Lm(xm − ym)

)
〉K

=
m∑
i=1
〈xi − yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi

+
m∑
i=1

〈
vi − wi|C−1

i vi − C−1
i wi

〉
Gi

+
m∑
i=1

(
〈xi − yi|L∗i (vi − wi)〉 − 〈vi − wi|Li(xi − yi)〉Hi

)
=

m∑
i=1
〈xi − yi|Bi(x1, . . . , xm)Hi −Bi(y1, . . . , ym)〉Hi

+
m∑
i=1

〈
vi − wi|C−1

i vi − C−1
i wi

〉
Gi

≥ 0. (3.8)

Further, we show that B is a Lipschitz continuous operator and consider to this end
(x1, . . . , xm, v1, . . . , vm), (y1, . . . , ym, w1, . . . , wm) ∈ K. It holds∥∥∥B(x1, . . . , xm, v1, . . . , vm)−B(y1, . . . , ym, w1, . . . , wm)

∥∥∥
K

=
∥∥∥((B1(x1, . . . , xm)−B1(y1, . . . , ym), . . . , Bm(x1, . . . , xm)−Bm(y1, . . . , ym),

C−1
1 v1 − C−1

1 w1, . . . , C
−1
m vm − C−1

m wm
)

+
(
L∗1(v1 − w1), . . . , L∗m(vm − wm),−L1(x1 − y1), . . . ,−Lm(xm − ym)

)∥∥∥
K

≤
∥∥∥((B1(x1, . . . , xm)−B1(y1, . . . , ym), . . . , Bm(x1, . . . , xm)−Bm(y1, . . . , ym),

C−1
1 v1 − C−1

1 w1, . . . , C
−1
m vm − C−1

m wm
)∥∥∥

K

+
∥∥∥L∗1(v1 − w1), . . . , L∗m(vm − wm),−L1(x1 − y1), . . . ,−Lm(xm − ym)

∥∥∥
K

=

√√√√ m∑
i=1
‖Bi(x1, . . . , xm)−Bi(y1, . . . , ym)‖2Hi

+
m∑
i=1

∥∥∥C−1
i vi − C−1

i wi
∥∥∥2

Gi

+

√√√√ m∑
i=1
‖L∗i (vi − wi)‖

2
Hi

+
m∑
i=1
‖Li(xi − yi)‖2Gi

≤

√√√√ m∑
i=1

(
µ2
i

m∑
j=1
‖xj − yj‖2Hj

)
+

m∑
i=1

ν2
i ‖vi − wi‖

2
Gi

+

√√√√ m∑
i=1
‖Li‖2 ‖vi − wi‖2Gi

+
m∑
i=1
‖Li‖2 ‖xi − yi‖2Hi
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≤

√√√√( m∑
i=1

µ2
i

)( m∑
i=1
‖xi − yi‖2Hi

)
+ max
i=1,...,m

ν2
i

m∑
i=1
‖vi − wi‖2Gi

+

√√√√ max
i=1,...,m

‖Li‖2
( m∑
i=1
‖vi − wi‖2Gi

+
m∑
i=1
‖xi − yi‖2Hi

)
≤β ‖(x1, . . . , xm, v1, . . . , vm)− (y1, . . . , ym, w1, . . . , wm)‖K , (3.9)

hence, B is β-Lipschitz continuous, where β is the constant defined in (3.1).
Setting

(∀n ≥ 0)


xn = (x1,n, . . . , xm,n, v1,n, . . . , vm,n)
yn = (y1,n, . . . , ym,n, w1,n, . . . , wm,n)
pn = (p1,n, . . . , pm,n, r1,n, . . . , rm,n)
qn = (q1,n, . . . , qm,n, s1,n, . . . , sm,n)

and

(∀n ≥ 0)


an = (a1,1,n, . . . , a1,m,n, a2,1,n, . . . , a2,m,n)
bn = (b1,1,n, . . . , b1,m,n, b2,1,n, . . . , b2,m,n)
cn = (c1,1,n, . . . , c1,m,n, c2,1,n, . . . , c2,m,n)

,

the summability hypotheses imply that∑
n≥0
‖an‖K < +∞,

∑
n≥0
‖bn‖K < +∞ and

∑
n≥0
‖cn‖K < +∞. (3.10)

Furthermore, it follows that the iterative scheme in Algorithm 3.1 can be written as

(∀n ≥ 0)


yn = xn − γn(Bxn + an)
pn = JγnAyn + bn
qn = pn − γn(Bpn + cn)
xn+1 = xn − yn + qn.

(3.11)

thus, it has the structure of the error-tolerant forward-backward-forward algorithm
given in [11].

(i) It follows from [11, Theorem 2.5(i)] that∑
n≥0
‖xn − pn‖

2
K < +∞. (3.12)

This means that∑
n≥0
‖xn − pn‖

2
K =

∑
n≥0

m∑
i=1

(
‖xi,n − pi,n‖2Hi

+ ‖vi,n − ri,n‖2Gi

)

=
m∑
i=1

∑
n≥0
‖xi,n − pi,n‖2Hi

+
m∑
i=1

∑
n≥0
‖vi,n − ri,n‖2Gi

< +∞. (3.13)

Hence

(∀i ∈ {1, . . . ,m})
∑
n≥0
‖xi,n − pi,n‖2Hi

< +∞ and
∑
n≥0
‖vi,n − ri,n‖2Gi

< +∞. (3.14)
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(ii) It follows from [11, Theorem 2.5(ii)] that there exists an element x =
(x1, . . . , xm, v1, . . . , vm) in the set zer(A + B), thus a primal-dual solution to Prob-
lem 1.1, such that

xn ⇀ x and pn ⇀ x. (3.15)

(ii)(a) It is a direct consequence of (3.15)).
(ii)(b) Let be i ∈ {1, ...,m}. Since C−1

i is uniformly monotone, there exists an
increasing function φC−1

i
: R+ → R+ ∪ {+∞}, vanishing only at 0, such that

〈x− y, v − w〉Gi
≥ φC−1

i
(‖x− y‖Gi

) ∀(x, v), (y, w) ∈ gra C−1
i . (3.16)

Taking into consideration (3.2), we define the function φB : R+ → R+ ∪ {+∞},

φB(c) = inf
{
φB(a) +

m∑
i=1

φC−1
i

(bi) :

√√√√a2 +
m∑
i=1

b2
i = c

}
, (3.17)

which is increasing, it vanishes only at 0 and it fulfills due to (3.8) the following in-
equality

〈(x1, . . . , xm, v1, . . . , vm)− (y1, . . . , ym, w1, . . . , wm)|
B(x1, . . . , xm, v1, . . . , vm)−B(y1, . . . , ym, w1, . . . , wm)〉K

=
m∑
i=1
〈xi − yi|Bi(x1, . . . , xm)−Bi(y1, . . . , ym)〉Hi

+
m∑
i=1

〈
vi − wi|C−1

i vi − C−1
i wi

〉
Gi

≥φB
(
‖(x1, . . . , xm)− (y1, . . . , ym)‖H

)
+

m∑
i=1

φC−1
i

(
‖vi − wi‖Gi

)
≥φB

(
‖x− y‖K

)
,∀x = (x1, . . . , xm, v1, . . . , vm),y = (y1, . . . , ym, w1, . . . , wm) ∈ K.

(3.18)

Consequently, B is uniformly monotone and, according to [11, Theorem 2.5(iii)(b)], it
follows that xn → x and pn → x as n→ +∞. This leads to the desired conclusion.

4 Applications to convex minimization problems
In this section we turn our attention to the solving of convex minimization problems
with multiple variables via the primal-dual algorithm presented and investigated in this
paper.

Problem 4.1. Let m ≥ 1 and p ≥ 1 be positive integers, (Hi)1≤i≤m, (H′i)1≤i≤m and
(Gj)1≤j≤p be real Hilbert spaces, fi, hi ∈ Γ(H′i) such that hi is ν−1

i -strongly convex
with νi ∈ R++, i = 1, ...,m, and gj ∈ Γ(Gj) for i = 1, ...,m, j = 1, ..., p. Further, let be
Ki : Hi → H

′
i and Lji : Hi → Gj , i = 1, ...,m, j = 1, ..., p linear continuous operators.

Consider the convex optimization problem

inf
(x1,...,xm)∈H1×...×Hm


m∑
i=1

(fi�hi)(Kixi) +
p∑
j=1

gj

(
m∑
i=1

Ljixi

) . (4.1)
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In what follows we show that under an appropriate qualification condition solving
the convex optimization problem (4.1) can be reduced to the solving of a system of
monotone inclusions of type (1.2).

Define the following proper convex and lower semicontinuous function (see [3, Corol-
lary 11.16 and Proposition 12.14])

f : H′1 × . . .×H
′
m → R, (y1, . . . , ym) 7→

m∑
i=1

(fi�hi)(yi),

and the linear continuous operator

K : H1 × . . .×Hm → H
′
1 × . . .×H

′
m, (x1, . . . , xm) 7→ (K1x1, . . . ,Kmxm),

having as adjoint

K∗ : H′1 × . . .×H
′
m → H1 × . . .×Hm, (y1, . . . , ym) 7→ (K∗1y1, . . . ,K

∗
mym).

Further, consider the linear continuous operators

Lj : H1 × . . .×Hm → Gj , (x1, . . . , xm) 7→
m∑
i=1

Ljixi, j = 1, ..., p,

having as adjoints

L∗j : Gj → H1 × . . .×Hm, y 7→ (L∗j1y, . . . , L∗jmy), j = 1, ..., p,

respectively. We have

(x1, . . . , xm) is an optimal solution to (4.1)

⇔ (0, . . . , 0) ∈ ∂

f ◦K +
p∑
j=1

gj ◦ Lj

 (x1, . . . xm). (4.2)

In order to split the above subdifferential in a sum of subdifferentials a so-called
qualification condition must be fulfilled. In this context, we consider the following
interiority-type qualification conditions:

(QC1)

∣∣∣∣∣∣∣
there exists x′i ∈ Hi such that
Kix

′
i ∈ (dom fi + dom hi) and fi�hi is continuous at Kix

′
i, i = 1, ...,m,

and
∑m
i=1 Ljix

′
i ∈ dom gj and gj is continuous at

∑m
i=1 Ljix

′
i, j = 1, ..., p

and

(QC2)

∣∣∣∣∣∣∣∣∣
(0, . . . , 0) ∈ sqri

(∏m
i=1(dom fi + dom hi)×

∏p
j=1 dom gj

−{(K1x1, . . . ,Kmxm,
∑m
i=1 L1ixi, . . . ,

∑m
i=1 Lpixi) :

(x1, . . . , xm) ∈ H1 × . . .×Hm}
)
.

We notice that (QC1)⇒ (QC2), these implications being in general strict, and refer the
reader to [3, 5, 6, 20, 27, 30] and the references therein for other qualification conditions
in convex optimization.
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Remark 4.1. As already pointed out, due to [3, Corollary 11.16 and Proposition 12.14],
for i = 1, ...,m, fi�hi ∈ Γ(H′i), hence, it is continuous on int(dom fi+dom hi), providing
this set is nonempty (see [20, 30]). For other results regarding the continuity of the
infimal convolution of convex functions we invite the reader to consult [26].

Remark 4.2. In finite-dimensional spaces the qualification condition (QC2) is equiva-
lent to

(QC2)
∣∣∣∣∣ there exists x′i ∈ Hi such that Kix

′
i ∈ ri dom fi + ri dom hi, i = 1, ...,m,

and
∑m
i=1 Ljix

′
i ∈ ri dom gj , j = 1, ..., p.

Assuming that one of the qualification conditions above is fulfilled, we have that

(x1, . . . , xm) is an optimal solution to (4.1)

⇔ (0, . . . , 0) ∈ K∗∂f
(
K(x1, . . . xm)

)
+

p∑
j=1

L∗j∂gj
(
Lj(x1, . . . xm)

)
⇔ (0, . . . , 0) ∈

(
K∗1∂(f1�h1)(K1x1), . . . ,K∗m∂(fm�hm)(Kmxm)

)
+

p∑
j=1

L∗j∂gj
(
Lj(x1, . . . xm)

)
. (4.3)

The strong convexity of the functions hi imply that dom h∗i = H′i (see [3, Corollary
11.16, Proposition 14.15]) and so ∂(fi�hi) = ∂fi�∂hi, i = 1, ...,m, (see [3, Proposition
24.27]). Thus, (4.3) is further equivalent to

(0, . . . , 0) ∈
(
K∗1 (∂f1�∂h1)(K1x1), . . . ,K∗m(∂fm�∂hm)(Kmxm)

)
+

p∑
j=1

L∗jvj ,

where

vj ∈ ∂gj
(
Lj(x1, . . . xm)

)
⇔ vj ∈ ∂gj

( m∑
i=1

Ljixi
)
⇔

m∑
i=1

Ljixi ∈ ∂g∗j (vj), j = 1, ..., p.

Then (x1, . . . , xm) is an optimal solution to (4.1) if and only if (x1, . . . , xm, v1, . . . , vp)
is a solution to 

0 ∈ K∗1 (∂f1�∂h1)(K1x1) +
∑p
j=1 L

∗
j1vj

...
0 ∈ K∗m(∂fm�∂hm)(Kmxm) +

∑p
j=1 L

∗
jmvj

0 ∈ ∂g∗1(v1)−
∑m
i=1 L1ixi

...
0 ∈ ∂g∗p(vp)−

∑m
i=1 Lpixi.

(4.4)

One can see now that (4.4) is a system of coupled inclusions of type (1.2), by taking

Ai = ∂fi, Ci = ∂hi, Li = Ki, i = 1, ...,m,
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Am+j = ∂g∗j , Cm+j(x) =
{
Gj , x = 0
∅, otherwise , Lm+j = IdGj , j = 1, ..., p,

and, for (x1, ..., xm, v1, ..., vp) ∈ H1 × . . .Hm × G1 × . . .× Gp, as coupling operators

Bi(x1, . . . , xm, v1, . . . , vp) =
p∑
j=1

L∗jivj , i = 1, . . . ,m,

and

Bm+j(x1, . . . , xm, v1, . . . , vp) = −
m∑
i=1

Ljixi, j = 1, . . . , p.

Define

B(x1, . . . , xm, v1, . . . , vp) = (B1, . . . , Bm+p)(x1, . . . , xm, v1, . . . , vp) (4.5)

=

 p∑
j=1

L∗j1vj , . . . ,
p∑
j=1

L∗jmvj ,−
m∑
i=1

L1ixi, . . . ,−
m∑
i=1

Lpixi

 .
(4.6)

According to [3, Proposition 17.26(i), Corollary 16.24 and Theorem 18.15)] it follows
that C−1

i = (∂hi)−1 = ∂h∗i = {∇h∗i } is νi-Lipschitz continuous for i = 1, ...,m. On the
other hand, C−1

m+j is the zero operator for j = 1, ..., p, thus 0-Lipschitz continuous.
Furthermore, the operators Bi, i = 1, ...,m+ p are linear and Lipschitz continuous,

having as Lipschitz constants

µi =

√√√√ p∑
j=1
‖Lji‖2, i = 1, ...,m, and µm+j =

√√√√ m∑
i=1
‖Lji‖2, j = 1, ..., p,

respectively. For every (x1, . . . , xm, v1, . . . , vp), (y1, . . . , ym, w1, . . . , wp) ∈ H1 × . . . ×
Hm × G1 × . . .× Gp it holds

m∑
i=1
〈xi − yi|Bi(x1, . . . , xm, v1, . . . , vp)−Bi(y1, . . . , ym, w1, . . . , wp)〉Hi

+
p∑
j=1
〈vj − wj |Bm+j(x1, . . . , xm, v1, . . . , vp)−Bm+j(y1, . . . , ym, w1, . . . , wp)〉Gj

=
m∑
i=1

〈
xi − yi|

p∑
j=1

L∗jivj −
p∑
j=1

L∗jiwj

〉
Hi

−
p∑
j=1

〈
vj − wj |

m∑
i=1

Ljixi −
m∑
i=1

Ljiyi

〉
Gj

= 0,

thus (1.1) is fulfilled. This proves also that the linear continuous operator B is skew
(i.e. B∗ = −B).

Remark 4.3. Due to the fact that the operator B is skew, it is not cocoercive, hence,
the approach presented in [1] cannot be applied in this context. On the other hand,
in the light of the characterization given in (4.2), in order to determine an optimal
solution of the optimization problem (4.1) (and an optimal solution of its Fenchel-type
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dual as well) one can use the primal-dual proximal splitting algorithms which have been
recently introduced in [17, 29]. These approaches have the particularity to deal in an
efficient way with sums of compositions of proper, convex and lower semicontinuous
function with linear continuous operators, by evaluating separately each function via
a backward step and each linear continuous operator (and its adjoint) via a forward
step. However, the iterative scheme we propose in this section for solving (4.1) has the
advantage of exploiting the separable structure of the problem.

Let us also mention that the dual inclusion problem of (4.4) reads (see (1.3))

find w1 ∈ H
′
1, . . . , wm ∈ H

′
m,

wm+1 ∈ G1, . . . , wm+p ∈ Gp such that
(∃x1 ∈ H1, . . . ,∃xm ∈ Hm,∃v1 ∈ G1, . . . ,∃vp ∈ Gp)



0 = K∗1w1 +
∑p
j=1 L

∗
j1vj

...
0 = K∗mwm +

∑p
j=1 L

∗
jmvj

0 = wm+1 −
∑m
i=1 L1ixi

...
0 = wm+p −

∑m
i=1 Lpixi

w1 ∈ (∂f1�∂h1)(K1x1)
...
wm ∈ (∂fm�∂hm)(Kmxm)
wm+1 ∈ ∂g∗1(v1)
...
wm+p ∈ ∂g∗p(vp).

(4.7)

Then (x1, ...xm, v1, ..., vp, w1, ..., wm, wm+1, ..., wm+p) is a primal-dual solution to (4.4)
- (4.7), if

wi ∈ (∂fi�∂hi)(Kixi), wm+j ∈ ∂g∗j (vj),

0 = K∗i wi +
p∑
j=1

L∗jivj and 0 = wm+j −
m∑
i=1

Ljixi, i = 1, ...,m, j = 1, ..., p.

Provided that (x1, ...xm, v1, ..., vp, w1, ..., wm, wm+1, ..., wm+p) is a primal-dual solu-
tion to (4.4) - (4.7), it follows that (x1, ...xm) is an optimal solution to (4.1) and
(w1, ..., wm, v1, ..., vp) is an optimal solution to its Fenchel-type dual problem

sup
(w1,...,wm,wm+1,...,wm+p)∈H′1×...×H

′
m×G1×...×Gp

K∗i wi+
∑p

j=1 L
∗
jiwm+j=0,i=1,...,m

−
m∑
i=1

(f∗i (wi) + h∗i (wi))−
p∑
j=1

g∗j (wm+j)

 .
(4.8)

Algorithm 3.1 gives rise to the following iterative scheme for solving (4.4) - (4.7).

Algorithm 4.1.
For every i = 1, . . . ,m and every j = 1, . . . , p let (a1,i,n)n≥0, (b1,i,n)n≥0, (c1,i,n)n≥0,
be absolutely summable sequences in Hi, (a2,i,n)n≥0, (b2,i,n)n≥0, (c2,i,n)n≥0 be ab-
solutely summable sequences in H′i and (a1,m+j,n)n≥0, (a2,m+j,n)n≥0, (b1,m+j,n)n≥0,
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(b2,m+j,n)n≥0, (c1,m+j,n)n≥0 and (c2,m+j,n)n≥0 be absolutely summable sequences in Gj .
Furthermore, set

β = max


√√√√m+p∑

i=1
µ2
i , ν1, . . . , νm

+ max {‖K1‖ , . . . , ‖Km‖ , 1} , (4.9)

where

µi =

√√√√ p∑
j=1
‖Lji‖2, i = 1, . . . ,m, and µm+j =

√√√√ m∑
i=1
‖Lji‖2, j = 1, . . . , p, (4.10)

let ε ∈]0, 1/(β + 1)[ and (γn)n≥0 be a sequence in [ε, (1 − ε)/β]. Let the initial
points (x1,1,0, . . . , x1,m,0) ∈ H1 × . . . × Hm, (x2,1,0, . . . , x2,m,0) ∈ H′1 × . . . × H′m and
(v1,1,0, . . . , v1,p,0), (v2,1,0, . . . , v2,p,0) ∈ G1 × . . .× Gp be arbitrary chosen and set

(∀n ≥ 0)



For i = 1, . . . ,m
y1,i,n = x1,i,n − γn

(
K∗i x2,i,n +

∑p
j=1 L

∗
jiv1,j,n + a1,i,n

)
y2,i,n = x2,i,n − γn(∇h∗ix2,i,n −Kix1,i,n + a2,i,n)
p1,i,n = y1,i,n + b1,i,n
p2,i,n = Proxγnf∗i

y2,i,n + b2,i,n
For j = 1, . . . , p
w1,j,n = v1,j,n − γn (v2,j,n −

∑m
i=1 Ljix1,i,n + a1,m+j,n)

w2,j,n = v2,j,n − γn(−v1,j,n + a2,m+j,n)
r1,j,n = w1,j,n + b1,m+j,n
r2,j,n = Proxγngj w2,j,n + b2,m+j,n

For i = 1, . . . ,m
q1,i,n = p1,i,n − γn

(
K∗i p2,i,n +

∑p
j=1 L

∗
jir1,j,n + c1,i,n

)
q2,i,n = p2,i,n − γn(∇h∗i p2,i,n −Kip1,i,n + c2,i,n)
x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n
x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

For j = 1, . . . , p
s1,j,n = r1,j,n − γn (r2,j,n −

∑m
i=1 Ljip1,i,n + c1,m+j,n)

s2,j,n = r2,j,n − γn(−r1,j,n + c2,m+j,n)
v1,j,n+1 = v1,j,n − w1,j,n + s1,j,n
v2,j,n+1 = v2,j,n − w2,j,n + s2,j,n.

The following convergence result for Algorithm 4.1 is a consequence of Theorem 3.1.

Theorem 4.1. Suppose that the optimization problem (4.1) has an optimal solution and
that one of the qualification conditions (QCi), i = 1, 2, is fulfilled. For the sequences
generated by Algorithm 4.1 the following statements are true:

(i) (∀i ∈ {1, . . . ,m})
∑
n≥0
‖x1,i,n − p1,i,n‖2Hi

< +∞,
∑
n≥0
‖x2,i,n − p2,i,n‖2Hi

< +∞ and

(∀j ∈ {1, . . . , p})
∑
n≥0
‖v1,j,n − r1,j,n‖2Gj

< +∞,
∑
n≥0
‖v2,j,n − r2,j,n‖2Gj

< +∞.
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(ii) There exists an optimal solution (x1, . . . , xm) to (4.1) and an optimal solution
(w1, . . . , wm, wm+1, . . . , wm+p) to (4.8), such that (∀i ∈ {1, . . . ,m}) x1,i,n ⇀ xi,
p1,i,n ⇀ xi, x2,i,n ⇀ wi and p2,i,n ⇀ wi and (∀j ∈ {1, . . . , p}) v1,j,n ⇀ wm+j and
r1,j,n ⇀ wm+j as n→ +∞.

Remark 4.4. Recently, in [16], another iterative scheme for solving systems of mono-
tone inclusions, that is also able to handle with the solving of optimization problems of
type (4.1), in case when the functions gj , j = 1, ..., p, are not necessarily differentiable,
was proposed. Different to our approach, which assumes that the variables are coupled
by the single-valued operator B, in [16] the coupling is made by some compositions of
parallel sums of maximally monotone operators with linear continuous ones.

5 Numerical experiments
In this section we present two numerical experiments which emphasize the performances
of the primal-dual algorithm for systems of monotone inclusions.

5.1 Average consensus for colored networks

The first numerical experiment that we consider concerns the problem of average con-
sensus on colored networks.

Given a network, where each node posses a measurement in form of a real number,
the average consensus problem consists in calculating the average of these measurements
in a recursive and distributed way, allowing the nodes to communicate information along
only the available edges in the network. Consider a connected network G = (V, E), where
V represents the set of nodes and E represents the set of edges. Each edge is uniquely
represented as a pair of nodes (i, j), where i < j. The nodes i and j can exchange
their values if they can communicate directly, in other words, if (i, j) ∈ E . We assume
that each node possesses a measurement in form of a real number, also called color, and
that no neighboring nodes have the same color. Let C denote the number of colors the
network is colored with and Ci the set of the nodes that have the color i, i = 1, . . . , C.
Without affecting the generality of the problem we also assume that the first C1 nodes
are in the set C1, the next C2 nodes are in the set C2, etc. Furthermore, we assume
that a node coloring scheme is available. For more details concerning the mathematical
modelling of the average consensus problem on colored networks we refer the reader
to [22,23].

Let P and E denote the number of nodes and edges in the network, respectively,
hence,

∑C
i=1Ci = P . Denoting by θk the measurement assigned to node k, k = 1, . . . , P ,

the problem we want to solve is

min
x∈R

P∑
k=1

1
2(x− θk)2. (5.1)

The unique optimal solution to the problem (5.1) is θ∗ = 1
P

∑P
k=1 θk, namely the average

of the measurements over the whole set of nodes in the network. The goal is to make
this value available in each node in a distributed and recursive way. To this end, we
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replicate copies of x throughout the entire network, more precisely, for k = 1, ..., P ,
node k will hold the k-th copy, denoted by xk, which will be updated iteratively during
the algorithm. At the end we have to guarantee that all the copies are equal and we
express this constraint by requiring that xi = xj for each (i, j) ∈ E . This gives rise to
the following optimization problem

min
x=(x1,...,xP )∈RP

xi=xj , ∀{i,j}∈E

P∑
k=1

1
2(xk − θk)2. (5.2)

Let A ∈ RP×E be the node-arc incidence matrix of the network, which is the ma-
trix having each column associated to an edge in the following manner: the column
associated to the edge (i, j) ∈ E has 1 at the i-th entry and −1 at the j-th entry, the
remaining entries being equal to zero. Consequently, constraints in (5.2) can be written
with the help of the transpose of the node-arc incidence matrix as ATx = 0. Taking
into consideration the ordering of the nodes and the coloring scheme, we can write
ATx = AT1 x1 + . . .+ATCxC , where xi ∈ RCi , i = 1, ..., C, collects the copies of the nodes
in Ci, i.e.

x = (x1, ..., xC1︸ ︷︷ ︸
x1

, ..., xP−CC+1, ..., xP︸ ︷︷ ︸
xC

).

Hence, the optimization problem (5.2) becomes

min
x=(x1,...,xC)

AT
1 x1+...+AT

CxC=0

C∑
i=1

fi(xi), (5.3)

where for i = 1, ..., C, the function fi : RCi → R is defined as fi(xi) =
∑
l∈Ci

1
2(xl− θl)2.

One can easily observe that problem (5.3) is a particular instance of the optimization
problem (4.1), when taking

m = C, p = 1, hi = δ{0},Ki = Id, L1i = ATi ∈ RE×Ci , i = 1, ..., C, and g1 = δ{0}.

Using that h∗i = 0, i = 1, ..., C, and Proxγg(x) = 0 for all γ > 0 and x ∈ RE , the
iterative scheme in Algorithm 4.1 reads, after some algebraic manipulations, in the
error-free case:

(∀n ≥ 0)



For i = 1, . . . , C y1,i,n = x1,i,n − γn
(
x2,i,n +Aiv1,1,n

)
y2,i,n = x2,i,n + γnx1,i,n
p2,i,n = Proxγnf∗i

y2,i,n
w1,1,n = v1,1,n − γn

(
v2,1,n −

∑C
i=1A

T
i x1,i,n

)
For i = 1, . . . , C
q1,i,n = y1,i,n − γn

(
p2,i,n +Aiw1,1,n

)
q2,i,n = p2,i,n + γny1,i,n
x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n
x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

v1,1,n+1 = v1,1,n + γn
∑C
i=1A

T
i y1,i,n

v2,1,n+1 = γ2
n

(∑C
i=1A

T
i x1,i,n − v2,1,n

)
.
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Let us notice that for i = 1, ..., C and γ > 0 it holds Proxγf∗i (xi) = (1 + γ)−1(xi − γθi),
where θi is the vector in RCi whose components are θl with l ∈ Ci. In order to compare

(a) Watts-Strogatz network
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(b) Geometric network
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Figure 5.1: Figure (a) shows the communication steps needed by the four algorithms for a
Watts-Strogatz network with different number of nodes. Figure (b) shows the communication
steps needed by the four algorithms for a Geometric network with different number of nodes.
In both figures ALG stands for the primal-dual algorithm proposed in this paper.

the performances of our method with other existing algorithms in literature, we used the
networks generated in [23] with the number of nodes ranging between 10 and 1000. The
measurement θk associated to each node was generated randomly and independently
from a normal distribution with mean 10 and standard deviation 100. We worked with
networks with 10, 50, 100, 200, 500, 700 and 1000 nodes and measured the performance
of our algorithm from the point of view of the number of communication steps, which
actually coincides with the number of iterations. As stopping criterion we considered

‖xn − 1P θ∗‖∣∣∣√Pθ∗∣∣∣ ≤ 10−4,

where 1P denotes the vector in RP having all entries equal to 1. We present in Figure
5.1 the communication steps needed when dealing with the Watts-Strogatz network with
parameters (2,0.8) and with the Geometric network with a distance parameter 0.2. The
Watts-Strogatz network is created from a lattice where every node is connected to 2
nodes, then the links are rewired with a probability of 0.8, while the Geometric network
works with nodes in a [0, 1]2 square and connects the nodes whose Euclidean distance
is less than the given parameter 0.2. As shown in Figure 5.1, our algorithm performed
comparable to D-AMM, presented in [23], but it performed better then the algorithms
presented in [24] and [31].

In order to observe the behavior of our algorithm on different networks, we tested
it on the following 6 networks: 1. Erdős-Rényi network with parameter 0.25, 2. Watts-
Strogatz network with parameters (2, 0.8) (network 2), 3. Watts-Strogatz network with
parameters (4, 0.6), 4. Barabási-Albert network, 5. Geometric network with parameter
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Figure 5.2: Comparison of the four algorithms over six networks with 10 nodes. Here, ALG
stands for the primal-dual algorithm proposed in this paper.

0.2 and 6. Lattice network, with a different number of nodes. Observing the needed
communication steps, we can conclude that our algorithm is communication-efficient
and it performs better than or similarly to the algorithms in [23], [24] and [31] (as
exemplified in Figure 5.2).

5.2 Support vector machines classification

The second numerical experiment we present in this section addresses the problem of
classifying images via support vector machines.

Having a set training data ai ∈ Rn, i = 1, . . . , k, belonging to one of two given
classes, denoted by “-1” and “+1”, the aim is to construct by it a decision function
given in the form of a separating hyperplane which should assign every new data to one
of the two classes with a low misclassification rate. We construct the matrix A ∈ Rk×n
such that each row corresponds to a data point ai, i = 1, ..., k and a vector d ∈ Rk such
that for i = 1, ..., k its i-th entry is equal to −1, if ai belongs to the class “-1” and it is
equal to +1, otherwise. In order to cover the situation when the separation cannot be
done exactly, we consider non-negative slack variables ξi ≥ 0, i = 1, . . . , k, thus the goal
will be to find (s, r, ξ) ∈ Rn ×R×Rk+ as optimal solution of the following optimization
problem (also called soft-margin support vector machines problem)

min
(s,r,ξ)∈Rn×R×Rk

+
D(As+1kr)+ξ=1k

{
‖s‖2 + C ‖ξ‖2

}
, (5.4)

where 1k denotes the vector in Rk having all entries equal to 1, the inequality z = 1k for
z ∈ Rk means zi ≥ 1, i = 1, ...k, D = Diag(d) is the diagonal matrix having the vector d
as main diagonal and C is a trade-off parameter. Each new data a ∈ Rn will by assigned
to one of the two classes by means of the resulting decision function z(a) = sTa + r,
namely, a will be assigned to the class “-1”, if z(a) < 0, and to the class “+1”, otherwise.
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(a) A sample of data for number 2 (b) A sample of data for number 9

Figure 5.3: A sample of images belonging to the classes -1 and +1, respectively.

For more theoretical insights in support vector machines we refer the reader to [19]. We
made use of a data set of 11907 training images and 2041 test images of size 28×28 from
the website http://www.cs.nyu.edu/~roweis/data.html. The problem consisted in
determining a decision function based on a pool of handwritten digits showing either
the number two or the number nine, labeled by −1 and +1, respectively (see Figure
5.3). We evaluated the quality of the decision function on a test data set by computing
the percentage of misclassified images. Notice that we use only a half of the available
images from the training data set, in order to reduce the computational effort.

The soft-margin support vector machines problem (5.4) can be written as a special
instance of the optimization problem (4.1), by taking

m = 3, p = 1, f1(·) = ‖·‖2 , f2 = 0, f3(·) = C ‖·‖2 + δRk
+

(·), hi = δ{0},Ki = Id, i = 1, 2, 3,

g1 = δ{z∈Rk:z=1k}, L11 = DA,L12 = D1k and L13 = Id .

Thus, Algorithm 4.1 gives rise in the error-free case to the following iterative scheme:

(∀n ≥ 0)



For i = 1, 2, 3 y1,i,n = x1,i,n − γn
(
x2,i,n + LT1iv1,1,n

)
y2,i,n = x2,i,n + γnx1,i,n
p2,i,n = Proxγnf∗i

y2,i,n
w1,1,n = v1,1,n − γn

(
v2,1,n −

∑3
i=1 L1ix1,i,n

)
w2,1,n = v2,1,n + γnv1,1,n
r2,1,n = Proxγng1 w2,1,n
For i = 1, 2, 3
q1,i,n = y1,i,n − γn

(
p2,i,n + LT1iw1,1,n

)
q2,i,n = p2,i,n + γny1,i,n
x1,i,n+1 = x1,i,n − y1,i,n + q1,i,n
x2,i,n+1 = x2,i,n − y2,i,n + q2,i,n

s1,1,n = w1,1,n − γn(r2,1,n −
∑3
i=1 L1ip1,i,n)

s2,1,n = r2,1,n + γnw1,1,n
v1,1,n+1 = v1,1,n − w1,1,n + s1,1,n
v2,1,n+1 = v2,1,n − w2,1,n + s2,1,n
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Number of iterations 100 1000 2000 3000 5000
Training error 2.95 2.6 2.3 1.95 1.55
Test error 2.95 2.55 2.45 2.15 2

Table 5.1: Misclassification rate in percentage for different numbers of iterations for both the
training data and the test data.

We would also like to notice that for the proximal points needed in the algorithm one
has for γ > 0 and (s, r, ξ, z) ∈ Rn × R× Rk × Rk the following exact formulae:

Proxγf∗1 (s) = (2 + γ)−12s,Proxγf∗2 (r) = 0,Proxγf∗3 (ξ) = ξ − γPRk
+

(
(2C + γ)−1ξ

)
and

Proxγg1(z) = P{x∈Rk:x=1k}(z).

With respect to the considered data set, we denote by D= {(Xi, Yi), i = 1, ..., 6000} ⊆
R784 × {+1,−1} the set of available training data consisting of 3000 images in the
class −1 and 3000 images in the class +1. A sample from each class of images is
shown in Figure 5.3. The images have been vectorized and normalized by dividing each
of them by the quantity

(
1

6000
∑6000
i=1 ‖Xi‖2

) 1
2 . We stopped the primal-dual algorithm

after different numbers of iterations and evaluated the performances of the resulting
decision functions. In Table 5.1 we present the misclassification rate in percentage for
the training and for the test data (the error for the training data is less than the one
for the test data) and observe that the quality of the classification increases with the
number of iterations. However, even for a low number of iterations the misclassification
rate outperforms the ones reported in the literature dealing with numerical methods for
support vector classification. Let us also mention that the numerical results are given
for the case C = 1. We tested also other choices for C, however we did not observe
great impact on the results.
Acknowledgments. The authors are grateful to Christopher Hendrich for helpful hints
concerning the implementation issues of the algorithm, to João F.C. Mota for sharing
the data he worked with and to an anonoymous reviewer for remarks which improved
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[29] B.C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive

operators. Advances in Computational Mathematics, 38(3):667–681, 2013.
[30] C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific, Singa-

pore, 2002.
[31] H. Zhu, G. Giannakis and A.Cano. Distributed in-network channel decoding. IEEE

Transactions on Signal Processing, 57(10):3970–3983, 2009.

23


	Introduction and problem formulation
	Notations and preliminaries
	The primal-dual splitting algorithm
	Applications to convex minimization problems
	Numerical experiments
	Average consensus for colored networks
	Support vector machines classification


