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Abstract. In this paper we propose two different primal-dual splitting algorithms
for solving inclusions involving mixtures of composite and parallel-sum type monotone
operators which rely on an inexact Douglas-Rachford splitting method, however applied
in different underlying Hilbert spaces. Most importantly, the algorithms allow to process
the bounded linear operators and the set-valued operators occurring in the formulation
of the monotone inclusion problem separately at each iteration, the latter being indi-
vidually accessed via their resolvents. The performance of the primal-dual algorithms is
emphasized via some numerical experiments on location and image denoising problems.
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1 Introduction and preliminaries
In applied mathematics, a wide range of convex optimization problems such as single-
or multifacility location problems, support vector machine problems for classification
and regression, portfolio optimization problems as well as signal and image processing
problems, all of them likely possessing nondifferentiable convex objectives, can be reduced
to the solving of inclusions involving mixtures of monotone set-valued operators.

In this article we propose two different primal-dual iterative error-tolerant methods for
solving inclusions with mixtures of composite and parallel-sum type monotone operators.
Both algorithms rely on the inexact Douglas-Rachford algorithm (cf. [10, 11]), but still
differ clearly from each other. An important feature of the two approaches and, simul-
taneously, an advantage over many existing methods is their capability of processing the
set-valued operators separately via their resolvents, while the bounded linear operators
are accessed via explicit forward steps on their own or on their adjoints. The resolvents
of the maximally monotone operators are not always available in closed form expressions,
fact which motivates the inexact versions of the algorithms, where implementation errors
in the shape of summable sequences are allowed.
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The methods in this article are also perfectly parallelizable since the majority of their
steps can be executed independently. Furthermore, when applied to subdifferential oper-
ators of proper, convex and lower semicontinuous functions, the solving of the monotone
inclusion problems is, under appropriate qualification conditions (cf. [3, 5]), equivalent
with finding optimal solutions to primal-dual pairs of convex optimization problems. The
considered formulation also captures various types of primal convex optimization prob-
lems and corresponding conjugate duals appearing in wide ranges of applications. The
resolvents of subdifferentials of proper, convex and lower semicontinuous functions are
the proximal point mappings of these and are known to assume closed form expressions
in many cases of interest.

Recent research (see [4,6–8,12,19]) has shown that structured problems dealing with
monotone inclusions can be efficiently solved via primal-dual splitting approaches. In [12],
the problem involving sums of set-valued, composed, Lipschitzian and parallel-sum type
monotone operators was decomposed and solved via an inexact Tseng algorithm having
foward-backward-forward characteristics in a product Hilbert space. On the other hand,
in [19], instead of Lipschitzian operators, the author has assumed cocoercive operators
and solved the resulting problem with an inexact forward-backward algorithm. Thus,
our methods can be seen as a continuation of these ideas, this time by making use of the
inexact Douglas-Rachford method. Another primal-dual method relying on the same fun-
damental splitting algorithm is considered in [13] in the context of solving minimization
problems having as objective the sum of two proper, convex and lower semicontinuous
functions, one of them being composed with a bounded linear operator.

Due to the nature of Douglas-Rachford splitting, we will neither assume Lipschitz
continuity nor cocoercivity for any of the operators present in the formulation of the
monotone inclusion problem. The resulting drawback of not having operators which can
be processed explicitly via forward steps is compensated by the advantage of allowing
general maximal monotone operators in the parallel-sums, fact which relaxes the working
hypotheses in [12,19].

The article is organized as follows. In the remaining of this section we introduce the
framework we work within and some necessary notations. The splitting algorithms and
corresponding weak and strong convergence statements are subject of Section 2 while
Section 3 is concerned with the application of the two methods to convex minimization
problems. Finally, in Section 4 we make some numerical experiments and evaluate the
obtained results.

We are considering the real Hilbert spaces H and Gi endowed with the inner product
〈·, ·〉H and 〈·, ·〉Gi

and associated norm ‖·‖H =
√

〈·, ·〉H and ‖·‖Gi
=
√

〈·, ·〉Gi
, i = 1, . . . , m,

respectively. The symbols ⇀ and → denote weak and strong convergence, respectively,
R++ denotes the set of strictly positive real numbers and R+ = R++ ∪ {0}. By B(0, r)
we denote the closed ball with center 0 and radius r ∈ R++. For a function f : H → R =
R ∪ {±∞} we denote by dom f := {x ∈ H : f(x) < +∞} its effective domain and call f
proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ H. Let be

Γ(H) := {f : H → R : f is proper, convex and lower semicontinuous}.

The conjugate function of f is f∗ : H → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for
all p ∈ H and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The (convex) subdifferential of
f : H → R at x ∈ H is the set ∂f(x) = {p ∈ H : f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if
f(x) ∈ R, and is taken to be the empty set, otherwise. For a linear continuous operator
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Li : H → Gi, the operator L∗
i : Gi → H, defined via 〈Lix, y〉 = 〈x, L∗

i y〉 for all x ∈ H and
all y ∈ Gi, denotes its adjoint, for i ∈ {1, . . . , m}.

Having two functions f, g : H → R, their infimal convolution is defined by f � g :
H → R, (f � g)(x) = infy∈H {f(y) + g(x − y)} for all x ∈ H, being a convex function
when f and g are convex.

Let M : H → 2H be a set-valued operator. We denote by zer M = {x ∈ H : 0 ∈ Mx}
its set of zeros, by fix M = {x ∈ H : x ∈ Mx} its set of fixed points, by gra M =
{(x, u) ∈ H × H : u ∈ Mx} its graph and by ran M = {u ∈ H : ∃x ∈ H, u ∈ Mx}
its range. The inverse of M is M−1 : H → 2H, u 7→ {x ∈ H : u ∈ Mx}. We say that
the operator M is monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ gra M and it
is said to be maximally monotone if there exists no monotone operator M ′ : H → 2H

such that gra M ′ properly contains gra M . The operator M is said to be uniformly
monotone with modulus φM : R+ → [0, +∞] if φM is increasing, vanishes only at 0, and
〈x − y, u − v〉 ≥ φM (‖x − y‖) for all (x, u), (y, v) ∈ gra M .

The resolvent and the reflected resolvent of an operator M : H → 2H are

JM = (Id + M)−1 and RM = 2JM − Id,

respectively, the operator Id denoting the identity on the underlying Hilbert space. When
M is maximally monotone, its resolvent (and, consequently, its reflected resolvent) is a
single-valued operator and, by [1, Proposition 23.18], we have for γ ∈ R++

Id = JγM + γJγ−1M−1 ◦ γ−1Id. (1.1)

Moreover, for f ∈ Γ(H) and γ ∈ R++ the subdifferential ∂(γf) is maximally monotone
(cf. [20, Theorem 3.2.8]) and it holds Jγ∂f = (Id + γ∂f)−1 = Proxγf . Here, Proxγf (x)
denotes the proximal point of γf at x ∈ H representing the unique optimal solution of
the optimization problem

inf
y∈H

{
γf(y) + 1

2
‖y − x‖2

}
. (1.2)

In this particular situation (1.1) becomes Moreau’s decomposition formula

Id = Proxγf +γ Proxγ−1f∗ ◦γ−1Id. (1.3)

When Ω ⊆ H is a nonempty, convex and closed set, the function δΩ : H → R, defined by
δΩ(x) = 0 for x ∈ Ω and δΩ(x) = +∞, otherwise, denotes the indicator function of the
set Ω. For each γ > 0 the proximal point of γδΩ at x ∈ H is nothing else than

ProxγδΩ(x) = ProxδΩ(x) = PΩ(x) = arg min
y∈Ω

1
2

‖y − x‖2,

which is the projection of x on Ω.
The sum and the parallel sum of two set-valued operators M1, M2 : H → 2H are

defined as M1 + M2 : H → 2H, (M1 + M2)(x) = M1(x) + M2(x) ∀x ∈ H and

M1 �M2 : H → 2H, M1 �M2 =
(
M−1

1 + M−1
2

)−1
,

respectively. If M1 and M2 are monotone, then M1 + M2 and M1 �M2 are monotone,
too. However, if M1 and M2 are maximally monotone, this property is in general neither
for M1 + M2 nor for M1 �M2 true (see [3]).
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2 Algorithms and convergence results
Within this section we provide two algorithms together with weak and strong convergence
results for the following primal-dual pair of monotone inclusion problems.

Problem 2.1. Let A : H → 2H be a maximally monotone operator and z ∈ H. Further-
more, for every i ∈ {1, . . . , m}, let ri ∈ Gi, Bi : Gi → 2Gi and Di : Gi → 2Gi be maximally
monotone operators and Li : H → Gi a nonzero bounded linear operator. The problem
is to solve the primal inclusion

find x ∈ H such that z ∈ Ax +
m∑

i=1
L∗

i (Bi �Di)(Lix − ri) (2.1)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{

z −
∑m

i=1 L∗
i vi ∈ Ax

vi ∈(Bi �Di)(Lix − ri), i = 1, . . . , m.

(2.2)

We say that (x, v1, . . . , vm) ∈ H × G1 . . . × Gm is a primal-dual solution to Problem
2.1, if

z −
m∑

i=1
L∗

i vi ∈ Ax and vi ∈ (Bi �Di)(Lix − ri), i = 1, . . . , m. (2.3)

If (x, v1, . . . , vm) ∈ H × G1 . . . × Gm is a primal-dual solution to Problem 2.1, then x is a
solution to (2.1) and (v1, . . . , vm) is a solution to (2.2). Notice also that

x solves (2.1) ⇔ z −
m∑

i=1
L∗

i (Bi �Di)(Lix − ri) ∈ Ax ⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that
{

z −
∑m

i=1 L∗
i vi ∈ Ax,

vi ∈ (Bi �Di)(Lix − ri), i = 1, . . . , m.

Thus, if x is a solution to (2.1), then there exists (v1, . . . , vm) ∈ G1 × . . . Gm such that
(x, v1, . . . , vm) is a primal-dual solution to Problem 2.1 and if (v1, . . . , vm) ∈ G1 × . . . Gm

is a solution to (2.2), then there exists x ∈ H such that (x, v1, . . . , vm) is a primal-dual
solution to Problem 2.1.

Example 2.1. In Problem 2.1, set m = 1, z = 0 and r1 = 0, let G1 = G, B1 = B,
L1 = L, D1 : G → 2G , D1(0) = G and D1(v) = ∅ ∀v ∈ G \ {0}, and A : H → 2H and
B : G → 2G be the convex subdifferentials of the functions f ∈ Γ(H) and g ∈ Γ(G),
respectively. Then, under appropriate qualification conditions (see [3, 5]), to solve the
primal inclusion problem (2.1) is equivalent to solve the optimization problem

inf
x∈H

{f(x) + g(Lx)} ,

while to solve the dual inclusion problem (2.2) is nothing else than to solve its Fenchel-
dual problem

sup
v∈G

{−f∗(−L∗v) − g∗(v)} .

For more primal-dual pairs of convex optimization problems which are particular
instances of (2.1)-(2.2) we refer to [12,19].

4



2.1 A first primal-dual algorithm

The first iterative scheme we propose in this paper has the particularity that it accesses
the resolvents of A, B−1

i and D−1
i , i = 1, . . . , m, and processes each operator Li and its

adjoint L∗
i , i = 1, . . . , m two times.

Algorithm 2.1.
Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G1 × . . .×Gm and τ and σi, i = 1, . . . , m, be strictly positive
real numbers such that

τ
m∑

i=1
σi‖Li‖2 < 4.

Furthermore, let (λn)n≥0 be a sequence in (0, 2), (an)n≥0 a sequence in H, (bi,n)n≥0 and
(di,n)n≥0 sequences in Gi for all i = 1, . . . , m and set

(∀n ≥ 0)



p1,n = JτA

(
xn − τ

2
∑m

i=1 L∗
i vi,n + τz

)
+ an

w1,n = 2p1,n − xn

For i = 1, . . . , m⌊
p2,i,n = JσiB

−1
i

(
vi,n + σi

2 Liw1,n − σiri
)

+ bi,n

w2,i,n = 2p2,i,n − vi,n

z1,n = w1,n − τ
2
∑m

i=1 L∗
i w2,i,n

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . , m⌊

z2,i,n = JσiD
−1
i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

+ di,n

vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).

(2.4)

Theorem 2.1. For Problem 2.1 assume that

z ∈ ran
(

A +
m∑

i=1
L∗

i (Bi �Di)(Li · −ri)
)

(2.5)

and consider the sequences generated by Algorithm 2.1.

(i) If

+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . , m,

and
∑+∞

n=0 λn(2 − λn) = +∞, then

(a) (xn, v1,n, . . . , vm,n)n≥0 converges weakly to an element (x, v1, . . . , vm) ∈ H ×
G1 × . . . × Gm such that, when setting

p1 = JτA

(
x − τ

2

m∑
i=1

L∗
i vi + τz

)
,

and p2,i = JσiB
−1
i

(
vi + σi

2
Li(2p1 − x) − σiri

)
, i = 1, . . . , m,

the element (p1, p2,1, . . . , p2,m) is a primal-dual solution to Problem 2.1.
(b) λn(z1,n − p1,n) → 0 (n → +∞) and λn(z2,i,n − p2,i,n) → 0 (n → +∞) for

i = 1, . . . , m.
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(c) whenever H and Gi, i = 1, . . . , m, are finite-dimensional Hilbert spaces,
an → 0 (n → +∞) and bi,n → 0 (n → +∞) for i = 1, . . . , m, then
(p1,n, p2,1,n, . . . , p2,m,n)n≥0 converges to a primal-dual solution of Problem 2.1.

(ii) If

+∞∑
n=0

‖an‖H < +∞,
+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . , m, inf
n≥0

λn > 0

and A and B−1
i , i = 1, . . . , m, are uniformly monotone,

then (p1,n, p2,1,n, . . . , p2,m,n)n≥0 converges strongly to the unique primal-dual solu-
tion of Problem 2.1.

Proof. Consider the Hilbert space G = G1 × . . . × Gm endowed with inner product and
associated norm defined, for v = (v1, . . . , vm), q = (q1, . . . , qm) ∈ G, as

〈v, q〉G =
m∑

i=1
〈vi, qi〉Gi

and ‖v‖G =

√√√√ m∑
i=1

‖vi‖2
Gi

, (2.6)

respectively. Furthermore, let K = H × G be the Hilbert space endowed with inner
product and associated norm defined, for (x, v), (y, q) ∈ K, as

〈(x, v), (y, q)〉K = 〈x, y〉H + 〈v, q〉G and ‖(x, v)‖K =
√

‖x‖2
H + ‖v‖2

G , (2.7)

respectively. Consider the set-valued operator

M : K → 2K, (x, v1, . . . , vm) 7→ (−z + Ax, r1 + B−1
1 v1, . . . , rm + B−1

m vm),

which is maximally monotone, since A and Bi, i = 1, . . . , m, are maximally monotone
(cf. [1, Proposition 20.22 and Proposition 20.23]) and the bounded linear operator

S : K → K, (x, v1, . . . , vm) 7→
(

m∑
i=1

L∗
i vi, −L1x, . . . , −Lmx

)
,

which proves to be skew (i. e. S∗ = −S) and hence maximally monotone (cf. [1, Example
20.30]). Further, consider the set-valued operator

Q : K → 2K, (x, v1, . . . , vm) 7→
(
0, D−1

1 v1, . . . , D−1
m vm

)
,

which is maximally monotone, as well, since Di is maximally monotone for i = 1, . . . , m.
Therefore, since dom S = K, both 1

2S + Q and 1
2S + M are maximally monotone

(cf. [1, Corollary 24.4(i)]). On the other hand, according to [12, Eq. (3.12)], it holds
(2.5) ⇔ zer (M + S + Q) 6= ∅, while [12, Eq. (3.21) and (3.22)] yield

(x, v1, . . . , vm) ∈ zer (M + S + Q)
⇒(x, v1, . . . , vm) is a primal-dual solution to Problem 2.1.

(2.8)

Finally, we introduce the bounded linear operator

V : K → K, (x, v1, . . . , vm) 7→
(

x

τ
− 1

2

m∑
i=1

L∗
i vi,

v1
σ1

− 1
2

L1x, . . . ,
vm

σm
− 1

2
Lmx

)
.
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It is a simple calculation to prove that V is self-adjoint, i. e. V ∗ = V . Furthermore, the
operator V is ρ-strongly positive for

ρ =

1 − 1
2

√√√√τ
m∑

i=1
σi‖Li‖2

min
{1

τ
,

1
σ1

, . . . ,
1

σm

}
,

which is a positive real number due to the assumption

τ
m∑

i=1
σi‖Li‖2 < 4 (2.9)

made in Algorithm 2.1. Indeed, using that 2ab ≤ αa2 + b2

α for any a, b ∈ R and any
α ∈ R++, it yields for each i = 1, . . . , m

2‖Li‖‖x‖H‖vi‖Gi ≤ σi‖Li‖2√
τ
∑m

i=1 σi‖Li‖2 ‖x‖2
H +

√
τ
∑m

i=1 σi‖Li‖2

σi
‖vi‖2

Gi
(2.10)

and, consequently, for each x = (x, v1, . . . , vm) ∈ K, it follows that

〈x, V x〉K = ‖x‖2
H

τ
+

m∑
i=1

‖vi‖2
Gi

σi
−

m∑
i=1

〈Lix, vi〉Gi

≥ ‖x‖2
H

τ
+

m∑
i=1

‖vi‖2
Gi

σi
−

m∑
i=1

‖Li‖‖x‖H‖vi‖Gi

(2.10)
≥

1 − 1
2

√√√√τ
m∑

i=1
σi‖Li‖2

(‖x‖2
H

τ
+

m∑
i=1

‖vi‖2
Gi

σi

)

≥

1 − 1
2

√√√√τ
m∑

i=1
σi‖Li‖2

min
{1

τ
,

1
σ1

, . . . ,
1

σm

}
‖x‖2

K

= ρ‖x‖2
K. (2.11)

Since V is ρ-strongly positive, we have cl(ran V ) = ran V (cf. [1, Fact 2.19]), zer V = {0}
and, as (ran V )⊥ = zer V ∗ = zer V = {0} (see, for instance, [1, Fact 2.18]), it holds
ran V = K. Consequently, V −1 exists and ‖V −1‖ ≤ 1

ρ .
The algorithmic scheme (2.4) is equivalent to

(∀n ≥ 0)



xn−p1,n

τ − 1
2
∑m

i=1 L∗
i vi,n ∈ A(p1,n − an) − z − an

τ
w1,n = 2p1,n − xn

For i = 1, . . . , m⌊
vi,n−p2,i,n

σi
− 1

2Li(xn − p1,n) ∈ −1
2Lip1,n + B−1

i (p2,i,n − bi,n) + ri − bi,n

σi

w2,i,n = 2p2,i,n − vi,n
w1,n−z1,n

τ − 1
2
∑m

i=1 L∗
i w2,i,n = 0

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . , m⌊

w2,i,n−z2,i,n

σi
− 1

2Li(w1,n − z1,n) ∈ −1
2Liz1,n + D−1

i (z2,i,n − di,n) − di,n

σi

vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).
(2.12)
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We introduce for every n ≥ 0 the following notations:
xn = (xn, v1,n, . . . , vm,n)
yn = (p1,n, p2,1,n, . . . , p2,m,n)
wn = (w1,n, w2,1,n, . . . , w2,m,n)
zn = (z1,n, z2,1,n, . . . , z2,m,n)

and


dn = (0, d1,n, . . . , dm,n)
dσ

n = (0,
d1,n

σ1
, . . . ,

dm,n

σm
)

bn = (an, b1,n, . . . , bm,n)
bσ

n = (an
τ ,

b1,n

σ1
, . . . ,

bm,n

σm
)

. (2.13)

The scheme (2.12) can equivalently be written in the form

(∀n ≥ 0)


V (xn − yn) ∈

(
1
2S + M

)
(yn − bn) + 1

2Sbn − bσ
n

wn = 2yn − xn

V (wn − zn) ∈
(

1
2S + Q

)
(zn − dn) + 1

2Sdn − dσ
n

xn+1 = xn + λn (zn − yn) .

(2.14)

We set for every n ≥ 0

eb
n = V −1

((1
2

S + V

)
bn − bσ

n

)
ed

n = V −1
((1

2
S + V

)
dn − dσ

n

)
.

(2.15)

Next we introduce the Hilbert space KV with inner product and norm respectively
defined, for x, y ∈ K, as

〈x, y〉KV
= 〈x, V y〉K and ‖x‖KV

=
√

〈x, V x〉K, (2.16)

respectively. Since 1
2S + M and 1

2S + Q are maximally monotone on K, the operators

B := V −1
(1

2
S + M

)
and A := V −1

(1
2

S + Q

)
(2.17)

are maximally monotone on KV . Moreover, since V is self-adjoint and ρ-strongly pos-
itive, one can easily see that weak and strong convergence in KV are equivalent with
weak and strong convergence in K, respectively.

Now, taking into account (2.14), for every n ≥ 0, we have

V (xn − yn) ∈
(1

2
S + M

)
(yn − bn) + 1

2
Sbn − bσ

n

⇔ V xn ∈
(

V + 1
2

S + M

)
(yn − bn) +

(1
2

S + V

)
bn − bσ

n

⇔ xn ∈
(

Id + V −1
(1

2
S + M

))
(yn − bn) + V −1

((1
2

S + V

)
bn − bσ

n

)
⇔ yn =

(
Id + V −1

(1
2

S + M

))−1 (
xn − eb

n

)
+ bn

⇔ yn = (Id + B)−1
(
xn − eb

n

)
+ bn (2.18)

and

V (wn − zn) ∈
(1

2
S + Q

)
(zn − dn) + 1

2
Sdn − dσ

n

⇔ zn =
(

Id + V −1
(1

2
S + Q

))−1 (
wn − ed

n

)
+ dn

⇔ zn = (Id + A)−1
(
wn − ed

n

)
+ dn. (2.19)
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Thus, the iterative rules in (2.14) become

(∀n ≥ 0)


yn = JB

(
xn − eb

n

)
+ bn

zn = JA

(
2yn − xn − ed

n

)
+ dn

xn+1 = xn + λn(zn − yn)
. (2.20)

In addition, we have

zer (A + B) = zer
(
V −1 (M + S + Q)

)
= zer (M + S + Q) .

By defining for every n ≥ 0

βn = JB

(
xn − eb

n

)
− JB (xn)+ bn and αn = JA

(
2yn − xn − ed

n

)
− JA (2yn − xn)+ dn,

the iterative scheme (2.20) becomes

(∀n ≥ 0)

 yn = JB(xn) + βn

zn = JA (2yn − xn) + αn

xn+1 = xn + λn(zn − yn)
. (2.21)

Thus, it has the structure of an error-tolerant Douglas-Rachford algorithm (see [11]).
(i) The assumptions made on the error sequences yield

+∞∑
n=0

λn‖dn‖K < +∞,
+∞∑
n=0

λn‖dσ
n‖K < +∞,

+∞∑
n=0

λn‖bn‖K < +∞,
+∞∑
n=0

λn‖bσ
n‖K < +∞

(2.22)

and, by the boundedness of V −1, S and V , it follows

+∞∑
n=0

λn‖eb
n‖K < +∞ and

+∞∑
n=0

λn‖ed
n‖K < +∞. (2.23)

Further, by making use of the nonexpansiveness of the resolvents, the error sequences
satisfy

+∞∑
n=0

λn [‖αn‖K + ‖βn‖K] ≤
+∞∑
n=0

λn

[
‖JA

(
2yn − xn − ed

n

)
− JA (2yn − xn) ‖K + ‖dn‖K

+‖JB

(
xn − eb

n

)
− JB (xn) ‖K + ‖bn‖K

]
≤

+∞∑
n=0

λn

[
‖ed

n‖K + ‖dn‖K + ‖eb
n‖K + ‖bn‖K

]
< +∞.

By the linearity and boundedness of V it follows that

+∞∑
n=0

λn [‖αn‖KV
+ ‖βn‖KV

] < +∞.

(i)(a) According to [11, Theorem 2.1(i)(a)] the sequence (xn)n≥0 converges weakly in
KV and, consequently, in K to an element x ∈ fix (RARB) with JBx ∈ zer(A+B). The
claim follows by identifying JBx and by noting (2.8).
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(i)(b) According to [11, Theorem 2.1(i)(b)] it follows that (RARBxn − xn) → 0 (n →
+∞). From (2.21) it follows that for every n ≥ 0

λn(zn − yn) = λn

2
(RA(RB(xn) + 2βn) − xn + 2αn) ,

thus, by taking into consideration the nonexpansiveness of the reflected resolvent and the
boundedness of (λn)n≥0, it yields

‖λn(zn − yn)‖KV
≤λn

2
‖RARBxn − xn‖KV

+ λn

2
‖RA(RBxn + 2βn) − RA(RBxn) + 2αn‖KV

≤‖RARBxn − xn‖KV
+ λn [‖αn‖KV

+ ‖βn‖KV
] .

The claim follows by taking into account that λn [‖αn‖KV
+ ‖βn‖KV

] → 0 (n → +∞).
(i)(c) As shown in (a), we have that xn → x ∈ fix (RARB) (n → +∞) with JBx ∈

zer(A + B) = zer(M + S + Q). Moreover, by the assumptions and (2.13) we have
bn → 0 (n → +∞), hence by (2.15) it holds that eb

n → 0 (n → +∞) and therefore
βn → 0 (n → +∞). In conclusion, by the continuity of JB and (2.21), we have

yn = JB (xn) + βn → JBx ∈ zer (M + S + Q) (n → +∞).

(ii) The assumptions made on the error sequences yield

+∞∑
n=0

‖dn‖K < +∞,
+∞∑
n=0

‖dσ
n‖K < +∞,

+∞∑
n=0

‖bn‖K < +∞,
+∞∑
n=0

‖bσ
n‖K < +∞,

thus,

+∞∑
n=0

‖eb
n‖K < +∞ and

+∞∑
n=0

‖ed
n‖K < +∞.

This implies that

+∞∑
n=0

[‖αn‖K + ‖βn‖K] < +∞

which, due to the linearity and boundedness of V , yields

+∞∑
n=0

[‖αn‖KV
+ ‖βn‖KV

] < +∞.

Since A and B−1
i , i = 1, . . . , m, are uniformly monotone, there exist increasing functions

φA : R+ → [0, +∞] and φB−1
i

: R+ → [0, +∞], i = 1, . . . , m, vanishing only at 0, such
that

〈x − y, u − z〉 ≥ φA (‖x − y‖H) ∀ (x, u), (y, z) ∈ gra A

〈v − w, p − q〉 ≥ φB−1
i

(‖v − w‖Gi) ∀ (v, p), (w, q) ∈ gra B−1
i ∀i = 1, . . . , m.

(2.24)
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The function φM : R+ → [0, +∞],

φM (c) = inf

φA(a) +
m∑

i=1
φB−1

i
(bi) :

√√√√a2 +
m∑

i=1
b2

i = c

 , (2.25)

is increasing and vanishes only at 0 and it fulfills for each (x, u), (y, z) ∈ gra M

〈x − y, u − z〉K ≥ φM (‖x − y‖K) . (2.26)

Thus, M is uniformly monotone on K.
The function φB : R+ → [0, +∞], φB(t) = φM

(
1√
‖V ‖

t

)
, is increasing and vanishes

only at 0. Let be (x, u), (y, z) ∈ gra B. Then there exist v ∈ Mx and w ∈ My fulfilling
V u = 1

2Sx + v and V z = 1
2Sy + w and it holds

〈x − y, u − z〉KV
= 〈x − y, V u − V z〉K

=
〈

x − y,

(1
2

Sx + v

)
−
(1

2
Sy + w

)〉
K

(2.26)
≥ φM (‖x − y‖K)

≥ φM

(
1√
‖V ‖

‖x − y‖KV

)
= φB (‖x − y‖KV

) . (2.27)

Consequently, B is uniformly monotone on KV and, according to [11, Theorem 2.1(ii)(b)],
(JBxn)n≥0 converges strongly to the unique element y ∈ zer(A+B) = zer (M + S + Q).
In the light of (2.21) and using that βn → 0 (n → +∞), it follows that yn → y (n →
+∞).

Remark 2.1. Some remarks concerning Algorithm 2.1 and Theorem 2.1 are in order.

(i) Algorithm 2.1 is a fully decomposable iterative method, as each of the operators oc-
curring in Problem 2.1 is processed individually. Moreover, a considerable number
of steps in (2.4) can be executed in parallel.

(ii) The proof of Theorem 2.1, which states the convergence of Algorithm 2.1, relies on
the reformulation of the iterative scheme as an inexact Douglas-Rachford method
in a specific real Hilbert space. For the use of a similar technique in the context of
a forward-backward-type method we refer to [19].

(iii) We would like to notice that the assumption
∑+∞

n=0 λn‖an‖H < +∞ does not nec-
essarily imply either that (‖an‖H)n≥0 is summable or that (an)n≥0 (weakly or
strongly) converges to 0 as n → +∞. We refer to [11, Remark 2.2(iii)] for fur-
ther considerations on the conditions imposed on the error sequences in Theorem
2.1.

Remark 2.2. In the following we emphasize the relations between the proposed algo-
rithm and other existent primal-dual iterative schemes.

(i) Other iterative methods for solving the primal-dual monotone inclusion pair intro-
duced in Problem 2.1 were given in [12] and [19] for D−1

i , i = 1, . . . , m monotone
Lipschitzian and cocoercive operators, respectively. Different to the approach pro-
posed in this subsection, there, the operators D−1

i , i = 1, . . . , m, are processed
within some forward steps.
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(ii) When for every i = 1, . . . , m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈ Gi \{0}, the
algorithms proposed in [12, Theorem 3.1] (see, also, [8, Theorem 3.1] for the case
m = 1) and [19, Theorem 3.1] applied to Problem 2.1 differ from Algorithm 2.1.

(iii) When solving the particular case of a primal-dual pair of convex optimization prob-
lems discussed in Example 2.1 one can make use of the iterative schemes provided
in [13, Algorithm 3.1] and [9, Algorithm 1]. Let us notice that particularizing Al-
gorithm 2.1 to this framework gives rise to a numerical scheme different to the ones
in the mentioned literature.

2.2 A second primal-dual algorithm

In Algorithm 2.1 each operator Li and its adjoint L∗
i , i = 1, . . . , m are processed two

times. However, for large-scale optimization problems these matrix-vector multiplications
may be expensive compared with the computation of the resolvents of the operators A,
B−1

i and D−1
i , i = 1, . . . , m.

The second primal-dual algorithm we propose for solving the monotone inclusions in
Problem 2.1 has the particularity that it evaluates each operator Li and its adjoint L∗

i ,
i = 1, . . . , m, only once.

Algorithm 2.2.
Let x0 ∈ H, (y1,0, . . . , ym,0) ∈ G1 × . . . × Gm, (v1,0, . . . , vm,0) ∈ G1 × . . . × Gm, and τ and
σi, i = 1, . . . , m, be strictly positive real numbers such that

τ
m∑

i=1
σi‖Li‖2 <

1
4

.

Furthermore, let γi ≤ 2σ−1
i τ

∑m
i=1 σi‖Li‖2, i = 1, . . . , m, let (λn)n≥0 be a sequence in

(0, 2), (an)n≥0 a sequence in H, (bi,n)n≥0 and (di,n)n≥0 sequences in Gi for all i = 1, . . . , m
and set

(∀n ≥ 0)



p1,n = JτA (xn − τ (
∑m

i=1 L∗
i vi,n − z)) + an

xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . , m

p2,i,n = JγiDi (yi,n + γivi,n) + di,n

yi,n+1 = yi,n + λn(p2,i,n − yi,n)
p3,i,n = JσiB

−1
i

(vi,n + σi (Li(2p1,n − xn) − (2p2,i,n − yi,n) − ri)) + bi,n

vi,n+1 = vi,n + λn(p3,i,n − vi,n).
(2.28)

Theorem 2.2. In Problem 2.1 suppose that

z ∈ ran
(

A +
m∑

i=1
L∗

i (Bi �Di)(Li · −ri)
)

. (2.29)

and consider the sequences generated by Algorithm 2.2.

(i) If
+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . , m,

and
∑+∞

n=0 λn(2 − λn) = +∞, then

12



(a) (xn, y1,n, . . . , ym,n, v1,n, . . . , vm,n)n≥0 converges weakly to an element
(x, y1, . . . , ym, v1, . . . , vm) ∈ H × G1 × . . . × Gm × G1 × . . . × Gm such
that (x, v1, . . . , vm) is a primal-dual solution to Problem 2.1.

(b) λn(p1,n − xn) → 0 (n → +∞), λn(p2,i,n − yi,n) → 0 (n → +∞) and λn(p3,i,n −
vi,n) → 0 (n → +∞) for i = 1, . . . , m.

(c) whenever H and Gi, i = 1, . . . , m, are finite-dimensional Hilbert spaces,
(xn, v1,n, . . . , vm,n)n≥0 converges to a primal-dual solution of Problem 2.1.

(ii) If

+∞∑
n=0

‖an‖H < +∞,
+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . , m, inf
n≥0

λn > 0

and A, B−1
i and Di, i = 1, . . . , m, are uniformly monotone,

then (p1,n, p3,1,n, . . . , p3,m,n)n≥0 converges strongly to the unique primal-dual solu-
tion of Problem 2.1.

Proof. We let G = G1 ×. . .×Gm be the real Hilbert space endowed with the inner product
and associated norm defined in (2.6) and consider

K = H × G × G,

the real Hilbert space endowed with inner product and associated norm defined for x =
(x, y, v), u = (u, q, p) ∈ K as

〈x, u〉K = 〈x, u〉H + 〈y, q〉G + 〈v, p〉G and ‖x‖K =
√

‖x‖2
H + ‖y‖2

G + ‖v‖2
G , (2.30)

respectively. In what follows we set

y = (y1, . . . , ym), v = (v1, . . . , vm), y = (y1, . . . , ym), v = (v1, . . . , vm).

Consider the set-valued operator

M : K → 2K, (x, y, v) 7→ (−z + Ax, D1y1, . . . , Dmym, r1 + B−1
1 v1, . . . , rm + B−1

m vm),

which is maximally monotone, since A, Bi and Di, i = 1, . . . , m, are maximally monotone
(cf. [1, Proposition 20.22 and Proposition 20.23]) and the bounded linear operator

S : K → K, (x, y, v) 7→
(

m∑
i=1

L∗
i vi, −v1, . . . , −vm, −L1x + y1, . . . , −Lmx + ym

)
,

which proves to be skew (i. e. S∗ = −S) and hence maximally monotone (cf. [1, Example
20.30]). Since dom S = K, the sum M + S is maximally monotone, as well (cf. [1,

13



Corollary 24.4(i)]). Further, we have

(2.29) ⇔ (∃ x ∈ H) z ∈ Ax +
m∑

i=1
L∗

i (Bi �Di) (Lix − ri)

⇔ (∃ (x, v) ∈ H × G)
{

z ∈ Ax +
∑m

i=1 L∗
i vi

vi ∈ (Bi �Di) (Lix − ri) , i = 1, . . . , m

⇔ (∃ (x, v) ∈ H × G)
{

z ∈ Ax +
∑m

i=1 L∗
i vi

Lix − ri ∈ B−1
i vi + D−1

i vi, i = 1, . . . , m

⇔ (∃ (x, y, v) ∈ K)


0 ∈ −z + Ax +

∑m
i=1 L∗

i vi

0 ∈ Diyi − vi, i = 1, . . . , m

0 ∈ ri + B−1
i vi − Lix + yi, i = 1, . . . , m

⇔ (∃ (x, y, v) ∈ K) (0, . . . , 0) ∈ (M + S) (x, y, v)
⇔ zer (M + S) 6= ∅. (2.31)

From the above calculations it follows that

(x, y, v) ∈ zer (M + S) ⇒
{

z −
∑m

i=1 L∗
i vi ∈ Ax

vi ∈ (Bi �Di) (Lix − ri) , i = 1, . . . , m

⇔ (x, v1, . . . , vm) is a primal-dual solution to Problem 2.1.
(2.32)

Finally, we introduce the bounded linear operator

V : K → K

(x, y, v) 7→
(

x

τ
−

m∑
i=1

L∗
i vi,

y1
γ1

+ v1, . . . ,
ym

γm
+ vm,

v1
σ1

− L1x + y1, . . . ,
vm

σm
− Lmx + ym

)
,

which is self-adjoint, i. e. V ∗ = V . Furthermore, the operator V is ρ-strongly positive
for

ρ =

1 − 2

√√√√τ
m∑

i=1
σi‖Li‖2

min
{1

τ
,

1
γ1

, . . . ,
1

γm
,

1
σ1

, . . . ,
1

σm

}
,

which is a positive real number due to the assumption

τ
m∑

i=1
σi‖Li‖2 <

1
4

(2.33)

made in Algorithm 2.2. Indeed, for γi ≤ 2σ−1
i τ

∑m
i=1 σi‖Li‖2 it yields for each i =

1, . . . , m,

2 〈Lix − yi, vi〉Gi
≤ 2‖Li‖‖x‖H‖vi‖Gi + 2‖yi‖Gi‖vi‖Gi

≤ σi‖Li‖2‖x‖2
H√

τ
∑m

i=1 σi‖Li‖2 + 2

√√√√τ
m∑

i=1
σi‖Li‖2 ‖yi‖2

Gi

γi
+ 2

√√√√τ
m∑

i=1
σi‖Li‖2 ‖vi‖2

Gi

σi
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and, consequently, for each x = (x, y, v) ∈ K, it follows that

〈x, V x〉K = ‖x‖2
H

τ
+

m∑
i=1

[
‖yi‖2

Gi

γi
+

‖vi‖2
Gi

σi

]
− 2

m∑
i=1

〈Lix − yi, vi〉Gi

≥

1 − 2

√√√√τ
m∑

i=1
σi‖Li‖2

min
{1

τ
,

1
γ1

, . . . ,
1

γm
,

1
σ1

, . . . ,
1

σm

}
‖x‖2

K

= ρ‖x‖2
K. (2.34)

The algorithmic scheme (2.28) is equivalent to

(∀n ≥ 0)



xn−p1,n

τ −
∑m

i=1 L∗
i vi,n ∈ −z + A(p1,n − an) − an

τ
xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . , m

yi,n−p2,i,n

γi
+ vi,n ∈ Di(p2,i,n − di,n) − di,n

γi

yi,n+1 = yi,n + λn(p2,i,n − yi,n)
vi,n−p3,i,n

σi
− Li(xn − p1,n) + yi,n − p2,i,n

∈ ri + B−1
i (p3,i,n − bi,n) − Lip1,n + p2,i,n − bi,n

σi

vi,n+1 = vi,n + λn(p3,i,n − vi,n).

(2.35)

We introduce for every n ≥ 0 the following notations:
xn = (xn, y1,n, . . . , ym,n, v1,n, . . . , vm,n)
pn = (p1,n, p2,1,n, . . . , p2,m,n, p3,1,n, . . . , p3,m,n)
an = (an, d1,n, . . . , dm,n, b1,n, . . . , bm,n)
aτ

n = (an
τ ,

d1,n

γ1
, . . . ,

dm,n

γm
,

b1,n

σ1
, . . . ,

bm,n

σm
).

(2.36)

Hence, the scheme (2.35) can equivalently be written in the form

(∀n ≥ 0)
⌊

V (xn − pn) ∈ (S + M) (pn − an) + San − aτ
n

xn+1 = xn + λn(pn − xn). (2.37)

Considering again the Hilbert space KV with inner product and norm respectively
defined as in (2.16), since V is self-adjoint and ρ-strongly positive, weak and strong
convergence in KV are equivalent with weak and strong convergence in K, respectively.
Moreover, A = V −1 (S + M) is maximally monotone on KV . Thus, by denoting en =
V −1 ((S + V ) an − aτ

n) for every n ≥ 0 the iterative scheme (2.37) becomes

(∀n ≥ 0)
⌊

pn = JA (xn − en) + an

xn+1 = xn + λn(pn − xn). (2.38)

Furthermore, introducing the maximal monotone operator B : K → 2K, x 7→ {0},
and defining for every n ≥ 0

αn = JA (xn − en) − JA (xn) + an,

the iterative scheme (2.38) becomes (notice that JB = Id)

(∀n ≥ 0)

 yn = JB(xn)
pn = JA (2yn − xn) + αn

xn+1 = xn + λn(pn − yn)
, (2.39)
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thus, it has the structure of the error-tolerant Douglas-Rachford algorithm from [11].
Obviously, zer(A + B) = zer(M + S).

(i) The assumptions made on the error sequences yield
+∞∑
n=0

λn‖an‖K < +∞ and
+∞∑
n=0

λn‖en‖K < +∞.

Thus, by the nonexpansiveness of the resolvent of A,
+∞∑
n=0

λn‖αn‖K < +∞

and, consequently, by the linearity and boundedness of V ,
+∞∑
n=0

λn‖αn‖KV
< +∞.

(i)(a) Follows directly from [11, Theorem 2.1(i)(a)] by using that JB = Id and relation
(2.32).

(i)(b) Follows in analogy to the proof of Theorem 2.1(i)(b).
(i)(c) Follows from Theorem 2.2(i)(a).
(ii) The iterative scheme (2.38) can be also formulated as

(∀n ≥ 0)

 pn = JA(xn) + αn

yn = JB (2pn − xn)
xn+1 = xn + λn(yn − pn)

, (2.40)

with the error sequence fulfilling
+∞∑
n=0

‖αn‖KV
< +∞.

The statement follows from [11, Theorem 2.1(ii)(b)] by taking into consideration the
uniform monotonicity of A and relation (2.32).

Remark 2.3. When for every i = 1, . . . , m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈
Gi \ {0}, and (di,n)n≥0 as a sequence of zeros, one can show that the assertions made in
Theorem 2.2 hold true for step length parameters satisfying

τ
m∑

i=1
σi‖Li‖2 < 1,

when choosing (y1,0, . . . , ym,0) = (0, . . . , 0) in Algorithm 2.2, since the sequences
(y1,n, . . . , ym,n)n≥0 and (v1,n, . . . , vm,n)n≥0 vanish in this particular situation.

Remark 2.4. In the following we emphasize the relations between Algorithm 2.2 and
other existent primal-dual iterative schemes.

(i) When for every i = 1, . . . , m one takes Di(0) = Gi and Di(v) = ∅ ∀v ∈ Gi \{0}, and
(di,n)n≥0 as a sequence of zeros, Algorithm 2.2 with (y1,0, . . . , ym,0) = (0, . . . , 0) as
initial choice provides an iterative scheme which is identical to the one in [19, Eq.
(3.3)], but differs from the one in [12, Theorem 3.1] (see, also, [8, Theorem 3.1] for
the case m = 1) when the latter are applied to Problem 2.1.
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(ii) When solving the particular case of a primal-dual pair of convex optimization prob-
lems discussed in Example 2.1 and when considering as initial choice y1,0 = 0, Al-
gorithm 2.2 gives rise to an iterative scheme which is equivalent to [13, Algorithm
3.1]. In addition, under the assumption of exact implementations, the method in
Algorithm 2.2 equals the one in [9, Algorithm 1], our choice of (λn)n≥0 to be vari-
able in the interval (0, 2), however, relaxes the assumption in [9] that (λn)n≥0 is a
constant sequence in (0, 1].

3 Application to convex minimization problems
In this section we particularize the two iterative schemes introduced and investigated in
this paper in the context of solving a primal-dual pair of convex optimization problems.
To this end we consider the following problem.

Problem 3.1. Let H be a real Hilbert space and let f ∈ Γ(H), z ∈ H. For every
i ∈ {1, . . . , m}, suppose that Gi is a real Hilbert space, let gi, li ∈ Γ(Gi), ri ∈ Gi and let
Li : H → Gi be a nonzero bounded linear operator. Consider the convex optimization
problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi � li)(Lix − ri) − 〈x, z〉
}

(3.1)

and its conjugate dual problem

(D) sup
(v1,...,vm)∈G1×...×Gm

{
−f∗

(
z −

m∑
i=1

L∗
i vi

)
−

m∑
i=1

(g∗
i (vi) + l∗i (vi) + 〈vi, ri〉)

}
. (3.2)

Considering the maximal monotone operators

A = ∂f, Bi = ∂gi and Di = ∂li, i = 1, . . . , m,

the monotone inclusion problem (2.1) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑

i=1
L∗

i (∂gi �∂li)(Lix − ri), (3.3)

while the dual inclusion problem (2.2) reads

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{

z −
∑m

i=1 L∗
i vi ∈ ∂f(x)

vi ∈(∂gi �∂li)(Lix − ri), i = 1, . . . , m.

(3.4)

If (x, v1, . . . , vm) ∈ H × G1 . . . × Gm is a primal-dual solution to (3.3)-(3.4), namely,

z −
m∑

i=1
L∗

i vi ∈ ∂f(x) and vi ∈ (∂gi �∂li)(Lix − ri), i = 1, . . . , m, (3.5)

then x is an optimal solution to (P ), (v1, . . . , vm) is an optimal solution to (D) and
the optimal objective values of the two problems, which we denote by v(P ) and v(D),
respectively, coincide (thus, strong duality holds).

Combining this statement with Algorithm 2.1 and Theorem 2.1 give rise to the fol-
lowing iterative scheme and corresponding convergence results for the primal-dual pair
of optimization problems (P ) − (D). We also use that the subdifferential of a uniformly
convex function is uniformly monotone (cf. [1, Example 22.3(iii)]).
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Algorithm 3.1.
Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G1 × . . .×Gm and τ and σi, i = 1, . . . , m, be strictly positive
real numbers such that

τ
m∑

i=1
σi‖Li‖2 < 4.

Furthermore, let (λn)n≥0 be a sequence in (0, 2), (an)n≥0 a sequence in H, (bi,n)n≥0 and
(di,n)n≥0 sequences in Gi for all i = 1, . . . , m and set

(∀n ≥ 0)



p1,n = Proxτf

(
xn − τ

2
∑m

i=1 L∗
i vi,n + τz

)
+ an

w1,n = 2p1,n − xn

For i = 1, . . . , m⌊
p2,i,n = Proxσig∗

i

(
vi,n + σi

2 Liw1,n − σiri
)

+ bi,n

w2,i,n = 2p2,i,n − vi,n

z1,n = w1,n − τ
2
∑m

i=1 L∗
i w2,i,n

xn+1 = xn + λn(z1,n − p1,n)
For i = 1, . . . , m⌊

z2,i,n = Proxσil∗i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

+ di,n

vi,n+1 = vi,n + λn(z2,i,n − p2,i,n).

(3.6)

Theorem 3.1. For Problem 3.1 suppose that

z ∈ ran
(

∂f +
m∑

i=1
L∗

i (∂gi �∂li)(Li · −ri)
)

, (3.7)

and consider the sequences generated by Algorithm 3.1.

(i) If
+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . , m,

and
∑+∞

n=0 λn(2 − λn) = +∞, then

(i) (xn, v1,n, . . . , vm,n)n≥0 converges weakly to an element (x, v1, . . . , vm) ∈ H ×
G1 × . . . × Gm such that, when setting

p1 = Proxτf

(
x − τ

2

m∑
i=1

L∗
i vi + τz

)
,

and p2,i = Proxσig∗
i

(
vi + σi

2
Li(2p1 − x) − σiri

)
i = 1, . . . , m,

p1 is an optimal solution to (P ), (p2,1, . . . , p2,m) is an optimal solution to (D)
and v(P ) = v(D).

(ii) λn(z1,n − p1,n) → 0 (n → +∞) and λn(z2,i,n − p2,i,n) → 0 (n → +∞) for
i = 1, . . . , m.

(iii) whenever H and Gi, i = 1, . . . , m, are finite-dimensional Hilbert spaces, an →
0 (n → +∞) and bi,n → 0 (n → +∞) for i = 1, . . . , m, then (p1,n)n≥0
converges to an optimal solution to (P ) and (p2,1,n, . . . , p2,m,n)n≥0 converges
to an optimal solution to (D).
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(ii) If

+∞∑
n=0

‖an‖H < +∞,
+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . , m, inf
n≥0

λn > 0

and f and g∗
i , i = 1, . . . , m, are uniformly convex,

then (p1,n)n≥0 converges strongly to an optimal solution to (P ),
(p2,1,n, . . . , p2,m,n)n≥0 converges strongly to an optimal solution to (D) and
v(P ) = v(D).

Algorithm 2.2 and Theorem 2.2 give rise to the following iterative scheme and corre-
sponding convergence results for the primal-dual pair of optimization problems (P )−(D).

Algorithm 3.2.
Let x0 ∈ H, (y1,0, . . . , ym,0) ∈ G1 × . . . × Gm, (v1,0, . . . , vm,0) ∈ G1 × . . . × Gm, and τ and
σi, i = 1, . . . , m, be strictly positive real numbers such that

τ
m∑

i=1
σi‖Li‖2 <

1
4

.

Furthermore, let γi ≤ 2σ−1
i τ

∑m
i=1 σi‖Li‖2, i = 1, . . . , m, (λn)n≥0 be a sequence in (0, 2),

(an)n≥0 a sequence in H, (bi,n)n≥0 and (di,n)n≥0 sequences in Gi for all i = 1, . . . , m and
set

(∀n ≥ 0)



p1,n = Proxτf (xn − τ (
∑m

i=1 L∗
i vi,n − z)) + an

xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . , m

p2,i,n = Proxγili (yi,n + γivi,n) + di,n

yi,n+1 = yi,n + λn(p2,i,n − yi,n)
p3,i,n = Proxσig∗

i
(vi,n + σi (Li(2p1,n − xn) − (2p2,i,n − yi,n) − ri)) + bi,n

vi,n+1 = vi,n + λn(p3,i,n − vi,n).
(3.8)

Theorem 3.2. In Problem 3.1 suppose that

z ∈ ran
(

∂f +
m∑

i=1
L∗

i (∂gi �∂li)(Li · −ri)
)

, (3.9)

and consider the sequences generated by Algorithm 3.2.

(i) If

+∞∑
n=0

λn‖an‖H < +∞,
+∞∑
n=0

λn(‖di,n‖Gi + ‖bi,n‖Gi) < +∞, i = 1, . . . , m,

and
∑+∞

n=0 λn(2 − λn) = +∞, then

(a) (xn, y1,n, . . . , ym,n, v1,n, . . . , vm,n)n≥0 converges weakly to an element
(x, y1, ..., ym, v1, ..., vm) ∈ H × G1 × . . . × Gm × G1 × . . . × Gm such that
x is an optimal solution to (P ), (v1, ..., vm) is an optimal solution to (D) and
v(P ) = v(D).
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(b) λn(p1,n − xn) → 0 (n → +∞), λn(p2,i,n − yi,n) → 0 (n → +∞) and λn(p3,i,n −
vi,n) → 0 (n → +∞) for i = 1, . . . , m.

(c) whenever H and Gi, i = 1, . . . , m, are finite-dimensional Hilbert spaces,
(xn)n≥0 converges to an optimal solution to (P ) and (v1,n, . . . , vm,n)n≥0 con-
verges to an optimal solution to (D).

(ii) If
+∞∑
n=0

‖an‖H < +∞,
+∞∑
n=0

(‖di,n‖Gi + ‖bi,n‖gi) < +∞, i = 1, . . . , m, inf
n≥0

λn > 0

and f, li and g∗
i , i = 1, . . . , m, are uniformly convex,

then, (p1,n)n≥0 converges strongly to the unique optimal solution to (P ),
(p3,1,n, . . . , p3,m,n)n≥0 converges strongly to the unique optimal solution of (D) and
v(P ) = v(D).

Remark 3.1. According to Remark 2.3, when li : Gi → R, li = δ{0}, and (di,n)n≥0 is
chosen as a sequence of zeros for every i = 1, . . . , m, the assertions made in Theorem 3.2
hold true for step length parameters satisfying

τ
m∑

i=1
σi‖Li‖2 < 1

when taking in Algorithm 3.2 as initial choice (y1,0, . . . , ym,0) = (0, . . . , 0). In this case
the sequences (y1,n, . . . , ym,n)n≥0 and (p2,1,n, . . . , p2,m,n)n≥0 vanish and (3.8) reduces to

(∀n ≥ 0)


p1,n = Proxτf (xn − τ (

∑m
i=1 L∗

i vi,n − z)) + an

xn+1 = xn + λn(p1,n − xn)
For i = 1, . . . , m⌊

p3,i,n = Proxσig∗
i

(vi,n + σi (Li(2p1,n − xn) − ri)) + bi,n

vi,n+1 = vi,n + λn(p3,i,n − vi,n).

(3.10)

Remark 3.2. Condition (3.7) in Theorem 3.1 (respectively, condition (3.9) in Theorem
3.2) is fulfilled, if the primal optimization problem (3.1) has an optimal solution,

0 ∈ sqri (dom g∗
i − dom l∗i ) , i = 1, . . . , m, (3.11)

and (see, also, [12, Proposition 4.3])

(r1, . . . , rm) ∈ sqri E, (3.12)

where

E :=
{

(L1x − y1, . . . , Lmx − ym) : x ∈ dom f and yi ∈ dom gi + dom li, i = 1, . . . , m

}
.

Here, for a nonempty convex set Ω ⊆ H, we denote by

sqri Ω =

x ∈ Ω :
⋃

λ≥0
λ(Ω − x) is a closed linear subspace


its strong quasi-relative interior. According to [1, Proposition 15.7], condition (3.11)
guarantees that gi � li ∈ Γ(Gi), i = 1, . . . , m.

If one of the following two conditions
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(i) for any i = 1, . . . , m one of the functions gi and li is real-valued;
(ii) H and Gi, i = 1, . . . , m, are finite-dimensional and there exists x ∈ ri dom f such

that Lix − yi ∈ ri dom gi + ri dom li, i = 1, . . . , m;

is fulfilled, then condition (3.12) is obviously true. For (ii) one has to take into ac-
count that in finite-dimensional spaces the strong quasi-relative interior of a convex set
is nothing else than its relative interior and to use the properties of the latter.

4 Numerical experiments
In this section we emphasize the performance of the algorithms introduced in this article
in the context of two numerical experiments on location and image denoising problems.

4.1 The generalized Heron problem

We start by considering the generalized Heron problem which has been recently investi-
gated in [14,15] and where for its solving subgradient-type methods have been used.

While the classical Heron problem concerns the finding of a point u on a given straight
line in the plane such that the sum of distances from u to given points u1, u2 is minimal,
the problem that we address here aims to find a point in a closed convex set Ω ⊆ Rn which
minimizes the sum of the distances to given convex closed sets Ωi ⊆ Rn, i = 1, . . . , m.

The distance from a point x ∈ Rn to a nonempty set Ω ⊆ Rn is given by

d(x; Ω) = (‖ · ‖� δΩ)(x) = inf
z∈Ω

‖x − z‖.

Thus the generalized Heron problem reads

inf
x∈Ω

m∑
i=1

d(x; Ωi), (4.1)

where the sets Ω ⊆ Rn and Ωi ⊆ Rn, i = 1, . . . , m, are nonempty, closed and convex.
We observe that (4.1) perfectly fits into the framework considered in Problem 3.1 when
setting

f = δΩ, and gi = ‖ · ‖, li = δΩi for all i = 1, . . . , m. (4.2)

However, note that (4.1) cannot be solved via the primal-dual methods in [12] and [19]
since they require the presence of at least one strongly convex function (cf. Baillon-
Haddad Theorem, [1, Corollary 18.16]) in each of the infimal convolutions ‖ · ‖� δΩi ,
i = 1, . . . , m, a fact which is obviously not the case. Notice that

g∗
i : Rn → R, g∗

i (p) = sup
x∈Rn

{〈p, x〉 − ‖x‖} = δB(0,1)(p), i = 1, . . . , m,

thus the proximal points of f , g∗
i and l∗i , i = 1, . . . , m, can be calculated via projections,

in case of the latter via Moreau’s decomposition formula.
In the following we test our algorithms on some examples taken from [14,15].

Example 4.1 (Example 5.5 in [15]). Consider problem (4.1) with the constraint set Ω
being the closed ball centered at (5, 0) having radius 2 and the sets Ωi, i = 1, . . . , 8, being
pairwise disjoint squares in right position in R2 (i. e. the edges are parallel to the x- and
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y-axes, respectively), with centers (−2, 4), (−1, −8), (0, 0), (0, 6), (5, −6), (8, −8), (8, 9)
and (9, −5) and side length 1, respectively (see Figure 4.1).

When solving this problem with Algorithm 3.1 and Algorithm 3.2 (in the sequel
called DR1 and DR2, respectively) and the choices made in (4.2), the following formulae
for the proximal points involved in their formulations are necessary for x, p ∈ R2 and
τ, σi ∈ R++, i = 1, . . . , 8:

Proxτf (x) = (5, 0) + arg min
y∈B(0,2)

1
2

‖y − (x − (5, 0))‖2 = (5, 0) + PB(0,2) (x − (5, 0))

Proxσig∗
i
(p) = arg min

z∈B(0,1)

1
2

‖z − p‖2 = PB(0,1) (p)

Proxσil∗i
(p)(1.3)= p − σi Proxσ−1

i li

(
p

σi

)
= p − σi arg min

z∈Ωi

1
2

∥∥∥∥z − p

σi

∥∥∥∥2
= p − σiPΩi

(
p

σi

)
.

Figure 4.1 gives an insight into the performance of the proposed primal-dual methods
when compared with the subgradient algorithm used in [15]. After a few milliseconds
both splitting algorithms reach machine precision with respect to the root-mean-square
error where the following parameters were used:

• DR1: (∀i ∈ {1, . . . , 8}) σi = 0.15, τ = 2/(
∑8

j=1 σj), λn = 1.5, x0 = (5, 2), vi,0 = 0,
• DR2: (∀i ∈ {1, . . . , 8}) σi = 0.1, τ = 0.24/(

∑8
j=1 σj), λn = 1.8, x0 = (5, 2), vi,0 = 0,

• Subgradient (cf. [15, Theorem 4.1]) x0 = (5, 2), αn = 1
n .

(a) Problem with optimizer
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Figure 4.1: Example 4.1. Generalized Heron problem with squares and disc constraint set on the
left-hand side, performance evaluation for the root-mean-square error (RMSE) on the right-hand
side.

Example 4.2 (Example 4.3 in [14]). In this example we solve the generalized Heron
problem (4.1) in R3, where the constraint set Ω is the closed ball centered at (0, 2, 0)
with radius 1 and Ωi, i = 1, . . . , 5, are cubes in right position with center at (0, −4, 0),
(−4, 2, −3), (−3, −4, 2), (−5, 4, 4) and (−1, 8, 1) and side length 2, respectively.

Figure 4.2 shows that also for this instance the primal-dual approaches outperform
the subgradient method from [15]. In this example we used the following parameters:
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• DR1: (∀i ∈ {1, . . . , 5}) σi = 0.3, τ = 2/(
∑5

j=1 σj), λn = 1.5, x0 = (5, 2), vi,0 = 0,
• DR2: (∀i ∈ {1, . . . , 5}) σi = 0.2, τ = 0.24/(

∑5
j=1 σj), λn = 1.8, x0 = (5, 2), vi,0 = 0,

• Subgradient (cf. [14, Theorem 4.1]) x0 = (0, 2, 0), αn = 1
n .

(a) Problem with optimizer
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Figure 4.2: Example 4.2. Generalized Heron problem with cubes and ball constraint set on the
left-hand side, performance evaluation for the RMSE on the right-hand side.

4.2 Image denoising

The second numerical experiment concerns the solving of a problem arising in image
denoising. To this end, we consider images of size M ×N as vectors x ∈ Rn for n = MN ,
where each pixel denoted by xi,j , 1 ≤ i ≤ M , 1 ≤ j ≤ N , ranges in the closed interval
from 0 to 1.

We are solving the regularized convex nondifferentiable problem

inf
x∈Rn

{1
2

‖x − b‖2 + λTV (x)
}

, (4.3)

where b ∈ Rn is our given noisy image. Here, λ ∈ R++ is a regularization parameter and
TV : Rn → R is the discrete anisotropic total variation function.

We let Y = Rn × Rn, then the operator L : Rn → Y, xi,j 7→ (L1xi,j , L2xi,j),

L1xi,j =
{

xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =
{

xi,j+1 − xi,j , if j < N
0, if j = N

,

represents a discretization of the gradient in horizontal and vertical direction for each
x ∈ Rn with ‖L‖ ≤

√
8. Furthermore, considering the discrete anisotropic total variation

functional

TV (x) =
M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j | + |xi,j+1 − xi,j |

+
M−1∑
i=1

|xi+1,N − xi,N | +
N−1∑
j=1

|xM,j+1 − xM,j | ,

where reflexive boundary conditions are assumed, it holds that TV (x) = ‖Lx‖1.
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, λ = 0.035 (d) Denoised image, λ = 0.07

Figure 4.3: The noisy im-
age in (a) was obtained af-
ter adding white Gaussian
noise with standard devia-
tion σ = 0.06 to the orig-
inal 256 × 256 lichtenstein
test image, (c) shows the
denoised image for λ =
0.035. Likewise, the noisy
image when choosing σ =
0.12 and the denoised one
for λ = 0.07 are shown in
(b) and (d), respectively.

Consequently, the optimization problem (4.3) can be equivalently written as

inf
x∈Rn

{f(x) + g(Lx)}, (4.4)

where f : Rn → R, f(x) = 1
2‖x − b‖2, and g : Y → R, g(v, w) = λ‖(v, w)‖1. Since for

every (p, q) ∈ Y we have g∗(p, q) = δS(p, q) (see [3]), S ⊆ Y being the closed convex set

S = [−λ, λ]n × [−λ, λ]n .

It is easy to see that for all x, p, q ∈ Rn and τ, σ ∈ R++, it holds

Proxτf (x) = arg min
z∈Rn

{
τ

2
‖z − b‖2 + 1

2
‖z − x‖2

}
= 1

1 + τ
(x + τb)

Proxσg∗(p, q) = arg min
(z1,z2)∈S

1
2

‖(z1, z2) − (p, q)‖2 = PS(p, q).

We solved the regularized image denoising problem with the two Douglas-Rachford
type primal-dual methods DR1 (Algorithm 3.1) and DR2 (Algorithm 3.2), the forward-
backward-forward type primal dual method (FBF, cf. [12]) and its acceleration (FBF
Acc, cf. [6]), the primal-dual method (PD) and its accelerated version (PD Acc), both
given in [9], the alternating minimization algorithm (AMA) from [18] together with its
Nesterov-type acceleration (cf. [17]), as well as the Nesterov algorithm (cf. [16]) and the
FISTA algorithm (cf. [2]), the latter operating on the dual problem. A comparison of the
obtained results is shown in Table 4.1 while the test images can be found in Figure 4.3.
It is noticeable that, especially when a low level of tolerance is assumed, the primal-dual
algorithms proposed in this paper definitely outperform the other methods.
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σ = 0.12, λ = 0.07 σ = 0.06, λ = 0.035

ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

DR1 1.40s (48) 3.35s (118) 1.31s (45) 2.93s (103)
DR2 1.24s (75) 2.82s (173) 1.12s (66) 2.57s (147)
FBF 8.89s (343) 58.96s (2271) 4.86s (187) 41.21s (1586)
FBF Acc 2.63s (101) 11.73s (451) 1.93s (73) 8.07s (308)
PD 5.26s (337) 35.53s (2226) 2.77s (183) 25.53s (1532)
PD Acc 1.42s (96) 7.26s (447) 1.20s (70) 5.44s (319)
AMA 7.29s (471) 46.76s (3031) 3.98s (254) 34.36s (2184)
AMA Acc 1.83s (89) 11.68s (561) 1.41s (63) 8.39s (383)
Nesterov 1.97s (102) 12.45s (595) 1.51s (72) 8.77s (415)
FISTA 1.71s (100) 10.92s (645) 1.14s (70) 7.41s (429)

Table 4.1: Performance evaluation for the images in Figure 4.3. The entries refer to the CPU
times in seconds and the number of iterations, respectively, needed in order to attain a root-mean-
square error (RMSE) for the iterates below the tolerance ε.
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