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Abstract. Supervised learning methods are powerful techniques to learn a function
from a given set of labeled data, the so-called training data. In this paper the support
vector machines approach is applied to an image classification task. Starting with the
corresponding Tikhonov regularization problem, reformulated as a convex optimization
problem, we introduce a conjugate dual problem to it and prove that, whenever strong
duality holds, the function to be learned can be expressed via the dual optimal solu-
tions. Corresponding dual problems are then derived for different loss functions. The
theoretical results are applied by numerically solving a classification task using high di-
mensional real-world data in order to obtain optimal classifiers. The results demonstrate
the excellent performance of support vector classification for this particular problem.
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1 Introduction
Supervised learning methods such as Support Vector Machines for classification and
regression belong to the class of kernel based methods that have become, especially in
the last decade, a popular approach for learning functions from a given set of labeled
data. They have wide fields of application such as image and text classification (cf. [6,8]),
computational biology (cf. [13]) or time series forecasting and credit scoring (cf. [9,26])
and have proven to provide very good results.

This article originates from a real-world problem a supplier of the automotive indus-
try was faced with, namely the task of establishing a computer-aided quality control of
manufactured devices. These devices are photographed directly at the end of the man-
ufacturing process and the idea was to perform quality control based on these images.
Due to the promising performance of Support Vector Machines in the field of classi-
fication tasks, we applied this approach for this concrete image classification problem
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and, as we show here, we obtained excellent results concerning the test set classification
errors.

To this end we reformulate the general Tikhonov regularization problem (cf. [25]),
to which the supervised learning problem gives rise, as a convex (not necessarily differ-
entiable) optimization problem, construct a conjugate dual to it (see, for instance, [2]),
prove under suitable qualification conditions the existence of strong duality and express
the optimal solutions of the primal problem via the ones of the dual. This has as conse-
quence the formulation of the decision function to be learned by means of the optimal
solutions of the dual. Hence for the specific learning task one only has to numerically
solve the dual problem, which, different to the primal one, can be mainly equivalently
formulated as a convex differentiable optimization problem.

The convex duality theory was used in the context of regularized supervised learning
models in [15] as well. Theoretical statements on the excess classification errors for
Gaussian kernels and general convex loss functions were provide in [31], while a general
theory for making comparisons of excess risks of different loss functions was established
in [20]. From computational point of view, one can notice in the last years an increase
in the role played by the algorithms for supervised machine learning based on general
iterative schemes designed for solving nonsmooth convex optimization problems. They
can be seen as a theoretically well-funded alternative to some early algorithms with a
consistent heuristical component (see, for instance, [8]). In this context we mention the
computational approaches relying on the alternating direction method of multipliers
(ADMM) (see, for instance, [5, 12]), on the use of convex smoothing techniques (see
[19, 32]) and on some primal-dual proximal splitting methods (see [3]), all of them
relying on quite intricate implementations. The approach introduced in this paper relies
on the idea that for the most popular loss functions used in supervised classification
one only needs to solve the dual conjugate problem, assuming the minimization of a
convex differentiable function over the nonnegative orthant, and which can be done by
standard optimization routines. The very low misclassification errors obtained when
applying our approach to the considered data set certify its good performance.

The paper is organized as follows. In Section 2 the general regularization problem
is introduced and it is stated as an equivalent convex optimization problem. A Fenchel-
type dual problem to it is provided and, under a suitable weak qualification condition,
the existence of strong duality for this primal-dual pair is proved, which gives rise to the
formulation of necessary and sufficient optimality conditions. In Section 3 the general
theory from the previous section is employed for several particular loss functions. An
application of the theoretical results to a high dimensional image classification task is
done in Section 4, allowing an analysis of the suitability of choosing one of the considered
loss functions for this particular problem. A conclusive section closes the paper.

2 Theoretical considerations
Given a set of training data X = {x1, . . . , xn} ⊂ Rd and corresponding labels
yi ∈ {−1,+1}, i = 1, . . . , n, grouping the data into two different classes, a common
approach for learning a classifier based on the Structural Risk Minimization Principle
is to apply Support Vector Machines (SVM) techniques for classification. These su-
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pervised learning methods were investigated in detail by Vapnik in [27]. Considering
D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {+1,−1} the training set, the aim of the SVM
approach is to find a function f belonging to F , a space of real-valued functions defined
on Rd enhanced with some a priori information, that correctly classifies new data into
one of the two classes.

A so-called loss function v : R × R → R = R ∪ {±∞}, assumed to be proper and
convex in its first variable, enables to impose a penalty for predicting f(xi), where the
true value is yi, for i = 1, ..., n. One of the common assumptions on f is smoothness,
which guarantees that two similar inputs correspond to two similar outputs. In order to
control it, one needs to consider a smoothness functional Ω : F → R (cf. [25]), having
the desired characteristic of taking high values for non-smooth functions and low values
for smooth functions.

Hence, the desired function f will be the optimal solution of the Tikhonov regular-
ization problem

inf
f∈F

{
C

n∑
i=1

v(f(xi), yi) + 1
2Ω(f)

}
, (1)

where C > 0 is the so-called regularization parameter controlling the tradeoff between
the loss function and the smoothness functional (see [4]).

For different choices of the loss function and of the smoothness functional (1) gives
rise to different problem formulations in supervised learning. When taking, for instance,
the norm square as smoothing functional, one can get for different choices of the loss
function the classical Support Vector Machines approaches for Classification (cf. [18,22,
28]) and Regression (cf. [27]), while, when varying the smoothness functional, several L1-
norm and L∞-norm approaches (cf. [14]), but also the popular lasso methods (cf. [23,24])
arise as particular instances of (1).

In the following the function f is assumed to be an element of the Reproducing
Kernel Hilbert Space (RKHS)Hk induced by a continuous kernel function k : Rd×Rd →
R (cf. [1]) which we assume to be symmetric and finitely positive semidefinite. The kernel
k is said to be symmetric if k(x, y) = k(y, x) for all x, y ∈ Rd. A symmetric kernel
function k : Rd × Rd → R, which for all m ≥ 1 and all finite sets {x1, . . . , xm} ⊂ Rd
fulfills

∑m
i,j=1 aiajk(xi, xj) ≥ 0 for every arbitrary a ∈ Rd is called finitely positive

semidefinite (cf. [18]).
Hence, the kernel function k can be decomposed as k(x, y) = 〈φ(x), φ(y)〉k, where

〈·, ·〉k denotes the inner product of Hk and φ : Rd → Hk is a so-called feature map. The
representer theorem (cf. [30]) ensures that for every minimizer f of (1) there exists a
vector c = (c1, . . . , cn)T ∈ Rn such that

f(·) =
n∑
i=1

cik(·, xi), (2)

where the upper index T transposes a column vector on Rn into a row one and vice-
versa. For i = 1, ..., n the vectors xi with the property that the corresponding coefficient
ci is not equal to zero are the so-called support vectors. The classification is realized by
the sign-function, i.e. for a given data point x the predicted value is equal to the sign

3



of f(x) for f(x) 6= 0, whereas for f(x) = 0 we have to specify the allocation to one of
the two classes.

The existence of such a representation is essential for the purpose of this paper.
Finally, we define the smoothness functional Ω to be Ω(f) = ‖f‖2k for f ∈ Hk, where
‖·‖k denotes the norm onHk. The Gram matrix of k with respect to the set {x1, . . . , xn}
is denoted by K ∈ Rn×n, being the matrix with entries Kij := k(xi, xj), i, j = 1, . . . , n.
Obviously, K is symmetric and positive semidefinite. On Rd we consider the Euclidean
norm, while for two vectors x, y ∈ Rd we denote by xT y their scalar product. Taking
c ∈ Rn to be the vector corresponding to representation (2), the smoothness functional
becomes Ω(f) = ‖f‖2k = cTKc and for i = 1, ..., n it holds f(xi) =

∑n
j=1 cjKij = (Kc)i.

Thus we can rewrite optimization problem (1) equivalently as

(Pgen) inf
c∈Rn

{
C

n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc

}
.

Due to the nature of the loss function, this optimization problem is convex and
in general not differentiable. In order to overcome this disadvantage, we provide a
conjugate dual problem to it, prove the existence of strong duality and express the
optimal solutions of (Pgen) via the ones of the dual. These considerations make much
sense, especially when the dual problem is easier to solve than the primal one, which is
actually the case for the majority of the loss functions used for supervised classification
problems.

In order to make the paper self-contained, we introduce first some notions and
results. For a nonempty set D ⊆ Rn we denote by ri(D) the relative interior of the set
D, that is the interior of D relative to its affine hull. The indicator function of D is
defined as

δD : Rn → R, δD(x) =
{

0, if x ∈ D,
+∞, otherwise.

For a function f : Rn → R we denote its effective domain by dom f = {x ∈ Rn : f(x) <
+∞} and say that f is proper if dom f 6= ∅ and f > −∞. The (Fenchel-Moreau)
conjugate function of f is f∗ : Rn → R, defined by f∗(p) = supx∈Rn{pTx − f(x)}. For
all x, p ∈ Rn we have the following relation, known as the Young-Fenchel inequality,
f(x) + f∗(p) − pTx ≥ 0. For x ∈ Rn with f(x) ∈ R we denote by ∂f(x) := {p ∈ Rn :
f(y)− f(x) ≥ pT (y− x) ∀y ∈ Rn} the (convex) subdifferential of f at x. Otherwise, we
assume by convention that ∂f(x) = ∅. For x ∈ Rn with f(x) ∈ R, one has that

p ∈ ∂f(x)⇔ f(x) + f∗(p) = pTx. (3)

The epigraph of f is epi f = {(x, r) ∈ Rn × R : f(x) ≤ r} and f is said to be convex, if
epi f is a convex set, while f is said to be lower semicontinuous if epi f is a closed set.
Having a convex set D and a function f : D → R, we say that f is strictly convex on
D, if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) ∀x, y ∈ D,x 6= y, ∀λ ∈ (0, 1)

and that f is strongly convex on D, if there exists µ > 0 such that

f(λx+ (1− λ)y) + λ(1− λ)µ‖x− y‖2 ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ D ∀λ ∈ (0, 1).
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When K ∈ Rn×n is a given matrix, we denote by ImK := {Kx : x ∈ Rn}. Further, for
x ∈ R we define x+ := max{0, x}.

The dual problem to (Pgen) which we consider here is a Fenchel-type dual problem
(cf. [4]) and it is formulated as

(Dgen) sup
p∈Rn,

p=(p1,...,pn)T

{
−C

n∑
i=1

(
v(·, yi)

)∗(
− pi
C

)
− 1

2p
TKp

}
. (4)

Let us denote by val(Pgen) the optimal objective value of the primal problem (Pgen)
and by val(Dgen) the optimal objective value of its dual problem (Dgen). First of all,
we show that for the minimization problem (Pgen) and its dual problem (Dgen) weak
duality holds.

Theorem 1. For (Pgen) and (Dgen) weak duality holds, i. e. val(Pgen) ≥ val(Dgen).

Proof. Let be c ∈ Rn and p = (p1, . . . , pn)T ∈ Rn. Then it holds, according to Young-
Fenchel inequality and due to the positive semidefiniteness of K, that

0 ≤ C
[
n∑
i=1

v
(
(Kc)i, yi

)
+

n∑
i=1

(
v(·, yi)

)∗(− pi
C

)
+

n∑
i=1

(Kc)i
pi
C

]

+ 1
2(c− p)TK(c− p)

= C
n∑
i=1

v
(
(Kc)i, yi

)
+ C

n∑
i=1

(
v(·, yi)

)∗(− pi
C

)
+ pT (Kc)

+ 1
2c

TKc+ 1
2p

TKp− pT (Kc)

= C
n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc+ C

n∑
i=1

(
v(·, yi)

)∗(− pi
C

)
+ 1

2p
TKp

and therefore

C
n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc ≥ −C

n∑
i=1

(
v(·, yi)

)∗(− pi
C

)
− 1

2p
TKp,

i. e. val(Pgen) ≥ val(Dgen).

By introducing the functions vi : Rn → R, vi(z) = v(zi, yi), i = 1, . . . , n, the problem
(Pgen) can equivalently be written as

(Pgen) inf
c∈Rn

{
C

n∑
i=1

vi(Kc) + 1
2c

TKc

}
.

In order to ensure strong duality for the primal-dual pair (Pgen) − (Dgen), we impose
the following qualification condition

(QC) ImK ∩
n∏
i=1

ri(dom v(·, yi)) 6= ∅.
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Theorem 2. If (QC) is fulfilled, then it holds val(Pgen) = val(Dgen) and (Dgen) has
an optimal solution.

Proof. We notice first that

val(Pgen) = inf
c∈Rn

{(
n∑
i=1

Cvi

)
(Kc) + 1

2c
TKc

}
.

Denoting by g : Rn → R, g(c) = 1
2c
TKc, and by taking into consideration that

dom (
∑n
i=1Cvi) =

∏n
i=1 dom v(·, yi), one has

K(ri(dom g)) ∩ ri
(

n∑
i=1

Cvi

)
= ImK ∩

n∏
i=1

ri(dom v(·, yi)) 6= ∅.

This means that val(Pgen) < +∞. Moreover, there exists a p̄ = (p̄1, . . . , p̄n)T ∈ Rn such
that (see [2, Theorem 2.1])

val(Pgen) = sup
p∈Rn

{
−
( n∑
i=1

Cvi
)∗

(−p)− g∗(Kp)
}

= −
(
C

n∑
i=1

vi
)∗

(−p̄)− g∗(Kp̄).

Since for q ∈ Rn,

g∗(q) =
{

1
2q
TK−q, if q ∈ ImK,

+∞, otherwise,

where K− is the Moore-Penrose pseudo-inverse of K, it holds

g∗(Kp̄) = 1
2(Kp̄)TK−(Kp̄) = 1

2 p̄
TKK−Kp̄ = 1

2 p̄
TKp̄

and, so,

val(Pgen) = −C
(

n∑
i=1

vi

)∗ (
− 1
C
p̄

)
− 1

2 p̄
TKp̄.

As from (QC) one has ∩ni=1 ri(dom vi) =
∏n
i=1 ri(dom v(·, yi)) 6= ∅, it follows (cf. [16])

that there exist p̄i ∈ Rn, i = 1, ..., n, with
∑n
i=1 p̄

i = p̄, such that(
n∑
i=1

vi

)∗ (
− 1
C
p̄

)
=

n∑
i=1

v∗i

(
− 1
C
p̄i
)

and, therefore,

val(Pgen) = −C
n∑
i=1

v∗i

(
− 1
C
p̄i
)
− 1

2

(
n∑
i=1

p̄i
)T

K

(
n∑
i=1

p̄i
)
.

Further, for all i = 1, . . . , n, it holds

v∗i

(
− 1
C
p̄i
)

= sup
z∈Rn

{
− 1
C

(p̄i)T z − v(zi, yi)
}

=


(
v(·, yi)

)∗(
− p̄i

i
C

)
, if p̄ij = 0, ∀j 6= i,

+∞, otherwise.
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Since the optimal objective value of (Pgen) is finite, it holds p̄i = p̄ii for i = 1, ..., n and

val(Pgen) = −C
n∑
i=1

(
v(·, yi)

)∗ (
− p̄i
C

)
− 1

2 p̄
TKp̄.

This, along with the weak duality theorem, provides the desired result, p̄ being an
optimal solution to (Dgen).

The next theorem furnishes the necessary and sufficient optimality conditions for
the primal-dual pair (Pgen)− (Dgen).

Theorem 3. Let (QC) be fulfilled. If c̄ ∈ Rn is an optimal solution to (Pgen), then
there exists an optimal solution p̄ ∈ Rn to (Dgen) such that

(i) − p̄i
C ∈ ∂v(·, yi)((Kc̄)i), i = 1, . . . , n;

(ii) K(c̄− p̄) = 0.

Vice-versa, if for c̄ ∈ Rn and p̄ ∈ Rn the statements (i) and (ii) are fulfilled, then
c̄ ∈ Rn is an optimal solution to (Pgen), p̄ ∈ Rn is an optimal solution to (Dgen) and
val(Pgen) = val(Dgen).

Proof. Assuming that c̄ ∈ Rn is an optimal solution to (Pgen), from Theorem 2 we get
the existence of an optimal solution p̄ ∈ Rn to (Dgen) such that

C

[
n∑
i=1

v
(
(Kc̄)i, yi

)
+

n∑
i=1

(
v(·, yi)

)∗ (
− p̄i
C

)
+

n∑
i=1

(Kc̄)i
p̄i
C

]

+1
2 c̄

TKc̄+ 1
2 p̄

TKp̄− p̄TKc̄ = 0. (5)

By the Young-Fenchel inequality one has

v((Kc̄)i, yi) +
(
v(·, yi)

)∗ ( p̄i
C

)
≥ (Kc̄)i

p̄i
C
∀i = 1, . . . , n,

and
1
2 c̄

TKc̄+ 1
2 p̄

TKp̄ ≥ p̄TKc̄.

Hence, these inequalities must be fulfilled as equations, which are further equivalent tov((Kc̄)i, yi) +
(
v(·, yi)

)∗ ( p̄i
C

)
= (Kc̄)i p̄i

C ∀i = 1, . . . , n,
1
2(c̄− p̄)TK(c̄− p̄) = 0.

Thus c̄− p̄ is a global minimum of the convex function p 7→ 1/2pTKp, which means that
the second statement in the relations above is nothing else but K(c̄− p̄) = 0. Statement
(i) follows from the characterization of the subdifferential given in (3).

Vice-versa, if for c̄ ∈ Rn and p̄ ∈ Rn the statements (i) and (ii) are fulfilled, then (5)
holds, which implies in light of Theorem 1 that c̄ ∈ Rn is an optimal solution to (Pgen),
p̄ ∈ Rn is an optimal solution to (Dgen) and val(Pgen) = val(Dgen).

7



Remark 1. If K is positive definite, then, due to the fact that v(·, yi) is proper and
convex for all i = 1, ..., n, the qualification condition (QC) is automatically fulfilled.
Thus, according to Theorem 3, c̄ ∈ Rn is an optimal solution for (Pgen) if and only if
there exists an optimal solution p̄ ∈ Rn to (Dgen) such that

(i) − p̄i
C ∈ ∂v(·, yi)((Kc̄)i), i = 1, . . . , n;

(ii) c̄ = p̄.

Remark 2. If K is positive definite, then the function g is strongly convex (on Rn).
Consequently, if v(·, yi), i = 1, . . . , n, is, additionally, lower semicontinuous, the opti-
mization problem (Pgen) has a unique optimal solution (see, for instance, [7, Satz 6.33]).
Further, due to the fact that p 7→ 1

2p
TKp is strictly convex (on Rn), one can see that the

dual problem (Dgen) has at most one optimal solution. Consequently, due to Remark
1, whenever K is positive definite and v(·, yi) is lower semicontinuous, for i = 1, ..., n,
then in order to solve (Pgen) one can equivalently solve (Dgen) which in this case has
an unique optimal solution p̄, this being also the unique optimal solution of (Pgen).

3 Some classical loss functions as particular cases
In this section we deal with particular instances of the general model described in the
previous one and construct, for three particular loss functions, the corresponding dual
problems. We employed the three dual problems in concretely solving a classification
problem on a data set of images, as we will show in Section 4.

3.1 Hinge loss

The first loss function we consider here is the hinge loss vhl : R× R→ R, defined as

vhl(a, y) = (1− ay)+ ,

which is a proper, convex and lower semicontinuous function in its first component,
while (QC) is obviously fulfilled. The primal optimization problem (Pgen) becomes in
this case

(Phl) inf
c∈Rn

{
C

n∑
i=1

(
1− (Kc)iyi

)
+

+ 1
2c

TKc

}
.

To obtain the dual problem (Dhl) of (Phl) (cf. (4)) for this special loss function, we
use the Lagrange technique in order to calculate the conjugate function of vhl(·, yi), for

8



i = 1, ..., n. For z ∈ R and i = 1, ..., n we have

−
(
vhl(·, yi)

)∗(z) = − sup
a∈R
{za− (1− ayi)+} = inf

a,t∈R,
t≥0, t≥1−ayi

{−za+ t}

= sup
k≥0, r≥0

{
inf
a,t∈R

{
− za+ t+ k(1− ayi − t)− rt

}}
= sup

k≥0, r≥0

{
inf
a∈R
{−za− kayi}+ inf

t∈R
{t− kt− rt}+ k

}

= sup
k≥0, r≥0,
k+r=1,
z+kyi=0

k = sup
k∈[0,1],
k=−zyi

k =
{
−zyi, if zyi ∈ [−1, 0],
−∞, otherwise.

Note that in the calculations above we used the fact that the labels yi, i = 1, . . . , n, can
only take the values +1 or -1 for the binary classification task we consider in this paper
(cf. Section 4). With the above formula we obtain the following dual problem

(Dhl) sup
p∈Rn,

piyi∈[0,C], i=1,...,n

{
n∑
i=1

piyi −
1
2p

TKp

}

or, equivalently,

(Dhl) inf
p∈Rn,

piyi∈[0,C], i=1,...,n

{
1
2p

TKp−
n∑
i=1

piyi

}
.

By defining the vector α = (α1, . . . , αn)T ∈ Rn, αi := piyi, i = 1, . . . , n, the dual
problem can equivalently be written as

(Dhl) inf
αi∈[0,C], i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjKij −
n∑
i=1

αi

 ,
a representation which is recognized to be the commonly used form of the dual problem
to (Phl) in literature.

3.2 Generalized hinge loss

Beside the hinge loss, the binary image classification task has been performed for two
other loss functions, as we point out in Section 4. They both represent particular
instances of the generalized hinge loss vughl : R× R→ R,

vughl(a, y) = (1− ay)u+,

where u > 1. The generalized hinge loss function is proper, convex and lower semi-
continuous in its first component, too, while the qualification condition (QC) is again
obviously fulfilled. The primal problem this loss function gives rise to reads

(P ughl) inf
c∈Rn

{
C

n∑
i=1

(1− (Kc)iyi)u+ + 1
2c

TKc

}
.
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To obtain its dual problem we need the conjugate function of vughl(·, yi) for i = 1, ..., n.
For all z ∈ R and all i = 1, ..., n we have

−
(
vughl(·, yi)

)∗(z) = − sup
a∈R

{
za− (1− ayi)u+

}
= inf

a,t∈R,
t≥1−ayi

{
−za+ tu + δ[0,+∞)(t)

}
.

By taking into account that the function t 7→ tu + δ[0,+∞)(t) is convex, we can make
again use of Lagrange duality, which provides the following formula for the conjugate
of vughl(·, yi) for i = 1, ..., n and z ∈ R

−
(
vughl(·, yi)

)∗(z) = sup
k≥0

{
inf

a∈R, t≥0

{
− za+ tu + k(1− ayi − t)

}}
= sup

k≥0

{
inf
a∈R
{−za− kayi}+ inf

t≥0
{tu − kt}+ k

}

= sup
k≥0,

k=−zyi

{
(1− u)

(
k

u

) u
u−1

+ k

}

=

(1− u)
(
−zyi
u

) u
u−1 − zyi, if zyi ≤ 0,

−∞, otherwise.

Hence, the corresponding dual problem to (P ughl) looks like

(Du
ghl) sup

pi∈R,
piyi≥0,i=1...,n

{
1− u

(Cuu)
1

u−1

n∑
i=1

(piyi)
u

u−1 +
n∑
i=1

piyi −
1
2p

TKp

}
.

Formulated as an infimum problem, (Du
ghl) becomes

(Du
ghl) inf

pi∈R,
piyi≥0,i=1...,n

{
1
2p

TKp+ u− 1
(Cuu)

1
u−1

n∑
i=1

(piyi)
u

u−1 −
n∑
i=1

piyi

}
,

while, by taking α = (α1, . . . , αn)T ∈ Rn, αi := piyi, i = 1, . . . , n, one obtains for it the
following equivalent formulation

(Du
ghl) inf

αi≥0, i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjKij + u− 1
(Cuu)

1
u−1

n∑
i=1

α
u

u−1
i −

n∑
i=1

αi

 .
This problem give rise for u = 2 to

(D2
ghl) inf

αi≥0, i=1,...,n

1
2

 n∑
i,j=1

αiαjyiyjKij + 1
2C

n∑
i=1

α2
i

− n∑
i=1

αi


and for u = 3 to

(D3
ghl) inf

αi≥0, i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjKij + 2√
27C

n∑
i=1

α
3
2
i −

n∑
i=1

αi

 ,
which are the situations that we employ, along the one corresponding to the hinge loss,
in Section 4 for solving the classification task.
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Remark 3. The problems (Dhl) and (D2
ghl) are convex quadratic optimization problems

with affine inequality constraints and they can be solved by making use of one of the
standard solvers which exist for this class of optimization problems. This is not anymore
the case for (D3

ghl), which is however a convex optimization problem. Thus one can use
for solving it instead one of the standard solvers for convex differentiable optimization
problems with affine inequality constraints. In order to solve both the quadratic and
the non-quadratic optimization problems, we applied appropriate optimization routines
from the MATLAB R© [11] optimization package.

4 Application to image classification
In this section we describe the data for which the classification task, based on the
approach described above, has been performed. Furthermore, we illustrate how the
data has been preprocessed and give numerical results for the problems (Dhl), (D2

ghl)
and (D3

ghl) arising when considering the different loss functions investigated in Section
3. These investigations can be extended by considering other loss functions and by
calculating the corresponding dual problems. The only assumption we need for the
former is convexity and lower semicontinuity in the first component, which the majority
of the popular loss functions (with the exception of the 0− 1-loss) fulfill.

4.1 Training data

The available data were photographs of components used in the automotive industry,
taken by a camera that is an internal part of the machine that produces these items. The
overall task is to decide whether a produced component is fine or has to be considered
as defective. In particular, a component is considered to be fine if a wire has been
brazed correctly onto an attachment and it is defective otherwise. Consequently, a
binary classification problem arises, where the label +1 denotes the class of components
that are fine and the label −1 denotes the class of components that are defective. In
other words, the goal of the classification task is to distinguish good joints from bad
joints.

There was a total number of 4740 photographs of the components available, repre-
sented as gray scale images of size 200 × 50 pixels. Consisting of 2416 images of class
+1 and 2324 images of class −1 the data set was nearly balanced. Since each pixel of
the 8-bit gray-scale image represents a specific shade of gray, we assigned to it a value
between 0 to 255, where the value equals 0 if the pixel is purely black and 255 if the
pixel is purely white, respectively. Figure 4.1 shows four example images, two of each
class.

4.2 Preprocessing

In order to be able to use the images for the classification task, we first transformed them
into vectors. First, each of the images has been represented as a matrix Mt ∈ R200×50,
Mt = (mt

i,j)
200,50
i,j=1 , t = 1, . . . , 4740, with entries mt

ij ∈ {0, 1, . . . , 255}, i = 1, . . . , 200,
j = 1, . . . , 50. By simply concatenating the rows of the matrixMt, we obtained a vector

11



(a) (b) (c) (d)

Figure 4.1: Example images of good ((a), (b)) and bad ((c), (d)) joints.

mt representing image t, i. e.

mt = (mt
11, . . . ,m

t
1 200, . . . ,m

t
50 1, . . . ,m

t
50 200)T = (mt 1, . . . ,mt 10 000)T ∈ R10 000.

Denote by D = {(mt, yt), t = 1, . . . , 4740} ⊂ R10 000 × {−1,+1} the set of all data
available. Following [10], due to numerical reasons, but also in order to guarantee an
equal participation of the training image in the learning process, the data has been
normalized by dividing each data point by the quantity ( 1

4740
∑4740
t=1 ‖mt‖2)

1
2 . Despite

the fact that nowadays computations can in fact be performed for 10 000−dimensional
vectors, we found it desirable to reduce their dimension to a value for which compu-
tations can be performed comparatively fast, especially concerning the calculation of
the kernel matrix and the value of the decision function. For that reason, a so-called
feature ranking (see [21]) was performed, by assigning a score to each pixel indicating
its relevance for distinguishing between the two classes. Therefore, for the set of input
data D = {m1, . . . ,m4740} we defined the sets

D+ := {mt ∈ D : yt = +1 } and D− := {mt ∈ D : yt = −1}

For both of these data sets, we calculated the mean µi,

µi(D+) = 1
|D+|

∑
mj∈D+

mji, µi(D−) = 1
|D−|

∑
mj∈D−

mji, i = 1, . . . , 10 000,

and the variance σ2
i ,

σ2
i (D+) = 1

|D+|
∑

mj∈D+

(mji − µi(D+))2, σ2
i (D−) = 1

|D−|
∑

mj∈D−
(mji − µi(D−))2,

i = 1, . . . , 10 000, for each separate pixel of the images in the sets D+ and D−. Here,
the values |D+| and |D−| denote the number of elements contained in the corresponding
sets D+ and D−, respectively. The score Si for the i−th pixel has been then calculated
by

Si(D) = (µi(D+)− µi(D−))2

σ2
i (D+) + σ2

i (D−)
for i = 1, . . . , 10 000.

12



By applying this approach to the data set of images (cf. Figure (4.1)), we determined a
score for each pixel, indicating its relevance for the classification task. Figure 4.2 plots
the scores that have been assigned to the separate pixels. Finally, we have chosen only
the pixels with a score greater or equal 0.1 in order to reduce the dimension of the input
data. This approach provided a number of 4398 pixel relevant for the classification task.

Figure 4.2: Visualization of the scores of the pixels.

4.3 Numerical results

To obtain a classifier numerical tests were performed for the three choices of the loss
function discussed in the previous section, namely the hinge loss vhl(a, y) = (1 − ay)+
and the generalized hinge loss vughl(a, y) = (1 − ay)u+ for u = 2 and u = 3 and the
corresponding three dual problems (Dhl), (D2

ghl) and, respectively, (D3
ghl) were used.

As kernel function the Gaussian RBF kernel

k(x, y) = exp
(
−‖x− y‖

2

2σ2

)

with parameter σ > 0 was chosen. This gave rise to a positive definite Gram matrix
K and, therefore, according to Remark 2, an optimal solution p̄ := (p̄1, ..., p̄n)T of the
dual was an optimal solution of the primal, too. In this way the components of this
vector provided the decision function we looked for when considering the classification
task. Since the regularization parameter C and the kernel parameter σ were unknown
and had to be determined by the user, first, a 10-fold cross validation was performed
for each of the three loss functions and for each combination (C, σ) from a given set of
values for each parameter. The whole data set was split into ten disjoint and equally
sized subsets resulting in ten folds, each of them consisting of 474 input data points.
The average classification error over all ten test folds for each parameter combination
and for each loss function was computed, giving information about the corresponding
best combination of parameters C and σ. Table 4.1 shows the average classification
errors over ten folds for a selection of tested parameter combinations.
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loss function C σ

0.1 0.5 1 10

hinge loss

1 0.2321 0.3376 0.4220 49.030
10 0.1899 0.2321 0.3165 0.6752
100 0.1899 0.1688 0.2532 0.4220

1000 0.1899 0.2110 0.3587 0.2954

1 0.2110 0.2743 0.3376 2.1100
quadratic 10 0.2110 0.2110 0.2532 0.4642
hinge loss 100 0.1899 0.1688 0.2954 0.3587

1000 0.1899 0.2110 0.3165 0.3376

1 0.2110 0.2532 0.2954 1.0972
cubic 10 0.1899 0.2321 0.3376 0.4431
hinge loss 100 0.1899 0.1899 0.3165 0.3376

1000 0.1899 0.2110 0.3165 0.3587

Table 4.1: Average classification errors over ten folds in percentage of the number of
images contained in the test sets.

As one can see, the classification errors are remarkably small for all loss functions and
for nearly all combinations of the kernel parameter σ and the regularization parameter
C. There is an average misclassification rate of only up to 1% of the images contained
in the test sets. The smallest errors occur for the combination C = 100 and σ = 0.5 for
all loss functions. Taking this parameter combination as the optimal one, one obtains a
number of 151 support vectors for the hinge loss function, i. e. only 3.2% of the images
of the whole training data set are needed for the decision function. Concerning the
quadratic hinge loss, we obtained 178 support vectors which is just a little more than
for the usual hinge loss function. For the cubic hinge loss a total of 2207 support vectors
was obtained, which is nearly the half of the full training set.

In order to compare the overall performance of the resulting classifier for different
choices of the loss function we performed a nested cross validation (cf. [17, 29]), too.
In this way one obtains an unbiased estimate of the true classification error for each
model. More precisely, we implemented a so-called two nested 10-fold cross validation,
i. e. for an outer loop the whole set of images was split into ten disjoint sets used as
test sets to obtain the classification error. For each test set the remaining data again
was split into ten disjoint sets used in the inner loop. Then, via the 10-fold cross
validation approach described above the best values for the optimal kernel parameter
and the regularization parameter observed in the experiment were chosen. Once these

loss function hinge loss quadratic hinge loss cubic hinge loss

average test error 0.050 0.041 0.046

Table 4.2: The average misclassification rate obtained via the two nested 10-fold cross
validation for each loss function.
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parameters are determined, they were used for training a classifier on the whole set and
for testing it on the remaining test set. As result we got the average test error over
ten test sets for each choice of the loss function, which provided a characteristic for
comparing the performance of these classifiers. The results are shown in Table 4.2 and
indicate that the quadratic hinge loss function works best for this image classification
task in the sense that it yields the lowest misclassification rates.

5 Conclusions
This paper aimed at solving an image classification task involving high dimensional real-
world data. For this purpose, starting with the general Tikhonov regularization problem,
reformulated as a convex optimization problem, we introduced a Fenchel-type dual
problem for it and proved the existence of strong duality. This gave us the possibility
to express the decision function for the classification problem via the dual optimal
solutions. For three particular loss functions the corresponding dual problems have been
calculated and for each of them numerical tests have been performed. The obtained
results confirm the applicability of the support vector technique for classification tasks
based on real-world data.

Acknowledgements
We would like to thank Continental Automotive GmbH in Limbach-Oberfrohna for
providing the data for this challenging classification problem and to the anonymous
reviewers for their recommendations which improved the quality of the paper.

References
[1] Aronszajn N., Theory of reproducing kernels, T. Am. Math. Soc., 1950, 686, 337–

404

[2] Boţ R.I., Conjugate Duality in Convex Optimization, Lecture Notes in Econom.
and Math. Systems, 637, Springer, Berlin Heidelberg, 2010

[3] Boţ R.I., Csetnek E.R., Heinrich A., On the convergence rate improvement of
a primal-dual splitting algorithm for solving monotone inclusion problems, 2012,
arXiv:1303.2875 [math.OC]

[4] Boţ R.I., Lorenz N., Optimization problems in statistical learning: Duality and
optimality conditions, Eur. J. Oper. Res., 2011, 213(2), 395–404

[5] Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., Distributed optimization
and statistical learning via the alternating direction method of multipliers, Found.
Trends Mach. Learn., 2010, 3(1), 1–122

[6] Chapelle O., Haffner P., Vapnik V.N., Support vector machines for histogramm-
based image classification, IEEE T. Neural Networ., 1999, 10, 1055–1064

15



[7] Geiger C., Kanzow, C., Theorie und Numerik restringierter Optimierungsaufgaben,
Springer, Berlin Heidelberg New York, 2002

[8] Joachims T., Learning to Classify Text using Support Vector Machines: Methods,
Theory and Algorithms, Kluwer Academic Publishers, Boston Dordrecht London,
2002

[9] Kim K., Financial time series forecasting using support vector machines, Neuro-
computing, 2003, 55(1-2), 307–319

[10] Lal T.N., Chapelle O., Schölkopf B., Combining a filter method with SVMs. In:
I. Guyon, S. Gunn, M. Nikravesh and L. A. Zadeh (Eds.), Feature Extraction:
Foundations and Applications, 2006, Springer, Berlin Heidelberg, 439–445

[11] MATLAB 8.0, The MathWorks Inc., 2012, Natick, Natick, Massachusetts

[12] Mota J.F.C., Xavier J.M.F., Aguiar P.M.Q., Püschel M., D-ADMM: A
communication-efficient distributed algorithm for separable optimization, 2012,
arXiv:1202.2805 [math.OC]

[13] Noble W.S., Support vector machine application in computational biology, In: B.
Schölkopf, K. Tsuda, J.-P. Vert (Eds.), Kernel Methods in Computational Biology,
2004, The MIT Press, 71–92

[14] Pedroso J.P., Murata N., Support vector machines with different norms: motiva-
tion, formulations and results, Patter Recogn. Lett., 2001, 22(12), 1263–1272

[15] Rifkin R.M., Lippert R.A., Value regularization and Fenchel duality, J. Mach.
Learn. Res., 2007, 8, 441–479

[16] Rockafellar R.T., Convex Analysis, 1970, Princeton University Press

[17] Ruschhaupt M., Huber W., Poustka A., Mansmann U., A compendium to ensure
computational reproducibility in high-dimensional classification tasks, Stat. Appl.
Gen. Mo. B., 2004, 3(7), Article 37

[18] Shawe-Taylor J., Cristianini N., Kernel Methods for Pattern Analysis, 2004, Cam-
bridge University Press

[19] Sra S., Nowozin S., Wright S.J., Optimization for Machine Learning, 2011, The
MIT Press

[20] Steinwart I., How to compare different loss functions and their risks, Constr. Ap-
prox., 2007, 26(2), 225–287

[21] Stoppiglia H., Dreyfus G., Dubois R., Oussar Y., Ranking a random feature for
variable and feature selection, J. Mach. Learn. Res., 2003, 3, 1399–1414

[22] Suykens J.A.K., Vanderwalle J., Least squares support vector machines classifiers,
Neural Process. Lett., 1999, 9(3), 293–300

16



[23] Tibshirani R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc.
Ser. B, 1996, 58(1), 267–288

[24] Tibshirani R., Saunders M., Rosset S., Zhu J., Kneight K., Sparsity and smoothness
via the fused lasso, J. R. Stat. Soc. Ser. B, 2005, 67(1), 91–108

[25] Tikhonov A.N., Arsenin V.Y., Solutions of Ill-posed Problems, 1977, W.H. Win-
ston, Washington D.C.

[26] Van Gestel T., Baesens B., Garcia J., Van Dijcke P., A support vector machine
approach to credit scoring, Bank -en Finan., 2003, 2, 73–82

[27] Vapnik V.N., The Nature of Statistical Learning Theory, 1995, Springer, New York

[28] Vapnik V.N., Statistical Learning Theory, 1998, Wiley, New York

[29] Varma S., Simon R., Bias in error estimation when using cross-validation for model
selection, BMC Bioinformatics, 2006, 7, Article 91

[30] Wahba G., Spline Models for Observational Data, 1990, Series in Applied Mathe-
matics, 59, SIAM, Philadelphia

[31] Xiang D.-H., Zhou D.-X., Classification with Gaussians and convex loss, J. Mach.
Learn. Res., 2009, 10, 1447–1468

[32] Ying Y., Huang K., Campbell C., Sparse metric learning via smooth optimization,
In: Bengio Y., Schuurmans D., Lafferty J., Williams C., Culotta A., Advances in
Neural Information Processing Systems 22, 2009, The NIPS Foundation, 2205–2213

17


	Introduction
	Theoretical considerations
	Some classical loss functions as particular cases
	Hinge loss
	Generalized hinge loss

	Application to image classification
	Training data
	Preprocessing
	Numerical results

	Conclusions

