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Abstract. In this paper we investigate the convergence behavior of a primal-dual
splitting method for solving monotone inclusions involving mixtures of composite, Lip-
schitzian and parallel sum type operators proposed by Combettes and Pesquet in [10].
Firstly, in the particular case of convex minimization problems, we derive convergence
rates for the partial primal-dual gap function associated to a primal-dual pair of optimiza-
tion problems by making use of conjugate duality techniques. Secondly, we propose for
the general monotone inclusion problem two new schemes which accelerate the sequences
of primal and/or dual iterates, provided strong monotonicity assumptions for some of
the involved operators are fulfilled. Finally, we apply the theoretical achievements in
the context of different types of image restoration problems solved via total variation
regularization.
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1 Introduction

1.1 Review of previous work

Motivated by applications in fields like signal and image processing, location theory and
supervised machine learning, the last few years have shown a rising interest in solv-
ing structured nondifferentiable convex optimization problems within the framework of
the theory of conjugate functions. As this gives rise via convex duality and optimality
statements to the solving of monotone inclusions involving mixtures of composite, single-
valued cocoercive and/or Lipschitzian and parallel sum type operators, the focus was
put on providing easily implementable numerical schemes for the latter. In this sense,
one of the major aim was to avoid asking for the calculation of the resolvents of the
composites with linear continuous operators and of the parallel sum types operators, for
which in general no exact formulae are available, rather then to evaluate each maximally
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monotone operator individually. Another important aim was to include the single-valued
cocoercive and/or Lipschitzian operators via forward evaluations.

As the standard splitting approaches, like the Forward-Backward algorithm (see [1]),
Tseng’s Forward-Backward-Forward algorithm (see [13]) and the Douglas–Rachford al-
gorithm (see [1]), proved to have considerable limitations in this context, a first fruitful
idea in this sense, was proposed by Combettes and Pesquet in [10], itself being an exten-
sion of the algorithmic scheme from [7] obtained by allowing also Lipschitzian monotone
operators and parallel sums in the problem formulation. In the mentioned works, by
means of a primal-dual reformulation in an appropriate product space, the monotone
inclusion problem is reduced to the one of finding the zeros of the sum of a Lipschitzian
monotone operator with a maximally monotone operator. The latter is solved by using
an error-tolerant version of Tseng’s algorithm which has forward-backward-forward char-
acteristics and allows to access the monotone Lipschitzian operators via explicit forward
steps, while set-valued maximally monotone operators are processed via their resolvents.
A notable advantage of this method is given by both its highly parallelizable character,
most of its steps could be executed independently, and by the fact that allows to process
maximal monotone operators and linear bounded operators separately, whenever they
occur in the form of precompositions in the problem formulation.

This idea was further employed by Vũ in [15] in the context of solving highly struc-
tured monotone inclusions, as well, whereby instead of monotone Lipschitzian opera-
tors, cocoercive operators were used and, consequently, instead of Tseng’s splitting, the
forward-backward splitting method has been used. The popular primal-dual method due
to Chambolle and Pock described and analyzed in [9, Algorithm 1] and its extension
proposed by Condat in [11] are particular instances of Vũ’s algorithm. For other re-
cently introduced algorithms for solving monotone inclusions relying on the primal-dual
approach we refer the reader to [4–6].

The aim of this paper is to investigate the convergence behavior of a primal-dual split-
ting method from [10] from two different points of view, namely, by deriving convergence
rates for the sequence of objective function values in the particular case of convex mini-
mization problems and by proposing two new schemes which accelerate the sequences of
primal and/or dual iterates. The theoretical achievements are then applied in the context
of different types of image restoration problems solved via total variation regularization.

1.2 Preliminary notions and problem formulation

We introduce as follows some preliminary notions and results which are needed through-
out the paper and formulate the monotone inclusion problem under investigation. We
are considering the real Hilbert spaces H and Gi, i = 1, . . . , m, endowed with the inner
product 〈·, ·〉 and associated norm ‖·‖ =

√
〈·, ·〉, for which we use the same notation,

respectively, as there is no risk of confusion. The symbols ⇀ and → denote weak and
strong convergence, respectively. By R++ we denote the set of strictly positive real num-
bers, while the indicator function of a set C ⊆ H is δC : H → R := R∪{±∞}, defined by
δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise. For a function f : H → R we denote
by dom f := {x ∈ H : f(x) < +∞} its effective domain and call f proper if dom f 6= ∅
and f(x) > −∞ for all x ∈ H. Let be

Γ(H) := {f : H → R : f is proper, convex and lower semicontinuous}.

The conjugate function of f is f∗ : H → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for
all p ∈ H and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The (convex) subdifferential of
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f : H → R at x ∈ H is the set ∂f(x) = {p ∈ H : f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if
f(x) ∈ R, and is taken to be the empty set, otherwise. For a linear continuous operator
Li : H → Gi, the operator L∗

i : Gi → H, defined via 〈Lix, y〉 = 〈x, L∗
i y〉 for all x ∈ H and

all y ∈ Gi, denotes its adjoint operator, for i ∈ {1, . . . , m}.
Having two functions f, g : H → R, their infimal convolution is defined by f � g :

H → R, (f � g)(x) = infy∈H {f(y) + g(x − y)} for all x ∈ H, being a convex function
when f and g are convex.

Let M : H → 2H be a set-valued operator. We denote by gra M = {(x, u) ∈ H × H :
u ∈ Mx} its graph and by ran M = {u ∈ H : ∃x ∈ H, u ∈ Mx} its range. The inverse
operator of M is defined as M−1 : H → 2H, M−1(u) = {x ∈ H : u ∈ Mx}. The operator
M is called monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ gra M and it is called
maximally monotone if there exists no monotone operator M ′ : H → 2H such that gra M ′

properly contains gra M . The operator M is called ρ-strongly monotone, for ρ ∈ R++,
if M − ρId is monotone, i. e. 〈x − y, u − v〉 ≥ ρ‖x − y‖2 for all (x, u), (y, v) ∈ gra M ,
where Id denotes the identity on H. The operator M : H → H is called ν-Lipschitzian
for ν ∈ R++ if it is single-valued and it fulfills ‖Mx − My‖ ≤ ν‖x − y‖ for all x, y ∈ H.

The resolvent of a set-valued operator M : H → 2H is JM : H → 2H, JM =
(Id + M)−1. When M is maximally monotone, the resolvent is a single-valued, 1-
Lipschitzian and maximal monotone operator. Moreover, when f ∈ Γ(H) and γ ∈
R++, ∂(γf) is maximally monotone (cf. [16, Theorem 3.2.8]) and it holds Jγ∂f =
(Id + γ∂f)−1 = Proxγf . Here, Proxγf (x) denotes the proximal point of parameter γ
of f at x ∈ H and it represents the unique optimal solution of the optimization problem

inf
y∈H

{
f(y) + 1

2γ
‖y − x‖2

}
. (1.1)

For a nonempty, convex and closed set C ⊆ H and γ ∈ R++ we have ProxγδC
= PC ,

where PC : H → C, PC(x) = arg minz∈C ‖x − z‖, denotes the projection operator on C.
Finally, the parallel sum of two set-valued operators M1, M2 : H → 2H is defined as

M1 �M2 : H → 2H, M1 �M2 =
(
M−1

1 + M−1
2

)−1
.

We come now to the formulation of the monotone inclusion problem which we aim to
investigate throughout this paper (see [10]).

Problem 1.1. Consider the real Hilbert spaces H and Gi, i = 1, ..., m, A : H → 2H a
maximally monotone operator and C : H → H a monotone and µ-Lipschitzian operator
for some µ ∈ R++. Furthermore, let z ∈ H and for every i ∈ {1, . . . , m}, let ri ∈ Gi,
let Bi : Gi → 2Gi be maximally monotone operators, let Di : Gi → 2Gi be monotone
operators such that D−1

i is νi-Lipschitzian for some νi ∈ R++, and let Li : H → Gi be a
nonzero linear continuous operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax +
m∑

i=1
L∗

i ((Bi �Di)(Lix − ri)) + Cx, (1.2)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{

z −
∑m

i=1 L∗
i vi ∈ Ax + Cx

vi ∈(Bi �Di)(Lix − ri),i = 1, . . . , m.

(1.3)
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Throughout this paper we denote by G := G1 × ... × Gm the Hilbert space equipped
with the inner product

〈(p1, . . . , pm), (q1, . . . , qm)〉 =
m∑

i=1
〈pi, qi〉 ∀(p1, . . . , pm) ∀(q1, . . . , qm) ∈ G

and the associated norm ‖(p1, . . . , pm)‖ =
√∑m

i=1 ‖pi‖2 for all (p1, . . . , pm) ∈ G. We
introduce also the nonzero linear continuous operator L : H → G, Lx = (L1x, . . . , Lmx),
its adjoint being L∗ : G → H, L∗v =

∑m
i=1 L∗

i vi.
We say that (x, v1, . . . , vm) ∈ H × G is a primal-dual solution to Problem 1.1, if

z −
m∑

i=1
L∗

i vi ∈ Ax + Cx and vi ∈ (Bi �Di)(Lix − ri), i = 1, . . . , m. (1.4)

If (x, v1, . . . , vm) ∈ H × G is a primal-dual solution to Problem 1.1, then x is a solution
to (1.2) and (v1, . . . , vm) is a solution to (1.3). Notice also that

x solves (1.2) ⇔ z −
m∑

i=1
L∗

i (Bi �Di)(Lix − ri) ∈ Ax + Cx ⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that
{

z −
∑m

i=1 L∗
i vi ∈ Ax + Cx,

vi ∈ (Bi �Di)(Lix − ri), i = 1, . . . , m.

Thus, if x is a solution to (1.2), then there exists (v1, . . . , vm) ∈ G such that (x, v1, . . . , vm)
is a primal-dual solution to Problem 1.1 and if (v1, . . . , vm) is a solution to (1.3), then
there exists x ∈ H such that (x, v1, . . . , vm) is a primal-dual solution to Problem 1.1.

1.3 Contributions

The investigations we make in this paper have as starting point the primal-dual algo-
rithm for solving Problem 1.1 given in [10, Theorem 3.1]. Firstly, we consider Problem
1.1 in its particular formulation as a primal-dual pair of convex optimization problems,
approach which relies on the fact that the subdifferential of a proper, convex and lower
semicontinuous function is maximally monotone. By assuming that the sequence of step
sizes in the algorithm in [10, Theorem 3.1] is nondecreasing and by making use of some
ideas provided in [9] we prove that the convergence rate of the partial primal-dual gap
function associated to the primal-dual pair of optimization problems at a primal-dual
pair of generated iterates in ergodic sense is of O( 1

n), where n ∈ N is the number of
passed iterations. From here we are able to derive under some appropriate assumptions
the same rate of convergence, again in ergodic sense, for the sequence of primal objective
function values on the iterates generated by the numerical scheme.

Further, in Section 3, we provide for the general monotone inclusion problem, as given
in Problem 1.1, two new acceleration schemes which generate under strong monotonicity
assumptions sequences of primal and/or dual iterates that converge with improved con-
vergence properties. To this end we use the fruitful idea of variable step sizes that have
been first utilized in [17] and then shown in [9] to yield an accelerated algorithm in the
case of convex optimization problems.

The feasibility and the functionality of the proposed methods are explicitly shown in
Section 4 by means of numerical experiments in the context of solving image denoising,
image deblurring and image inpainting problems via total variation regularization. When
dealing with image denoising comparisons to popular algorithms, that proved to have
good performances in this context, are made.
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2 Convex minimization problems
The aim of this section is to provide a rate of convergence for the sequence of the values of
the objective function at the iterates generated by a slight modification of the algorithm
in [10, Theorem 3.1] when employed in the solving a convex minimization problem and
its conjugate dual. The primal-dual pair under investigation is described in the following.

Problem 2.1. Consider the real Hilbert spaces H and Gi, i = 1, ..., m, f ∈ Γ(H) and
h : H → R a convex and differentiable function with µ-Lipschitzian gradient for some
µ ∈ R++. Furthermore, let z ∈ H and for every i ∈ {1, . . . , m}, let ri ∈ Gi, gi, li ∈ Γ(Gi)
such that li is ν−1

i -strongly convex for some νi ∈ R++, and let Li : H → Gi be a nonzero
linear continuous operator. We consider the convex minimization problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi � li)(Lix − ri) + h(x) − 〈x, z〉
}

(2.1)

and its dual problem

(D) sup
(vi,...,vm)∈G1×...×Gm

{
− (f∗ �h∗)

(
z −

m∑
i=1

L∗
i vi

)
−

m∑
i=1

(g∗
i (vi) + l∗i (vi) + 〈vi, ri〉)

}
.

(2.2)

In order to investigate the primal-dual pair (2.1)-(2.2) in the context of Problem 2.1,
one has to take

A = ∂f, C = ∇h, and, for i = 1, . . . , m, Bi = ∂gi and Di = ∂li. (2.3)

Then A and Bi, i = 1, ..., m are maximal monotone, C is monotone, by [1, Proposition
17.10], and D−1

i = ∇l∗i is monotone and νi-Lipschitz continuous for i = 1, . . . , m, ac-
cording to [1, Proposition 17.10, Theorem 18.15 and Corollary 16.24]. One can easily
see that (see, for instance, [10, Theorem 4.2]) whenever (x, v1, . . . , vm) ∈ H × G is a
primal-dual solution to Problem 1.1, with the above choice of the involved operators, x
is an optimal solution to (P ), (v1, . . . , vm) is an optimal solution to (D) and for (P )-(D)
strong duality holds, thus the optimal objective values of the two problems coincide. On
the other hand, when x is an optimal solution to (P ) and a qualification condition, like
(see, for instance, [3, 10])⋃
λ≥0

λ{(L1x − y1 − r1, ..., Lmx − ym − rm) : x ∈ dom f, yi ∈ dom gi + dom li, i = 1, .., m} is

a closed linear suspace,

is fulfilled, then there exists (v1, . . . , vm), an optimal solution to (D), such that
(x, v1, . . . , vm) ∈ H × G is a primal-dual solution to Problem 1.1 in the particular formu-
lation given by (2.3).

The primal-dual pair in Problem 2.1 captures various types of optimization problems.
One such particular instance is formulated as follows and we refer for more examples
to [10].

Example 2.1. In Problem 2.1 take z = 0, let li : Gi → R, li = δ{0} and ri = 0 for
i = 1, . . . , m, and set h : H → R, h(x) = 0 for all x ∈ H. Then (2.1) reduces to

(P ) inf
x∈H

{
f(x) +

m∑
i=1

gi(Lix)
}

,
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while the dual problem (2.2) becomes

(D) sup
(vi,...,vm)∈G1×...×Gm

{
−f∗

(
−

m∑
i=1

L∗
i vi

)
−

m∑
i=1

g∗
i (vi)

}
.

In order to simplify the upcoming formulations and calculations we introduce the
following more compact notations. With respect to Problem 2.1, let F : H → R, F (x) =
f(x) + h(x) − 〈x, z〉. Then dom F = dom f and its conjugate F ∗ : H → R is given by
F ∗(p) = (f + h)∗(z + p) = (f∗ �h∗)(z + p), since dom h = H. Further, we set

v = (v1, . . . , vm), v = (v1, . . . , vm), p2,n = (p2,1,n, . . . , p2,m,n), r = (r1, . . . , rm).

We define the function G : G → R, G(y) =
∑m

i=1(gi � li)(yi) and observe that its conju-
gate G∗ : G → R is given by G∗(v) =

∑m
i=1(gi � li)∗(vi) =

∑m
i=1(g∗

i + l∗i )(vi). Notice that,
as l∗i , i = 1, . . . , m, has full domain (cf. [1, Theorem 18.15]), we get

dom G∗ = (dom g∗
1 ∩ dom l∗1) × . . . × (dom g∗

m ∩ dom l∗m) = dom g∗
1 × . . . × dom g∗

m,
(2.4)

The primal and the dual optimization problems given in Problem 2.1 can be equiva-
lently represented as

(P ) inf
x∈H

{F (x) + G(Lx − r)},

and, respectively,

(D) sup
v∈G

{−F ∗(−L∗v) − G∗(v) − 〈v, r〉}.

Then x ∈ H solves (P ), v ∈ G solves (D) and for (P )-(D) strong duality holds if and
only if (cf. [3])

−L∗v ∈ ∂F (x) and Lx − r ∈ ∂G∗(v). (2.5)

Let us mention also that for x ∈ H and v ∈ G fulfilling (2.5) it holds

[〈Lx − r, v〉 + F (x) − G∗(v)] − [〈Lx − r, v〉 + F (x) − G∗(v)] ≥ 0 ∀x ∈ H ∀v ∈ G.

For given sets B1 ⊆ H and B2 ⊆ G we introduce the so-called primal-dual gap function
restricted to B1 × B2

GB1×B2(x, v) = sup
ṽ∈B2

{〈Lx − r, ṽ〉 + F (x) − G∗(ṽ)}

− inf
x̃∈B1

{〈Lx̃ − r, v〉 + F (x̃) − G∗(v)}. (2.6)

We consider the following algorithm for solving (P )-(D), which differs from the primal-
dual one given by Combettes and Pesquet in [10, Theorem 3.1] by the fact that we are
asking the sequence (γn)n≥0 ⊆ R++ to be nondecreasing.

Algorithm 2.1. Let x0 ∈ H and (v1,0, . . . , vm,0) ∈ G, set

β = max{µ, ν1, . . . , νm} +

√√√√ n∑
i=1

‖Li‖2,
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choose ε ∈
(
0, 1

β+1

)
and (γn)n≥0 a nondecreasing sequence in

[
ε, 1−ε

β

]
and set

(∀n ≥ 0)


p1,n = Proxγnf (xn − γn (∇h(xn) +

∑m
i=1 L∗

i vi,n − z))
For i = 1, . . . , m⌊

p2,i,n = Proxγng∗
i

(vi,n + γn(Lixn − ∇l∗i (vi,n) − ri))
vi,n+1 = γnLi(p1,n − xn) + γn(∇l∗i (vi,n) − ∇l∗i (p2,i,n)) + p2,i,n

xn+1 = γn
∑m

i=1 L∗
i (vi,n − p2,i,n) + γn(∇h(xn) − ∇h(p1,n)) + p1,n.

(2.7)

The following theorem is formulated in the spirit of [9, Theorem 1], however, the
techniques of the proof used are adjusted to the forward-backward-forward structure of
Algorithm 2.1.

Theorem 2.1. For Problem 2.1 suppose that

z ∈ ran
(

∂f +
m∑

i=1
L∗

i (∂gi �∂li) (Li · −ri) + ∇h

)
.

Then there exists an optimal solution x ∈ H to (P ) and an optimal solution (v1, . . . , vm) ∈
G to (D), such that the following holds for the sequences generated by Algorithm 2.1:

(a) z −
∑m

i=1 L∗
i vi ∈ ∂f(x) + ∇h(x) and Lix − ri ∈ ∂g∗

i (vi) + ∇l∗i (vi) ∀i ∈ {1, . . . , m}.
(b) xn ⇀ x, p1,n ⇀ x and vi,n ⇀ vi, p2,i,n ⇀ vi ∀i ∈ {1, . . . , m}.
(c) For n ≥ 0 it holds

‖xn − x‖2

2γn
+

m∑
i=1

‖vi,n − vi‖2

2γn
≤ ‖x0 − x‖2

2γ0
+

m∑
i=1

‖vi,0 − vi‖2

2γ0
.

(d) If B1 ⊆ H and B2 ⊆ G are bounded, then for xN := 1
N

∑N−1
n=0 p1,n and vN

i :=
1
N

∑N−1
n=0 p2,i,n, i = 1, . . . , m, the primal-dual gap has the upper bound

GB1×B2(xN , vN
1 , . . . , vN

m) ≤ C(B1, B2)
N

, (2.8)

where

C(B1, B2) = sup
(x,v1,...,vm)∈B1×B2

{
‖x0 − x‖2

2γ0
+

m∑
i=1

‖vi,0 − vi‖2

2γ0

}
.

(e) The sequence (xN , vN
1 , . . . , vN

m) converges weakly to (x, v1, . . . , vm).

Proof. Theorem 4.2 in [10] guarantees the existence of an optimal solution x ∈ H to
(2.1) and of an optimal solution (v1, . . . , vm) ∈ G to (2.2) such that strong duality holds,
xn ⇀ x, p1,n ⇀ x, as well as vi,n ⇀ vi and p2,i,n ⇀ vi for i = 1, . . . , m, when n converges
to +∞. Hence (a) and (b) are true. Thus, the solutions x and v = (v1, . . . , vm) fulfill
(2.5).

Regarding the sequences (p1,n)n≥0 and (p2,i,n)n≥0, i = 1, . . . , m, generated in Algo-
rithm 2.1 we have for every n ≥ 0

p1,n = (Id + γn∂f)−1 (xn − γn (∇h(xn) + L∗vn − z))

⇔ xn − p1,n

γn
− ∇h(xn) − L∗vn + z ∈ ∂f(p1,n)
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and, for i = 1, ..., m,

p2,i,n = (Id + γn∂g∗
i )−1 (vi,n + γn(Lixn − ∇l∗i (vi,n) − ri))

⇔ vi,n − p2,i,n

γn
+ Lixn − ∇l∗i (vi,n) − ri ∈ ∂g∗

i (p2,i,n).

In other words, it holds for every n ≥ 0

f(x) ≥ f(p1,n) +
〈

xn − p1,n

γn
− ∇h(xn) − L∗vn + z, x − p1,n

〉
∀x ∈ H (2.9)

and, for i = 1, . . . , m,

g∗
i (vi) ≥ g∗

i (p2,i,n) +
〈

vi,n − p2,i,n

γn
+ Lixn − ∇l∗i (vi,n) − ri, vi − p2,i,n

〉
∀vi ∈ Gi. (2.10)

In addition to that, using that h and l∗i , i = 1, ..., m, are convex and differentiable, it
holds for every n ≥ 0

h(x) ≥ h(p1,n) + 〈∇h(p1,n), x − p1,n〉 ∀x ∈ H (2.11)

and, for i = 1, . . . , m,

l∗i (vi) ≥ l∗i (p2,i,n) + 〈∇l∗i (p2,i,n), vi − p2,i,n〉 ∀vi ∈ Gi. (2.12)

Consider arbitrary x ∈ H and v = (v1, . . . , vm) ∈ G. Since〈
xn − p1,n

γn
, x − p1,n

〉
= ‖xn − p1,n‖2

2γn
+ ‖x − p1,n‖2

2γn
− ‖xn − x‖2

2γn〈
vi,n − p2,i,n

γn
, vi − p2,i,n

〉
= ‖vi,n − p2,i,n‖2

2γn
+ ‖vi − p2,i,n‖2

2γn
− ‖vi,n − vi‖2

2γn
, i = 1, ..., m,

we obtain for every n ≥ 0, by using the more compact notation of the elements in G and
by summing up the inequalities (2.9)–(2.12),

‖xn − x‖2

2γn
+ ‖vn − v‖2

2γn
≥ ‖xn − p1,n‖2

2γn
+ ‖x − p1,n‖2

2γn
+

‖vn − p2,n‖2

2γn
+

‖v − p2,n‖2

2γn

+
m∑

i=1
〈Lixn + ∇l∗i (p2,i,n) − ∇l∗i (vi,n) − ri, vi − p2,i,n〉 −

m∑
i=1

(g∗
i + l∗i )(vi) + (f + h)(p1,n)

+ 〈∇h(p1,n) − ∇h(xn) − L∗vn + z, x − p1,n〉 −
[

m∑
i=1

−(g∗
i + l∗i )(p2,i,n) + (f + h)(x)

]
.

Further, using again the update rules in Algorithm 2.1 and the equations〈
p1,n − xn+1

γn
, x − p1,n

〉
= ‖xn+1 − x‖2

2γn
− ‖xn+1 − p1,n‖2

2γn
− ‖x − p1,n‖2

2γn

and, for i = 1, ..., m,〈
p2,i,n − vi,n+1

γn
, vi − p2,i,n

〉
= ‖vi,n+1 − vi‖2

2γn
− ‖vi,n+1 − p2,i,n‖2

2γn
− ‖vi − p2,i,n‖2

2γn
,
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we obtain for every n ≥ 0

‖xn − x‖2

2γn
+ ‖vn − v‖2

2γn
≥ ‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2γn
+ ‖xn − p1,n‖2

2γn
+

‖vn − p2,n‖2

2γn

− ‖xn+1 − p1,n‖2

2γn
−

‖vn+1 − p2,n‖2

2γn
+ [〈Lp1,n − r, v〉 − G∗(v) + F (p1,n)]

−
[〈

Lx − r, p2,n

〉
− G∗(p2,n) + F (x)

]
. (2.13)

Further, we equip the Hilbert space H = H × G with the inner product

〈(y, p), (z, q)〉 = 〈y, z〉 + 〈p, q〉 ∀(y, p), (z, q) ∈ H × G (2.14)

and the associated norm ‖(y, p)‖ =
√

‖y‖2 + ‖p‖2 for every (y, p) ∈ H × G. For every
n ≥ 0 it holds

‖xn+1 − p1,n‖2

2γn
+

‖vn+1 − p2,n‖2

2γn
=

‖(xn+1, vn+1) − (p1,n, p2,n)‖2

2γn

and, consequently, by making use of the Lipschitz continuity of ∇h and ∇l∗i , i = 1, . . . , m,
it shows that

‖(xn+1, vn+1) − (p1,n, p2,n)‖
= γn‖(L∗(vn − p2,n), L1(p1,n − xn), . . . , Lm(p1,n − xn))

+ (∇h(xn) − ∇h(p1,n), ∇l∗1(v1,n) − ∇l∗1(p2,1,n), . . . , ∇l∗m(vm,n) − ∇l∗1(p2,m,n))‖
≤ γn‖(L∗(vn − p2,n), L1(p1,n − xn), . . . , Lm(p1,n − xn))‖

+ γn‖(∇h(xn) − ∇h(p1,n), ∇l∗1(v1,n) − ∇l∗1(p2,1,n), . . . , ∇l∗m(vm,n) − ∇l∗1(p2,m,n))‖

= γn

√√√√∥∥∥∥∥
m∑

i=1
L∗

i (vi,n − p2,i,n)
∥∥∥∥∥

2

+
m∑

i=1
‖Li(p1,n − xn)‖2

+ γn

√√√√‖∇h(xn) − ∇h(p1,n)‖2 +
m∑

i=1
‖∇l∗i (vi,n) − ∇l∗i (p2,i,n)‖2

≤ γn

√√√√( m∑
i=1

‖Li‖2

)
m∑

i=1
‖vi,n − p2,i,n‖2 +

(
m∑

i=1
‖Li‖2

)
‖p1,n − xn‖2

+ γn

√√√√µ2‖xn − p1,n‖2 +
m∑

i=1
ν2

i ‖vi,n − p2,i,n‖2

≤ γn

√√√√ m∑
i=1

‖Li‖2 + max{µ, ν1, . . . , νm}

 ‖(xn, vn) − (p1,n, p2,n)‖. (2.15)

Hence, by taking into consideration the way in which (γn)n≥0 is chosen, we have for
every n ≥ 0

1
2γn

[
‖xn − p1,n‖2 + ‖vn − p2,n‖2 − ‖xn+1 − p1,n‖2 − ‖vn+1 − p2,n‖2

]

≥ 1
2γn

1 − γ2
n

√√√√ m∑
i=1

‖Li‖2 + max{µ, ν1, . . . , νm}

2 ‖(x, vn) − (p1,n, p2,n)‖2 ≥ 0.
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and, consequently, (2.13) reduces to

‖xn − x‖2

2γn
+ ‖vn − v‖2

2γn
≥ γn+1

γn

‖xn+1 − x‖2

2γn+1
+ [〈Lp1,n − r, v〉 − G∗(v) + F (p1,n)]

+ γn+1
γn

‖vn+1 − v‖2

2γn+1
−
[〈

Lx − r, p2,n

〉
− G∗(p2,n) + F (x)

]
.

Let N ≥ 1 be an arbitrary natural number. Summing the above inequality up from n = 0
to N − 1 and using the fact that (γn)n≥0 is nondecreasing, it follows that

‖x0 − x‖2

2γ0
+ ‖v0 − v‖2

2γ0
≥ ‖xN − x‖2

2γN
+

N−1∑
n=0

[〈Lp1,n − r, v〉 − G∗(v) + F (p1,n)]

+ ‖vN − v‖2

2γN
−

N−1∑
n=0

[〈
Lx − r, p2,n

〉
− G∗(p2,n) + F (x)

]
.

(2.16)

Replacing x = x and v = v in the above estimate, since they fulfill (2.5), we obtain

N−1∑
n=0

[〈Lp1,n − r, v〉 − G∗(v) + F (p1,n)] −
N−1∑
n=0

[〈
Lx − r, p2,n

〉
− G∗(p2,n) + F (x)

]
≥ 0.

Consequently,
‖x0 − x‖2

2γ0
+ ‖v0 − v‖2

2γ0
≥ ‖xN − x‖2

2γN
+ ‖vN − v‖2

2γN

and statement (c) follows. On the other hand, dividing (2.16) by N , using the convexity
of F and G∗, and denoting xN := 1

N

∑N−1
n=0 p1,n and vN

i := 1
N

∑N−1
n=0 p2,i,n, i = 1, . . . , m,

we obtain

1
N

(
‖x0 − x‖2

2γ0
+ ‖v0 − v‖2

2γ0

)
≥
[〈

LxN − r, v
〉

− G∗(v) + F (xN )
]

−
[〈

Lx − r, vN
〉

− G∗(vN ) + F (x)
]

,

which shows (2.8) when passing to the supremum over x ∈ B1 and v ∈ B2. In this way
statement (d) is verified. The weak convergence of (xN , vN ) to (x, v) when N converges
to +∞ is an easy consequence of the Stolz–Cesàro Theorem, fact which shows (e).

The following remark is formulated in the spirit of [9, Remark 3].

Remark 2.1. In the situation when the functions gi are Lipschitz continuous on Gi, i =
1, ..., m, inequality (2.8) provides for the sequence of the values of the objective of (P )
taken at (xN )N≥1 a convergence rate of O( 1

N ), namely, it holds

F (xN ) + G(LxN − r) − F (x) − G(Lx − r) ≤ C(B1, B2)
N

∀N ≥ 1. (2.17)

Indeed, due to statement (b) of the previous theorem, the sequence (p1,n)n≥0 ⊆ H is
bounded and one can take B1 ⊂ H being a bounded, convex and closed set containing
this sequence. Obviously, x̄ ∈ B1. On the other hand, we take B2 = dom g∗

1 × . . . ×
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dom g∗
m, which is in this situation a bounded set. Then it holds, using the Fenchel-

Moreau Theorem and the Young-Fenchel inequality, that

GB1×B2(xN , vN ) = F (xN ) + G(LxN − r) + G∗(vN ) − inf
x̃∈B1

{〈
Lx̃ − r, vN

〉
+ F (x̃)

}
≥ F (xN ) + G(LxN − r) + G∗(vN ) −

〈
Lx − r, vN

〉
− F (x)

≥ F (xN ) + G(LxN − r) − F (x) − G(Lx − r).

Hence, (2.17) follows by statement (d) in Theorem 2.1.
In a similar way, one can show that, whenever f is Lipschitz continuous, (2.8) provides

for the sequence of the values of the objective of (D) taken at (vN )N≥1 a convergence
rate of O( 1

N ).

Remark 2.2. If Gi, i = 1, . . . , m, are finite-dimensional real Hilbert spaces, then (2.17)
is true, even under the weaker assumption that the convex functions gi, i = 1, ..., m, have
full domain, without necessarily being Lipschitz continuous. The set B1 ⊂ H can be
chosen as in Remark 2.1, but this time we take B2 = ×m

i=1
⋃

n≥0 ∂gi (Lip1,n) ⊂ G, by
noticing also that the functions gi, i = 1, ..., m, are everywhere subdifferentiable.

The set B2 is bounded, as for every i = 1, . . . , m the set
⋃

n≥0 ∂gi (Lip1,n) is bounded.
Let be i ∈ {1, ..., m} fixed. Indeed, as p1,n ⇀ x, it follows that Lip1,n → Lix̄ for
i = 1, ..., m. Using the fact that the subdifferential of gi is a locally bounded operator at
Lix̄, the boundedness of

⋃
n≥0 ∂gi (Lip1,n) follows automatically.

For this choice of the sets B1 and B2, by using the same arguments as in the previous
remark, it follows that (2.17) is true.

3 Zeros of sums of monotone operators
In this section we turn our attention to the primal-dual monotone inclusion problems
formulated in Problem 1.1 with the aim to provide accelerations of the iterative method
proposed by Combettes and Pesquet in [10, Theorem 3.1] under the additional strong
monotonicity assumptions.

3.1 The case when A + C is strongly monotone

We focus first on the case when A + C is ρ-strongly monotone for some ρ ∈ R++ and
investigate the impact of this assumption on the convergence rate of the sequence of
primal iterates. The condition A + C is ρ-strongly monotone is fulfilled when either
A : H → 2H or C : H → H is ρ-strongly monotone. In case that A is ρ1-monotone and
C is ρ2-monotone, the sum A + C is ρ-monotone with ρ = ρ1 + ρ2.

Remark 3.1. The situation when B−1
i +D−1

i is τi-strongly monotone with τi ∈ R++ for
i = 1, . . . , m, which improves the convergence rate of the sequence of dual iterates, can
be handled with appropriate modifications.

Due to technical reasons we assume in the following that the operators D−1
i in

Problem 1.1 are zero for i = 1, . . . , m, thus, Di(0) = Gi and Di(x) = ∅ for x 6= 0,
for i = 1, ..., m. In Remark 3.2 we show how, by employing the product space ap-
proach, the results given in this particular context can be employed when treating the
primal-dual pair of monotone inclusions (1.2)-(1.3), however, under the assumption that
D−1

i , i = 1, ..., m, are cocoercive. The problem we deal with in this subsection is as
follows.
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Problem 3.1. Consider the real Hilbert spaces H and Gi, i = 1, ..., m, A : H → 2H a
maximally monotone operator and C : H → H a monotone and µ-Lipschitzian operator
for some µ ∈ R++. Furthermore, let z ∈ H and for every i ∈ {1, . . . , m}, let ri ∈ Gi, let
Bi : Gi → 2Gi be maximally monotone operators and let Li : H → Gi be a nonzero linear
continuous operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax +
m∑

i=1
L∗

i Bi(Lix − ri) + Cx, (3.1)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{

z −
∑m

i=1 L∗
i vi ∈ Ax + Cx

vi ∈ Bi(Lix − ri), i = 1, . . . , m.

(3.2)

The subsequent algorithm represents an accelerated version of the one given in [10,
Theorem 3.1] and relies on the fruitful idea of using a second sequence of variable step
length parameters (σn)n≥0 ⊆ R++, which, together with the sequence of parameters
(γn)n≥0 ⊆ R++, play an important role in the convergence analysis. For a similar ap-
proach given in the context of a primal-dual forward-backward-type algorithm formulated
for primal-dual pairs of convex optimization problems we refer the reader to [9].

Algorithm 3.1. Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G,

γ0 ∈
(

0, min
{

1,

√
1 + 4ρ

2(1 + 2ρ)µ

})
and σ0 ∈

(
0,

1
2γ0(1 + 2ρ)

∑m
i=1 ‖Li‖2

]
.

Consider the following updates:

(∀n ≥ 0)



p1,n = JγnA (xn − γn (Cxn +
∑m

i=1 L∗
i vi,n − z))

For i = 1, . . . , m⌊
p2,i,n = JσnB−1

i
(vi,n + σn(Lixn − ri))

vi,n+1 = σnLi(p1,n − xn) + p2,i,n

xn+1 = γn
∑m

i=1 L∗
i (vi,n − p2,i,n) + γn(Cxn − Cp1,n) + p1,n

θn = 1/
√

1 + 2ργn(1 − γn), γn+1 = θnγn, σn+1 = σn/θn.

(3.3)

Theorem 3.1. In Problem 3.1 suppose that A + C is ρ-strongly monotone with ρ ∈ R++
and let (x, v1, . . . , vm) ∈ H × G be a primal-dual solution to Problem 3.1. Then for every
n ≥ 0 it holds

‖xn − x‖2 + γn

m∑
i=1

‖vi,n − vi‖2

σn
≤ γ2

n

(
‖x0 − x‖2

γ2
0

+
m∑

i=1

‖vi,0 − vi‖2

γ0σ0

)
, (3.4)

where γn, σn ∈ R++, xn ∈ H and (v1,n, . . . , vm,n) ∈ G are the iterates generated by
Algorithm 3.1.

Proof. Taking into account the definitions of the resolvents occurring in Algorithm 3.1
we obtain

and

xn − p1,n

γn
− Cxn −

m∑
i=1

L∗
i vi,n + z ∈ Ap1,n

vi,n − p2,i,n

σn
+ Lixn − ri ∈ B−1

i p2,i,n, i = 1, . . . , m,

12



which, in the light of the updating rules in (3.3), furnishes for every n ≥ 0

and

xn − xn+1
γn

−
m∑

i=1
L∗

i p2,i,n + z ∈ (A + C)p1,n

vi,n − vi,n+1
σn

+ Lip1,n − ri ∈ B−1
i p2,i,n, i = 1, . . . , m.

(3.5)

The primal-dual solution (x, v1, . . . , vm) ∈ H × G to Problem 3.1 fulfills (see (1.4), where
D−1

i are taken to be zero for i = 1, ..., m)

z −
m∑

i=1
L∗

i vi ∈ Ax + Cx and vi ∈ Bi(Lix − ri), i = 1, . . . , m.

Since the sum A + C is ρ-strongly monotone, we have for every n ≥ 0〈
p1,n − x,

xn − xn+1
γn

−
m∑

i=1
L∗

i p2,i,n + z −
(

z −
m∑

i=1
L∗

i vi

)〉
≥ ρ‖p1,n − x‖2 (3.6)

while, due to the monotonicity of B−1
i : Gi → 2Gi , we obtain for every n ≥ 0〈

p2,i,n − vi,
vi,n − vi,n+1

σn
+ Lip1,n − ri − (Lix − ri)

〉
≥ 0, i = 1, . . . , m. (3.7)

Further, we set

v = (v1, . . . , vm), vn = (v1,n, . . . , vm,n), p2,n = (p2,1,n, . . . , p2,m,n).

Summing up the inequalities (3.6) and (3.7), it follows that〈
p1,n − x,

xn − xn+1
γn

〉
+
〈

p2,n − v,
vn − vn+1

σn

〉
+
〈
p1,n − x, L∗(v − p2,n)

〉
+
〈
p2,n − v, L(p1,n − x)

〉
≥ ρ‖p1,n − x‖2. (3.8)

and, from here,〈
p1,n − x,

xn − xn+1
γn

〉
+
〈

p2,n − v,
vn − vn+1

σn

〉
≥ ρ‖p1,n − x‖2 ∀n ≥ 0. (3.9)

In the light of the equations〈
p1,n − x,

xn − xn+1
γn

〉
=
〈

p1,n − xn+1,
xn − xn+1

γn

〉
+
〈

xn+1 − x,
xn − xn+1

γn

〉
= ‖xn+1 − p1,n‖2

2γn
− ‖xn − p1,n‖2

2γn
+ ‖xn − x‖2

2γn
− ‖xn+1 − x‖2

2γn
,

and〈
p2,n − v,

vn − vn+1
σn

〉
=
〈

p2,n − vn+1,
vn − vn+1

σn

〉
+
〈

vn+1 − v,
vn − vn+1

σn

〉
=

‖vn+1 − p2,n‖2

2σn
−

‖vn − p2,n‖2

2σn
+ ‖vn − v‖2

2σn
− ‖vn+1 − v‖2

2σn
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inequality (3.9) reads for every n ≥ 0

‖xn − x‖2

2γn
+ ‖vn − v‖2

2σn
≥ ρ‖p1,n − x‖2 + ‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2σn
+ ‖xn − p1,n‖2

2γn

+
‖vn − p2,n‖2

2σn
− ‖xn+1 − p1,n‖2

2γn
−

‖vn+1 − p2,n‖2

2σn
. (3.10)

Using that 2ab ≤ αa2 + b2

α for all a, b ∈ R, α ∈ R++, we obtain for α := γn,

ρ‖p1,n − x‖2 ≥ ρ
(
‖xn+1 − x‖2 − 2‖xn+1 − x‖‖xn+1 − p1,n‖ + ‖xn+1 − p1,n‖2

)
≥ 2ργn(1 − γn)

2γn
‖xn+1 − x‖2 − 2ρ(1 − γn)

2γn
‖xn+1 − p1,n‖2,

which, in combination with (3.10), yields for every n ≥ 0

‖xn − x‖2

2γn
+ ‖vn − v‖2

2σn
≥ (1 + 2ργn(1 − γn))‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2σn

+ ‖xn − p1,n‖2

2γn
+

‖vn − p2,n‖2

2σn
− (1 + 2ρ(1 − γn))‖xn+1 − p1,n‖2

2γn
−

‖vn+1 − p2,n‖2

2σn
.

(3.11)

Investigating the last two terms in the right-hand side of the above estimate, it shows
for every n ≥ 0 that

− (1 + 2ρ(1 − γn))‖xn+1 − p1,n‖2

2γn

≥ −(1 + 2ρ)γn

2

∥∥∥∥∥
m∑

i=1
L∗

i (vi,n − p2,i,n) + (Cxn − Cp1,n)
∥∥∥∥∥

2

≥ −2(1 + 2ρ)γn

2

((
m∑

i=1
‖Li‖2

)
‖vn − p2,n‖2 + µ2‖xn − p1,n‖2

)
,

and

−
‖vn+1 − p2,n‖2

2σn
= −σn

2

(
m∑

i=1
‖Li(p1,n − xn)‖2

)
≥ −σn

2

(
m∑

i=1
‖Li‖2

)
‖p1,n − xn‖2.

Hence, for every n ≥ 0 it holds

‖xn − p1,n‖2

2γn
+

‖vn − p2,n‖2

2σn
− (1 + 2ρ(1 − γn))‖xn+1 − p1,n‖2

2γn
−

‖vn+1 − p2,n‖2

2σn

≥
(
1 − γnσn

∑m
i=1 ‖Li‖2 − 2(1 + 2ρ)γ2

nµ2)
2γn

‖p1,n − xn‖2

+
(
1 − 2γnσn(1 + 2ρ)

∑m
i=1 ‖Li‖2)

2σn
‖vn − p2,n‖2

≥ 0.

The nonnegativity of the expression in the above relation follows because of the sequence
(γn)n≥0 is nonincreasing, γnσn = γ0σ0 for every n ≥ 0 and

γ0 ∈
(

0, min
{

1,

√
1 + 4ρ

2(1 + 2ρ)µ

})
and 0 < σ0 ≤ 1

2γ0(1 + 2ρ)
∑m

i=1 ‖Li‖2 .
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Consequently, inequality (3.11) becomes

‖xn − x‖2

2γn
+ ‖vn − v‖2

2σn
≥ (1 + 2ργn(1 − γn))‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2σn
∀n ≥ 0.

(3.12)

Dividing (3.12) by γn and making use of

θn = 1√
1 + 2ργn(1 − γn)

, γn+1 = θnγn, σn+1 = σn

θn
,

we obtain

‖xn − x‖2

2γ2
n

+ ‖vn − v‖2

2γnσn
≥ ‖xn+1 − x‖2

2γ2
n+1

+ ‖vn+1 − v‖2

2γn+1σn+1
∀n ≥ 0.

Let be N ≥ 1. Summing this inequalities from n = 0 to N − 1, we finally get

‖x0 − x‖2

2γ2
0

+ ‖v0 − v‖2

2γ0σ0
≥ ‖xN − x‖2

2γ2
N

+ ‖vN − v‖2

2γN σN
. (3.13)

In conclusion,

‖xn − x‖2

2
+ γn

‖vn − v‖2

2σn
≤ γ2

n

(
‖x0 − x‖2

2γ2
0

+ ‖v0 − v‖2

2γ0σ0

)
∀n ≥ 0, (3.14)

which completes the proof.

Next we show that ργn converges like 1
n as n → +∞.

Proposition 3.2. Let γ0 ∈ (0, 1) and consider the sequence (γn)n≥0 ⊆ R++, where

γn+1 = γn√
1 + 2ργn(1 − γn)

∀n ≥ 0. (3.15)

Then limn→+∞ nργn = 1.

Proof. Since the sequence (γn)n≥0 ⊆ (0, 1) is bounded and decreasing, it converges to-
wards some l ∈ [0, 1) as n → +∞. We let n → +∞ in (3.15) and obtain

l2(1 + 2ρl(1 − l)) = l2 ⇔ 2ρl3(1 − l) = 0,

which shows that l = 0, i. e. γn → 0 (n → +∞). On the other hand, (3.15) implies that
γn

γn+1
→ 1(n → +∞). As ( 1

γn
)n≥0 is a strictly increasing and unbounded sequence, by

applying the Stolz–Cesàro Theorem it shows that

lim
n→+∞

nγn = lim
n→+∞

n
1

γn

= lim
n→+∞

n + 1 − n
1

γn+1
− 1

γn

= lim
n→+∞

γnγn+1
γn − γn+1

= lim
n→+∞

γnγn+1(γn + γn+1)
γ2

n − γ2
n+1

(3.15)= lim
n→+∞

γnγn+1(γn + γn+1)
2ργ2

n+1γn(1 − γn)

= lim
n→+∞

γn + γn+1
2ργn+1(1 − γn)

= lim
n→+∞

γn

γn+1
+ 1

2ρ(1 − γn)
= 2

2ρ
= 1

ρ
,

which completes the proof.
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The following result is a consequence of Theorem 3.1 and Proposition 3.2.

Theorem 3.3. In Problem 3.1 suppose that A + C is ρ-strongly monotone and let
(x, v1, . . . , vm) ∈ H × G be a primal-dual solution to Problem 3.1. Then, for any ε > 0,
there exists some n0 ∈ N (depending on ε and ργ0) such that for any n ≥ n0

‖xn − x‖2 ≤ 1 + ε

n2

(
‖x0 − x‖2

ρ2γ2
0

+
m∑

i=1

‖vi,0 − vi‖2

ρ2γ0σ0

)
, (3.16)

where γn, σn ∈ R++, xn ∈ H and (v1,n, . . . , vm,n) ∈ G are the iterates generated by
Algorithm 3.1.

Remark 3.2. In Algorithm 3.1 and Theorem 3.3 we assumed that D−1
i = 0 for i =

1, . . . , m, however, similar statements can be also provided for Problem 1.1 under the
additional assumption that the operators Di : Gi → 2Gi are such that D−1

i is ν−1
i -

cocoercive with νi ∈ R++ for i = 1, . . . , m. This assumption is in general stronger than
assuming that Di is monotone and D−1

i is νi-Lipschitzian for i = 1, ..., m. However, it
guarantees that Di is ν−1

i -strongly monotone and maximally monotone for i = 1, ..., m
(see [1, Example 20.28, Proposition 20.22 and Example 22.6]). We introduce the Hilbert
space H = H × G, the element z = (z, 0, . . . , 0) ∈ H and the maximally monotone
operator A : H → 2H, A(x, y1, . . . , ym) = (Ax, D1y1, . . . , Dmym) and the monotone and
Lipschitzian operator C : H → H, C(x, y1, . . . , ym) = (Cx, 0, . . . , 0). Notice also that
A+C is strongly monotone. Furthermore, we introduce the element r = (r1, . . . , rm) ∈ G,
the maximally monotone operator B : G → 2G , B(y1, . . . , ym) = (B1y1, . . . , Bmym), and
the linear continuous operator L : H → G, L(x, y1 . . . , ym) = (L1x − y1, . . . , Lmx − ym),
having as adjoint L∗ : G → H, L∗(q1, . . . , qm) = (

∑m
i=1 L∗

i qi, −q1, . . . , −qm). We consider
the primal problem

find x = (x, p1 . . . pm) ∈ H such that z ∈ Ax + L∗B (Lx − r) + Cx, (3.17)

together with the dual inclusion problem

find v ∈ G such that (∃x ∈ H)
{

z − L∗v ∈ Ax + Cx
v ∈ B(Lx − r) . (3.18)

We notice that Algorithm 3.1 can be employed for solving this primal-dual pair of
monotone inclusion problems and, by separately involving the resolvents of A, Bi and
Di, i = 1, ..., m, as for γ ∈ R++

JγA(x, y1, . . . , ym) = (JγAx, JγD1y1, . . . , JγDmym) ∀(x, y1, . . . , ym) ∈ H
JγB(q1, . . . , qm) = (JγB1q1, . . . , JγBmqm) ∀(q1, . . . , qm) ∈ G.

Having (x, v) ∈ H × G a primal-dual solution to the primal-dual pair of monotone
inclusion problems (3.17)-(3.18), Algorithm 3.1 generates a sequence of primal iterates
fulfilling (3.16) in H. Moreover, (x, v) is a a primal-dual solution to (3.17)-(3.18) if and
only if

z − L∗v ∈ Ax + Cx and v ∈ B (Lx − r)

⇔ z −
m∑

i=1
L∗

i vi ∈ Ax + Cx and vi ∈ Dipi, vi ∈ Bi (Lix − pi − ri) , i = 1, . . . , m
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⇔ z −
m∑

i=1
L∗

i vi ∈ Ax + Cx and vi ∈ Dipi, Lix − ri ∈ B−1
i vi + pi, i = 1, . . . , m.

Thus, if (x, v) is a primal-dual solution to (3.17)-(3.18), then (x, v) is a primal-dual
solution to Problem 1.1. Viceversa, if (x, v) is a primal-dual solution to Problem 1.1,
then, choosing pi ∈ D−1

i vi, i = 1, ..., m, and x = (x, p1 . . . pm), it yields that (x, v) is a
primal-dual solution to (3.17)-(3.18). In conclusion, the first component of every primal
iterate in H generated by Algorithm 3.1 for finding the primal-dual solution (x, v) to
(3.17)-(3.18) will furnish a sequence of iterates verifying (3.16) in H for the primal-dual
solution (x, v) to Problem 1.1.

3.2 The case when A + C and B−1
i + D−1

i , i = 1, . . . , m, are strongly
monotone

Within this subsection we consider the case when A + C is ρ-strongly monotone with
ρ ∈ R++ and B−1

i + D−1
i is τi-strongly monotone with τi ∈ R++ for i = 1, . . . , m,

and provide an accelerated version of the algorithm in [10, Theorem 3.1] which generates
sequences of primal and dual iterates that converge to the primal-dual solution to Problem
1.1 with an improved rate of convergence. The provided algorithm and its convergence
properties are formulated in the spirit to the investigations in [9, Subsection 5.2].

Algorithm 3.2. Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G, and γ ∈ (0, 1) such that

γ ≤ 1√
1 + 2 min {ρ, τ1, . . . , τm}

(√∑m
i=1 ‖Li‖2 + max {µ, ν1, . . . , νm}

) .

Consider the following updates:

(∀n ≥ 0)


p1,n = JγA (xn − γ (Cxn +

∑m
i=1 L∗

i vi,n − z))
For i = 1, . . . , m⌊

p2,i,n = JγB−1
i

(
vi,n + γ(Lixn − D−1

i vi,n − ri)
)

vi,n+1 = γLi(p1,n − xn) + γ(D−1
i vi,n − D−1

i p2,i,n) + p2,i,n

xn+1 = γ
∑m

i=1 L∗
i (vi,n − p2,i,n) + γ(Cxn − Cp1,n) + p1,n.

(3.19)

Theorem 3.4. In Problem 1.1 suppose that A + C is ρ-strongly monotone with ρ ∈
R++, B−1

i + D−1
i is τi-strongly monotone with τi ∈ R++ for i = 1, . . . , m, and let

(x, v1, . . . , vm) ∈ H × G be a primal-dual solution to Problem 1.1. Then for every n ≥ 0
it holds

‖xn − x‖2 +
m∑

i=1
‖vi,n − vi‖2 ≤

( 1
1 + 2ρminγ(1 − γ)

)n
(

‖x0 − x‖2 +
m∑

i=1
‖vi,0 − vi‖2

)
,

where ρmin = min {ρ, τ1, . . . , τm} and xn ∈ H and (v1,n, . . . , vm,n) ∈ G are the iterates
generated by Algorithm 3.2.

Proof. Taking into account the definitions of the resolvents occurring in Algorithm 3.2
and the fact that the primal-dual solution (x, v1, . . . , vm) ∈ H × G to Problem 1.1 fulfills
(1.4), by the strong monotonicity of A + C and B−1

i + D−1
i , i = 1, . . . , m, we obtain for

every n ≥ 0〈
p1,n − x,

xn − xn+1
γ

−
m∑

i=1
L∗

i p2,i,n + z −
(

z −
m∑

i=1
L∗

i vi

)〉
≥ ρ‖p1,n − x‖2 (3.20)
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and, respectively,〈
p2,i,n − vi,

vi,n − vi,n+1
γ

+ Lip1,n − ri − (Lix − ri)
〉

≥ τi‖p2,i,n − vi‖2, i = 1, ..., m.

(3.21)

Consider the Hilbert space H = H×G, equipped with the inner product defined in (2.14)
and associated norm, and set

x = (x, v1, . . . , vm), xn = (xn, v1,n, . . . , vm,n), pn = (p1,n, p2,1,n, . . . , p2,m,n).

Summing up the inequalities (3.20) and (3.21) and using〈
pn − x,

xn − xn+1
γ

〉
= ‖xn+1 − pn‖2

2γ
− ‖xn − pn‖2

2γ
+ ‖xn − x‖2

2γ
− ‖xn+1 − x‖2

2γ
,

we obtain for every n ≥ 0
‖xn − x‖2

2γ
≥ ρmin‖pn − x‖2 + ‖xn+1 − x‖2

2γ
+ ‖xn − pn‖2

2γ
− ‖xn+1 − pn‖2

2γ
. (3.22)

Further, using the estimate 2ab ≤ γa2 + b2

γ for all a, b ∈ R, we obtain

ρmin‖pn − x‖2 ≥ 2ρminγ(1 − γ)
2γ

‖xn+1 − x‖2 − 2ρmin(1 − γ)
2γ

‖xn+1 − pn‖2

≥ 2ρminγ(1 − γ)
2γ

‖xn+1 − x‖2 − 2ρmin
2γ

‖xn+1 − pn‖2 ∀n ≥ 0.

Hence, (3.22) reduces to

‖xn − x‖2

2γ
≥ (1 + 2ρminγ(1 − γ))‖xn+1 − x‖2

2γ

+ ‖xn − pn‖2

2γ
− (1 + 2ρmin)‖xn+1 − pn‖2

2γ
∀n ≥ 0.

Using the same arguments as in (2.15), it is easy to check that for every n ≥ 0

‖xn − pn‖2

2γ
− (1 + 2ρmin)‖xn+1 − pn‖2

2γ

≥

1 − (1 + 2ρmin)γ2

√√√√ m∑
i=1

‖Li‖2 + max {µ, ν1, . . . , νm}

2 ‖xn − pn‖2

2γ

≥ 0,

whereby the nonnegativity of this term is ensured by the assumption that

γ ≤ 1
√

1 + 2ρmin
(√∑m

i=1 ‖Li‖2 + max {µ, ν1, . . . , νm}
) .

Therefore, we obtain

‖xn − x‖2 ≥ (1 + 2ρminγ(1 − γ))‖xn+1 − x‖2 ∀n ≥ 0,

which leads to

‖xn − x‖2 ≤
( 1

1 + 2ρminγ(1 − γ)

)n

‖x0 − x‖2 ∀n ≥ 0.
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4 Numerical experiments in imaging
In this section we test the feasibility of Algorithm 2.1 and of its accelerated version
Algorithm 3.1 in the context of different problem formulations occurring in imaging and
compare their performances to the ones of several popular algorithms in the field. For all
applications discussed in this section the images have been normalized, in order to make
their pixels range in the closed interval from 0 to 1.

4.1 TV-based image denoising

Our first numerical experiment aims the solving of an image denoising problem via total
variation regularization. More precisely, we deal with the convex optimization problem

inf
x∈Rn

{
λ TV (x) + 1

2
‖x − b‖2

}
, (4.1)

where λ ∈ R++ is the regularization parameter, TV : Rn → R is a discrete total variation
functional and b ∈ Rn is the observed noisy image.

In this context, x ∈ Rn represents the vectorized image X ∈ RM×N , where n = M ·N
and xi,j denotes the normalized value of the pixel located in the i-th row and the j-th
column, for i = 1, . . . , M and j = 1, . . . , N . We denote Y = Rn × Rn and define the
linear operator L : Rn → Y , xi,j 7→ (L1xi,j , L2xi,j), where

L1xi,j =
{

xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =
{

xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient using reflexive (Neumann)
boundary conditions and standard finite differences and fulfills ‖L‖2 ≤ 8. Its adjoint
L∗ : Y → Rn is given in [8].

Two popular choices for the discrete total variation functional are the isotropic total
variation TViso : Rn → R,

TViso(x) =
M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1

|xi+1,N − xi,N | +
N−1∑
j=1

|xM,j+1 − xM,j | ,

and the anisotropic total variation TVaniso : Rn → R,

TVaniso(x) =
M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j | + |xi,j+1 − xi,j |

+
M−1∑
i=1

|xi+1,N − xi,N | +
N−1∑
j=1

|xM,j+1 − xM,j | ,

where in both cases reflexive (Neumann) boundary conditions are assumed.
Within this example we will focus on the anisotropic total variation function which is

nothing else than the composition of the l1-norm in Y with the linear operator L. Due to
the full splitting characteristics of the iterative methods presented in this paper, we need
only to compute the proximal point of the conjugate of the l1-norm, the latter being the
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σ = 0.12, λ = 0.07 σ = 0.06, λ = 0.035

ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

ALG1 7.51s (343) 49.66s (2271) 4.08s (187) 34.44s (1586)
ALG2 2.20s (101) 9.84s (451) 1.61s (73) 6.70s (308)
PD1 3.69s (337) 24.34s (2226) 2.02s (183) 16.74s (1532)
PD2 1.08s (96) 4.94s (447) 0.79s (70) 3.53s (319)
AMA 5.07s (471) 32.59s (3031) 2.74s (254) 23.49s (2184)
Fast AMA 1.06s (89) 6.63s (561) 0.75s (63) 4.53s (383)
Nesterov 1.15s (102) 6.66s (595) 0.81s (72) 4.70s (415)
FISTA 0.96s (100) 6.12s (645) 0.68s (70) 4.08s (429)

Table 4.1: Performance evaluation for the images in Figure 4.1. The entries represent to the
CPU times in seconds and the number of iterations, respectively, needed in order to attain a root
mean squared error for the iterates below the tolerance ε.

indicator function of the dual unit ball. Thus, the calculation of the proximal point will
result in the computation of a projection, which has an easy implementation. The more
challenging isotropic total variation functional is employed in the forthcoming subsection
in the context of an image deblurring problem.

Thus, problem (4.1) reads equivalently

inf
x∈Rn

{h(x) + g(Lx)} ,

where h : Rn → R, h(x) = 1
2‖x − b‖2, is 1-strongly monotone and differentiable with

1-Lipschitzian gradient and g : Y → R is defined as g(y1, y2) = λ‖(y1, y2)‖1. Then its
conjugate g∗ : Y → R is nothing else than

g∗(p1, p2) = (λ‖ · ‖1)∗ (p1, p2) = λ

∥∥∥∥(p1
λ

,
p2
λ

)∥∥∥∥∗

1
= δS(p1, p2),

where S = [−λ, λ]n × [−λ, λ]n.
We solved the regularized image denoising problem with Algorithm 2.1 and Algorithm

3.1 and other first-order methods. A comparison of the obtained results is shown in
Table 4.1, where the abbreviations refer to the following algorithms (for which the initial
parameter choices are also specified):

• ALG1: Algorithm 2.1 with γ = 1−ε̃√
8 , small ε̃ > 0 and by taking the last iterate

instead of the averaged sequence.
• ALG2: Algorithm 3.1 with ρ = 0.3, µ = 1 and γ0 =

√
1+4ρ

2(1+2ρ)µ .
• PD1: Algorithm 1 in [9] with τ = 1√

8 , τσ8 = 1 and by taking the last iterate
instead of the averaged sequence.

• PD2: Algorithm 2 in [9] with ρ = 0.3, τ0 = 1√
8 , τ0σ08 = 1.

• AMA: The scheme (4.3a)–(4.3c) in [14] for c(t) = 2
‖L‖2 for all t ≥ 1.

• Fast AMA: The AMA scheme for c(t) = 1.2
‖L‖2 for all t ≥ 1 and FISTA-type accel-

eration.
• Nesterov: The scheme (3.11) in [12] on the dual problem.
• FISTA: The scheme (4.1)–(4.3) in [2] on the dual problem.
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, λ = 0.035 (d) Denoised image, λ = 0.07

Figure 4.1: TV -l2 image
denoising. The noisy im-
age in (a) was obtained af-
ter adding white Gaussian
noise with standard devia-
tion σ = 0.06 to the orig-
inal 256 × 256 lichtenstein
test image, while the out-
put of Algorithm 3.1, for
λ = 0.035, after 100 itera-
tions is shown in (c). Like-
wise, the noise image when
choosing σ = 0.12 and the
output of the same algo-
rithm, for λ = 0.07, after
100 iterations are shown in
(b) and (d), respectively.

From the point of view of the number of iterations, one can notice similarities between
both the primal-dual algorithms ALG1 and PD1 and the accelerated versions ALG2 and
PD2. With regard to this criterion they behave almost equal. When comparing the
CPU times, it shows that the methods in this paper need almost twice amount of time.
This is since ALG1 and ALG2 lead back to a forward-backward-forward splitting scheme,
whereas PD1 and PD2 rely on a forward-backward splitting scheme, meaning that ALG1
and ALG2 process the double amount of forward steps than PD1 and PD2 (and, actu-
ally, any other algorithm listed in Table 4.1). In the considered numerical experiment
the evaluation of the forward steps (which are actually matix-vector multiplications in-
volving the linear operators and their adjoints) is, compared with the calculation of
projections when computing the resolvents, the most costly step. However, in contrast
to all other algorithms listed in Table 4.1, ALG1 and ALG2 are parallelizable. Hence, in
distributed programming, two matrix-vector products can be calculated simultaneously,
which reduces the time per iteration to a level where the other algorithms already are.
In this situation, the number of iterations becomes a more important feature, and this
is an aspect where our accelerated method ALG2 shows to be competitive to state-of-
the-art solvers. It is also noticable, that the acceleration of the alternating minimization
algorithm (AMA) as well as the accelerated first-order methods operating on the dual
problem, i. e. Nesterov and FISTA, perform very well on this example.

4.2 TV -based image deblurring

The second numerical experiment that we consider concerns solving an extremely ill-
conditioned linear inverse problem which arises in image deblurring. For a given matrix
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A ∈ Rn×n describing a blur operator and a given vector b ∈ Rn representing the blurred
and noisy image, the task is to estimate the unknown original image x ∈ Rn fulfilling

Ax = b.

To this end we basically solve the following regularized convex nondifferentiable problem

inf
x∈Rn

{
‖Ax − b‖1 + λTViso(x) + δ[0,1]n(x)

}
, (4.2)

where λ ∈ R++ is a regularization parameter and TViso : Rn → R is the discrete isotropic
total variation function. Notice that none of the functions occurring in (4.2) is differen-
tiable.

For (y, z), (p, q) ∈ Y, we introduce the inner product

〈(y, z), (p, q)〉 =
M∑

i=1

N∑
j=1

yi,jpi,j + zi,jqi,j

and define ‖(y, z)‖× =
∑M

i=1
∑N

j=1

√
y2

i,j + z2
i,j . One can check that ‖ · ‖× is a norm on

Y and that for every x ∈ Rn it holds TViso(x) = ‖Lx‖×, where L is the linear operator
defined in the previous section. The conjugate function (‖ · ‖×)∗ : Y → R of ‖ · ‖× is for
every (p, q) ∈ Y given by

(‖ · ‖×)∗(p, q) =
{

0, if ‖(p, q)‖×∗ ≤ 1
+∞, otherwise ,

where
‖(p, q)‖×∗ = sup

‖(y,z)‖×≤1
〈(p, q), (y, z)〉 = max

1≤i≤M
1≤j≤N

√
p2

i,j + q2
i,j .

Therefore, the optimization problem (4.2) can be written in the form of

inf
x∈Rn

{f(x) + g1(Ax) + g2(Lx)},

where f : Rn → R, f(x) = δ[0,1]n(x), g1 : Rn → R, g1(y) = ‖y − b‖1, and g2 : Y → R,
g2(y, z) = λ ‖(y, z)‖×. For every p ∈ Rn, it holds g∗

1(p) = δ[−1,1]n(p) + pT b (see, for
instance, [3]), while for any (p, q) ∈ Y, we have g∗

2(p, q) = δS(p, q), with S = {(p, q) ∈ Y :
‖(p, q)‖×∗ ≤ λ}. We solved this problem by Algorithm 2.1 and to this end we made use
of the following formulae

Proxγf (x) = P[0,1]n (x) ∀x ∈ Rn

Proxγg∗
1
(p) = P[−1,1]n (p − γb) ∀p ∈ Rn , and Proxγg∗

2
(p, q) = PS (p, q) ∀(p, q) ∈ Y,

where γ ∈ R++ and the projection operator PS : Y → S is defined as

(pi,j , qi,j) 7→ λ
(pi,j , qi,j)

max
{

λ,
√

p2
i,j + q2

i,j

} , 1 ≤ i ≤ M, 1 ≤ j ≤ N.

Figure 4.2 shows the cameraman test image obtained after multiplying the original
one with the blur operator and adding normally distributed white Gaussian noise with
standard deviation 10−3. It also shows the image reconstructed by Algorithm 2.1 when
taking as regularization parameter λ = 0.003. Finally, plots on the function values give
an insight into the benefits of taking averaged iterates into consideration which, due to
Theorem 2.1, achieve a rate of convergence of O( 1

n).
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(a) Blurred and noisy image (b) Reconstructed image (c) Relative function values

Figure 4.2: TV -l1 image deblurring. Figure (a) shows the blurred and noisy 256×256 cameraman
test image, (b) shows the averaged iterate generated by Algorithm 2.1 after 400 iterations and (c)
shows the relative error in terms of function values when taking the last or the averaged iterate.

4.3 TV -based image inpainting

In the last section of the paper we show how image inpainting problems, which aim
for recovering lost information, can be efficiently solved via the primal-dual methods
investigated in this work. To this end, we consider the following TV -regularized model

inf TViso(x),
s.t. Kx = b (4.3)

x ∈ [0, 1]n

where TViso : Rn → R is the isotropic total variation functional and K ∈ Rn×n is the
diagonal matrix, where for i = 1, ..., n, Ki,i = 0, if the pixel i in the noisy image b ∈ Rn

is lost (in our case set to black) and Ki,i = 1, otherwise. The induced linear operator
K : Rn → Rn fulfills ‖K‖ = 1, while, in the light of the considerations made in the
previous two subsections, we have that TViso(x) = ‖Lx‖× for all x ∈ Rn.

Thus, problem (4.3) can be formulated as

inf
x∈Rn

{f(x) + g1(Lx) + g2(Kx)},

where f : Rn → R, f(x) = δ[0,1]n , g1 : Y → R, g1(y1, y2) = ‖(y1, y2)‖× and g2 : Rn → R,
g2(y) = δ{0}(y − b). We solve it by Algorithm 2.1, the formulae for the proximal points
involved in this iterative scheme been already given in Subsection 4.2. Figure 4.3 shows
the original fruit image, the image obtained from it after setting 80% randomly chosen
pixels to black and the image reconstructed by Algorithm 2.1.
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