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Abstract. Supervised learning methods are powerful techniques to learn a function
from a given set of labeled data, the so-called training data. In this paper the support
vector machines approach for regression is investigated under a theoretical point of view
that makes use of convex analysis and Fenchel duality. Starting with the correspond-
ing Tikhonov regularization problem, reformulated as a convex optimization problem,
we introduce a conjugate dual problem to it and prove that, whenever strong duality
holds, the function to be learned can be expressed via the optimal solutions of the dual
problem. Corresponding dual problems are then derived for different loss functions.
The theoretical results are applied by numerically solving the regression task for two
data sets and the accuracy of the regression when choosing different loss functions is
investigated.
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1 Introduction
Supervised learning methods such as Support Vector Machines for Classification and
Regression belong to the class of kernel based methods that have become, especially in
the last decade, a popular approach for learning functions from a given set of labeled
data. They have wide fields of application such as image and text classification (cf. [6]),
computational biology (cf. [8]) or time series forecasting and credit scoring (cf. [7, 15])
and have proven to be able to provide good results.

In this paper we deal in particular with the Support Vector Regression Problem.
Starting with the general Tikhonov regularization problem (cf. [14]), to which the su-
pervised learning problem gives rise, which turns out to be a convex (not necessarily
differentiable) optimization problem, we construct a conjugate dual to it (see, for in-
stance, [2]), prove under suitable qualification conditions the existence of strong duality
and express the optimal solutions of the primal problem via the ones of the dual. This
has as consequence the formulation of the regression function to be learned by means
of the optimal solutions of the dual problem. Hence, for the specific learning task one
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only has to numerically solve the dual problem, which, different to the primal one, is
mainly a convex differentiable optimization problem. Our scope in this article is not
only to provide the necessary theoretical background of this approach, but also to derive
the corresponding dual problems for some popular loss functions and to compare the
accuracy of the regression for two data sets widely used as benchmarks in the literature
(cf. [4, 10,11]).

The paper is organized as follows. In Section 2 the general regularization problem
is introduced and it is stated as an equivalent convex optimization problem. A Fenchel-
type dual problem to it is provided and, under a suitable weak qualification condition,
the existence of strong duality for this primal-dual pair is proved, which gives rise to the
formulation of necessary and sufficient optimality conditions. In Section 3 the general
theory from the previous section is employed for several particular loss functions and the
corresponding dual programs are calculated. In Section 4 the dual programs are solved
numerically for two data sets. First, the dual problems resulting from the several choices
of the corresponding loss function are transformed into equivalent representations, easier
to handle when solving them numerically. Then, we compute the regression functions
first on the basis of a toy data set generated from the sinc-function for a fixed set of
parameters. After that we solve the regression problem based on the Boston Housing
data set and compare the performances of the different resulting regression functions.

2 Supervised learning based on conjugate duality
Given a set of training data X = {x1, . . . , xn} ⊂ Rd and the corresponding observed
values yi ∈ R, i = 1, . . . , n, a common approach for learning a regression function based
on the Structural Risk Minimization Principle is to apply Support Vector Machines
(SVM) techniques for regression. These supervised learning methods were investigated
in detail by Vapnik in [16]. Considering D = {(xi, yi) : i = 1, . . . , n} ⊂ Rd × R the
training set, the aim of the SVM approach is to find a function f belonging to F , a
space of real valued functions defined on Rd enhanced with some a priori information,
that best approximates the given data.

A so-called loss function v : R × R → R = R ∪ {±∞}, assumed to be proper and
convex in its first variable, enables to impose a penalty for predicting f(xi) while the
true, or observed, value is yi, for i = 1, . . . , n. One of the common assumptions on f is
smoothness, which guarantees that two similar inputs correspond to two similar outputs.
In order to control it, one needs to consider a smoothness functional Ω : F → R (cf. [14])
having the desired characteristic of taking high values for non-smooth functions and low
values for smooth ones.

Hence, the desired function f will be the optimal solution of the Tikhonov regular-
ization problem

inf
f∈F

{
C

n∑
i=1

v(f(xi), yi) + 1
2Ω(f)

}
(1)

where C > 0 is the so-called regularization parameter controlling the tradeoff between
the accuracy and the generalization ability of the learned regression function (see [3]).
In the following the function f is assumed to be an element of the Reproducing Kernel
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Hilbert Space (RKHS) Hk induced by a continuous kernel function k : Rd × Rd → R
(cf. [1]) which we assume to be symmetric and finitely positive semidefinite. The kernel
k is said to be symmetric if k(x, y) = k(y, x) for all x, y ∈ Rd. A symmetric kernel
function k : Rd × Rd → R, which for all m ≥ 1 and all finite sets {x1, . . . , xm} ⊂ Rd
fulfills

∑m
i,j=1 aiajk(xi, xj) ≥ 0 for every arbitrary a ∈ Rd is called finitely positive

semidefinite (cf. [12]).
Hence, the kernel function k can be decomposed as k(x, y) = 〈φ(x), φ(y)〉k, where

〈·, ·〉k denotes the inner product of Hk and φ : Rd → Hk is a so-called feature map. The
representer theorem (cf. [17]) ensures that for every minimizer f of (1) there exists a
vector c = (c1, . . . , cn)T ∈ Rn such that

f(·) =
n∑
i=1

cik(·, xi). (2)

For i = 1, ..., n a vector xi with the property that the corresponding coefficient ci is not
equal to zero is a so-called support vector.

The existence of such a representation is essential for the purpose of this paper.
Finally, we define the smoothness functional Ω to be Ω(f) = ‖f‖2k for f ∈ Hk, where
‖·‖k denotes the norm onHk. The Gram matrix of k with respect to the set {x1, . . . , xn}
is denoted by K ∈ Rn×n, being the matrix with entries Kij := k(xi, xj), i, j = 1, . . . , n.
Obviously, K is symmetric and positive semidefinite. Taking c ∈ Rn to be the vector
corresponding to representation (2), the smoothness functional becomes Ω(f) = ‖f‖2k =
cTKc and for i = 1, ..., n it holds f(xi) =

∑n
j=1 cjKij = (Kc)i. Thus we can rewrite

optimization problem (1) equivalently as

(Pgen) inf
c∈Rn

{
C

n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc

}
. (3)

Due to the nature of the loss function, this problem is mainly a convex and not
necessarily differentiable optimization problem. In order to overcome this disadvantage,
we provide a conjugate dual problem to it, prove the existence of strong duality and
express the optimal solutions of (Pgen) via the ones of the dual. These considerations
make sense, especially when the dual problem is easier to solve than the primal one,
which is actually the case for the majority of the loss functions used for regression
problems.

In order to make the paper self-contained, we introduce first some notions and
results. On Rd we consider the Euclidian norm, while for two vectors x, y ∈ Rd we
denote by xT y their inner product, where the upper index T transposes a column vector
into a row one and viceversa. For a nonempty set D ⊆ Rn we denote by ri(D) the
relative interior of the set D, that is the interior of D relative to its affine hull. The
indicator function of D is defined as

δD : Rn → R, δD(x) =
{

0, if x ∈ D,
+∞, otherwise.

For a function f : Rn → R we denote its effective domain by dom f = {x ∈ Rn : f(x) <
+∞} and say that f is proper if dom f 6= ∅ and f > −∞. The (Fenchel-Moreau)
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conjugate function of f is f∗ : Rn → R, defined by f∗(p) = supx∈Rn{pTx − f(x)}. For
all x, p ∈ Rn we have the following relation, known as the Young-Fenchel inequality,
f(x) + f∗(p) − pTx ≥ 0. For x ∈ Rn with f(x) ∈ R we denote by ∂f(x) := {p ∈ Rn :
f(y)− f(x) ≥ pT (y− x) ∀y ∈ Rn} the (convex) subdifferential of f at x. Otherwise, we
assume by convention that ∂f(x) = ∅. For x ∈ Rn with f(x) ∈ R, one has that

p ∈ ∂f(x)⇔ f(x) + f∗(p) = pTx.

The epigraph of f is epi f = {(x, r) ∈ Rn × R : f(x) ≤ r} and f is said to be convex, if
epi f is a convex set, while f is said to be lower semicontinuous, if epi f is a closed set.
Having a convex set D and a function f : D → R, we say that f is strictly convex on
D, if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) ∀x, y ∈ D,x 6= y, ∀λ ∈ (0, 1)

and that f is strongly convex on D, if there exists µ > 0 such that

f(λx+ (1− λ)y) + λ(1− λ)µ‖x− y‖2 ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ D ∀λ ∈ (0, 1).

When K ∈ Rn×n is a given matrix, we denote by ImK := {Kx : x ∈ Rn}. Further, for
x ∈ R we define x+ := max{0, x}.

The dual problem to (Pgen) which we consider here is a Fenchel-type dual problem
and it is formulated as

(Dgen) sup
P∈Rn,

P=(P1,...,Pn)T

{
−C

n∑
i=1

(
v(·, yi)

)∗(
− Pi
C

)
− 1

2P
TKP

}
(4)

in analogy with the duality concept discussed in [3]. However, the more detailed formu-
lation of (Dgen) and the reduction of the dimension of the space of the dual variables
compared to the one in [3] make it more suitable for calculations when dealing with
concrete loss functions and consequently for numerical implementations. Let us denote
by v(Pgen) the optimal objective value of the primal problem (Pgen) and by v(Dgen)
the optimal objective value of its dual problem (Dgen). First of all, we show that for
the minimization problem (Pgen) and its dual problem (Dgen) weak duality holds. The
weak duality statement can be obtained as a particular instance of a more general re-
sult (taken, for instance, from [2]), nevertheless, we opt for providing it at this point
for reader convenience.

Theorem 1. For (Pgen) and (Dgen) weak duality holds, i. e. v(Pgen) ≥ v(Dgen).

Proof. Let be c ∈ Rn and P = (P1, . . . , Pn)T ∈ Rn. Then it holds, according to Young-
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Fenchel inequality and due to the positive semidefiniteness of K, that

0 ≤ C
[
n∑
i=1

v
(
(Kc)i, yi

)
+

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
+

n∑
i=1

(Kc)i
Pi
C

]

+ 1
2(c− P )TK(c− P )

= C
n∑
i=1

v
(
(Kc)i, yi

)
+ C

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
+ P T (Kc)

+ 1
2c

TKc+ 1
2P

TKP − P T (Kc)

= C
n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc+ C

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
+ 1

2P
TKP

and therefore

C
n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc ≥ −C

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
− 1

2P
TKP,

i. e. v(Pgen) ≥ v(Dgen).

By introducing the functions vi : Rn → R, vi(z) = v(zi, yi), i = 1, . . . , n, the problem
(Pgen) can equivalently be written as

(Pgen) inf
c∈Rn

{
C

n∑
i=1

vi(Kc) + 1
2c

TKc

}
. (5)

In order to ensure strong duality for the primal-dual pair (Pgen) − (Dgen), we impose
the following qualification condition

(QC) ImK ∩
n∏
i=1

ri(dom v(·, yi)) 6= ∅.

Theorem 2. If (QC) is fulfilled, then it holds v(Pgen) = v(Dgen) and (Dgen) has an
optimal solution.

Proof. We notice first that

v(Pgen) = inf
c∈Rn

{(
n∑
i=1

Cvi

)
(Kc) + 1

2c
TKc

}
.

Denoting by g : Rn → R, g(c) = 1
2c
TKc, and by taking into consideration that

dom (
∑n
i=1Cvi) =

∏n
i=1 dom v(·, yi), one has

K(ri(dom g)) ∩ ri
(

n∑
i=1

Cvi

)
= ImK ∩

n∏
i=1

ri(dom v(·, yi)) 6= ∅.

5



This means that v(Pgen) < +∞. Moreover, there exists a P̄ ∈ Rn such that (see [2,
Theorem 2.1])

v(Pgen) = sup
P∈Rn

{
−
( n∑
i=1

Cvi
)∗

(−P )− g∗(KP )
}

= −
(
C

n∑
i=1

vi
)∗

(−P̄ )− g∗(KP̄ ).

Since for q ∈ Rn,

g∗(q) =
{

1
2q
TK−q, if q ∈ ImK,

+∞, otherwise,

where K− is the Moore-Penrose pseudo-inverse of K, it holds

g∗(KP̄ ) = 1
2(KP̄ )TK−(KP̄ ) = 1

2 P̄
TKK−KP̄ = 1

2 P̄
TKP̄

and, so,

v(Pgen) = −C
(

n∑
i=1

vi

)∗ (
− 1
C
P̄

)
− 1

2 P̄
TKP̄ .

As from (QC) one has ∩ni=1 ri(dom vi) =
∏n
i=1 ri(dom v(·, yi)) 6= ∅, it follows (cf. [9])

that there exist P̄ i ∈ Rn, i = 1, ..., n, with
∑n
i=1 P̄

i = P̄ , such that(
n∑
i=1

vi

)∗ (
− 1
C
P̄

)
=

n∑
i=1

v∗i

(
− 1
C
P̄ i
)

and, therefore,

v(Pgen) = −C
n∑
i=1

v∗i

(
− 1
C
P̄ i
)
− 1

2

(
n∑
i=1

P̄ i
)T

K

(
n∑
i=1

P̄ i
)
.

Further, for all i = 1, . . . , n, it holds

v∗i

(
− 1
C
P̄ i
)

= sup
z∈Rn

{
− 1
C

(P̄ i)T z − v(zi, yi)
}

=


(
v(·, yi)

)∗(
− P̄ i

i
C

)
, if P̄ ij = 0, ∀j 6= i,

+∞, otherwise.

Since the optimal objective value of (Pgen) is finite, by defining P̄i := P̄ ii for i = 1, ..., n,
one has

∑n
i=1 P̄

i = (P̄1, . . . , P̄n)T ∈ Rn and

v(Pgen) = −C
n∑
i=1

(
v(·, yi)

)∗(
− P̄i
C

)
− 1

2 P̄
TKP̄ ,

where P̄ := (P̄1, . . . , P̄n)T . This, along with the weak duality theorem, provides the
desired result, P̄ being an optimal solution to (Dgen).

The next theorem furnishes the necessary and sufficient optimality conditions for
the primal-dual pair (Pgen)− (Dgen).
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Theorem 3. Let (QC) be fulfilled. Then c̄ ∈ Rn is an optimal solution for (Pgen) if
and only if there exists an optimal solution P̄ ∈ Rn to (Dgen) such that

(i) − P̄i
C ∈ ∂v(·, yi)((Kc̄)i), i = 1, . . . , n;

(ii) K(c̄− P̄ ) = 0.

Proof. From Theorem 2 we get the existence of an optimal solution P̄ ∈ Rn to (Dgen)
such that

C

[
n∑
i=1

v
(
(Kc̄)i, yi

)
+

n∑
i=1

(
v(·, yi)

)∗(
− P̄i
C

)
+

n∑
i=1

(Kc̄)i
P̄i
C

]

+1
2 c̄

TKc̄+ 1
2 P̄

TKP̄ − P̄ TKc̄ = 0.

This is equivalent to{
v((Kc̄)i, yi) +

(
v(·, yi)

)∗( P̄i
C

)
= (Kc̄)i P̄i

C ∀i = 1, . . . , n,
1
2(c̄− P̄ )TK(c̄− P̄ ) = 0.

Thus c̄ − P̄ is a global minimum of the convex function p 7→ 1/2pTKp, which means
that the second statement in the relations above is nothing else than K(c̄− P̄ ) = 0.

Remark 1. If K is positive definite, then, due to the fact that v(·, yi) is proper and
convex for all i = 1, ..., n, the qualification condition (QC) is automatically fulfilled.
Thus, according to Theorem 3, c̄ ∈ Rn is an optimal solution for (Pgen) if and only if
there exists an optimal solution P̄ ∈ Rn to (Dgen) such that

(i) − P̄i
C ∈ ∂v(·, yi)((Kc̄)i), i = 1, . . . , n;

(ii) c̄ = P̄ .

Remark 2. If K is positive definite, then the function g is strongly convex (on Rn).
Consequently, if v(·, yi), i = 1, . . . , n, is, additionally, lower semicontinuous, the opti-
mization problem (Pgen) has a unique optimal solution (see, for instance, [5, Satz 6.33]).
Further, due to the fact that P 7→ 1

2P
TKP is strictly convex (on Rn), one can see

that the dual problem (Dgen) has at most one optimal solution. Consequently, due
to Remark 1, whenever K is positive definite and v(·, yi) is lower semicontinuous, for
i = 1, ..., n, then in order to solve (Pgen) one can equivalently solve (Dgen) which in this
case has an unique optimal solution P̄ , this being also the unique optimal solution of
(Pgen).

3 Dual programs for different loss functions
In this section we consider different loss functions for performing the regression task.
For each of the regularization problems to which these loss functions give rise we derive
the corresponding dual problem. Notice also that all considered loss functions in this
section are proper, convex and lower semicontinuous in their first arguments.
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3.1 The ε−insensitive loss function

The well known ε−insensitive loss function vε : R× R→ R is, for ε > 0, defined as

vε(a, y) = (|a− y| − ε)+ =
{

0, |a− y| ≤ ε,
|a− y| − ε, else.

(6)

Thus the primal optimization problem (Pgen) becomes

(Pε) inf
c∈Rn

{
C

n∑
i=1

(|(Kc)i − yi| − ε)+ + 1
2c

TKc

}
. (7)

To obtain its dual problem (Dε) via (4), we use the Lagrange technique in order to
calculate the conjugate function of vε(·, yi), for i = 1, ..., n. For z ∈ R and y ∈ R we
have

− (vε(·, y))∗ (z) = − sup
a∈R
{za− (|a− y| − ε)+} = inf

a∈R
{−za+ (|a− y| − ε)+}

= inf
a∈R,

t≥0, t≥|a−y|−ε

{−za+ t}

= sup
λ≥0, β≥0

{
inf

a∈R, t∈R
{−za+ t+ λ|a− y| − λε− λt− βt}

}
= sup

λ≥0, β≥0

{
inf
a∈R
{−za+ λ|a− y|}+ inf

t∈R
{t− λt− βt} − λε

}
.

Since

inf
a∈R
{−za+ λ|a− y|} =

{
−zy, λ ≥ |z|,
−∞, else

and inf
t∈R
{t− λt− βt} =

{
0, λ+ β = 1,
−∞, else,

we get

− (vε(·, y))∗ (z) =
{
−zy − ε|z|, |z| ≤ 1,
−∞, else

and the dual problem (Dε) to the primal problem (Pε) results in

(Dε) sup
P=(P1,...,Pn)T∈Rn,
|Pi|≤C,i=1,...,n

{
n∑
i=1

Piyi − ε
n∑
i=1
|Pi| −

1
2P

TKP

}
. (8)

3.2 The quadratic ε−insensitive loss function

The second loss function we consider here is the so-called quadratic ε−insensitive loss
function vε2 : R× R→ R, which is defined, for ε > 0, by

vε2(a, y) = (|a− y| − ε)2
+ =

{
0, |a− y| ≤ ε,
(|a− y| − ε)2, else.

(9)
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The corresponding primal problem reads in this case

(Pε2) inf
c∈Rn

{
C

n∑
i=1

(|(Kc)i − yi| − ε)2
+ + 1

2c
TKc

}
. (10)

Again, in order to derive its dual problem (Dε2), we need to calculate, for y, z ∈ R, the
following conjugate function

− (vε2(·, y))∗ (z) = − sup
a∈R
{za− (|a− y| − ε)2

+} = inf
a∈R,

t≥0, t≥|a−y|−ε

{−za+ t2}

= sup
λ≥0, β≥0

{
inf

a∈R, t∈R

{
−za+ t2 + λ(|a− y| − ε− t)− βt

}}
= sup

λ≥0, β≥0

{
inf
a∈R
{−za+ λ|a− y|}+ inf

t∈R

{
t2 − λt− βt

}
− λε

}
The first inner infimum has been already calculated in the previous subsection, while
for the second one we have

inf
t∈R

{
t2 − (λ+ β)t

}
= −1

4(λ+ β)2.

Hence, one the above conjugate becomes

− (vε2(·, y))∗ (z) = −zy − 1
4z

2 − ε|z|

and gives rise to the following dual problem

(Dε2) sup
P=(P1,...,Pn)T∈Rn

{
n∑
i=1

Piyi −
1

4C

n∑
i=1

P 2
i − ε

n∑
i=1
|Pi| −

1
2P

TKP

}
. (11)

3.3 The Huber loss function

Another popular choice for the loss function in SVM regression tasks is the Huber loss
function vH : R× R→ R which is defined, for ε > 0, as

vH(a, y) =
{
ε|a− y| − ε2

2 , |a− y| > ε,
1
2 |a− y|

2, |a− y| ≤ ε.
(12)

The primal problem associated with the Huber loss function therefore becomes

(PH) inf
c∈Rn

{
C

n∑
i=1

vH((Kc)i, yi) + 1
2c

TKc

}
. (13)
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For all z, y ∈ R one has

− (vH(·, y))∗ (z) = − sup
a∈R
{za− vH(a, y)} = inf

a∈R
{−za+ vH(a, y)}

= min

 inf
a∈R,
|a−y|≤ε

{
−za+ 1

2 |a− y|
2
}
, inf

a∈R,
|a−y|>ε

{
−za+ ε|a− y| − ε2

2

}
= min

 inf
a∈R,
|a−y|≤ε

{
−za+ 1

2(a− y)2
}
, inf
a∈R,
a>y+ε

{
−za+ ε(a− y)− ε2

2

}
,

inf
a∈R,
a<y−ε

{
−za+ ε(y − a)− ε2

2

} .
For the first infimum we get

inf
a∈R,
|a−y|≤ε

{
−za+ 1

2(a− y)2
}

=


ε2

2 − zy + zε− y2

2 , z < −ε,
−1

2z
2 − zy − y2

2 , z ∈ [−ε, ε],
ε2

2 − zy − zε−
y2

2 , z > ε,

(14)

while the second and third infima result in

inf
a∈R,
a>y+ε

{
−za+ ε(a− y)− ε2

2

}
=
{
ε2

2 − zy − zε, z ≤ ε,
−∞, else

(15)

and

inf
a∈R,
a<y−ε

{
−za+ ε(y − a)− ε2

2

}
=
{1

2ε
2 − zy + zε, z ≥ −ε,

−∞, else,
(16)

respectively. Putting (14), (15) and (16) together we obtain the following formula for
the conjugate function

− (vH(·, y))∗ (z) =

min
{
−1

2z
2 − zy, ε2

2 − zy − zε,
ε2

2 − zy + εz
}
, z ∈ [−ε, ε],

−∞, else

=
{
−1

2z
2 − zy, z ∈ [−ε, ε],

−∞, else.

Thus, the dual problem to (PH) reads

(DH) sup
P=(P1,...,Pn)T∈Rn,
|Pi|≤εC,i=1,...,n

{
n∑
i=1

Piyi −
1

2C

n∑
i=1

P 2
i −

1
2P

TKP

}

10



3.4 The extended loss function

Finally, we provide the resulting dual problem when using the extended loss function
vext : R× R→ R, which is defined, for ε > 0, as

vext(a, y) = δ[−ε,ε] =
{

0, |a− y| ≤ ε,
+∞, else

(17)

This choice gives rise to the following primal problem

(Pext) inf
c∈Rn,

|(Kc)i−yi|≤ε,i=1,...,n

1
2c

TKc. (18)

By making again use of Lagrange duality, we get for all y, z ∈ R

− (vext(·, y))∗ (z) = − sup
a∈R,
|a−y|≤ε

{za} = inf
a∈R,
|a−y|≤ε

{−za} = inf
a∈R,

a−y−ε≤0,
y−a−ε≤0

{−za}

= sup
λ≥0, β≥0

{
inf
a∈R
{(−z + λ− β)a− λy − λε+ βy − βε}

}
= sup

λ≥0, β≥0,
λ−β=z

{−λy − λε+ βy − βε} = sup
λ≥0, β≥0,
λ−β=z

{−(λ− β)y − (λ+ β)ε}

= −zy + sup
λ≥0, β≥0,
λ−β=z

{−ε(λ+ β)} = −zy − ε|z|.

Consequently, the dual problem to (Pext) has the following formulation

(Dext) sup
P=(P1,...,Pn)T∈Rn

{
n∑
i=1

Piyi − ε
n∑
i=1
|Pi| −

1
2P

TKP

}

4 Application
In this section we discuss two particular regression tasks in the light of the approach
introduced in the previous sections and solve to this end the different dual optimization
problems (Dε), (Dε2), (DH) and (Dext) numerically. In a first step, we reformulate
these optimization problems in order to get a representation of them that is suitable
for standard optimization routines and therefore more easy to handle with. Having in
mind the dual problem (Dε), we note that for z ∈ R it holds

|z| = inf
α≥0,α∗≥0,
α−α∗=z

{α+ α∗} (19)

for arbitrary z ∈ R. If z ≥ 0, then the optimal solution of this minimization problem
is (α, α∗) = (z, 0), while, when z < 0, the optimal solution is (α, α∗) = (0,−z). This
remark constitutes the starting point for giving an equivalent formulation of the dual

11



problem (Dε) in terms of the variables αi and α∗i , i = 1, . . . , n, which we will denote by
(Dα

ε ). For the problem

(Dε) sup
P=(P1,...,Pn)T∈Rn,
|Pi|≤C,i=1,...,n

{
n∑
i=1

Piyi − ε
n∑
i=1
|Pi| −

1
2P

TKP

}

the equivalent formulation (Dα
ε ) is

(Dα
ε ) inf

αi,α
∗
i∈[0,C],

i=1,...,n

1
2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )Kij + ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

(αi − α∗i )yi

 .
Using again (19) an equivalent formulation for the problem

(Dext) sup
P=(P1,...,Pn)T∈Rn

{
n∑
i=1

Piyi − ε
n∑
i=1
|Pi| −

1
2P

TKP

}
,

to which the use of extended loss gives rise, in terms of αi and α∗i , i = 1, . . . , n, is

(Dα
ext) inf

αi,α
∗
i≥0,

i=1,...,n

1
2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )Kij + ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

(αi − α∗i )yi


In order to obtain an equivalent formulation (Dα

ε2) of the optimization problem (Dε2)
we make use of the fact that

|z| = inf
α,α∗≥0,
α−α∗=z

{
α+ α∗ + αα∗

2Cε

}

for arbitrary z ∈ R. Then the representation of

(Dε2) sup
P=(P1,...,Pn)T∈Rn

{
n∑
i=1

Piyi −
1

4C

n∑
i=1

P 2
i − ε

n∑
i=1
|Pi| −

1
2P

TKP

}

is

(Dα
ε2) inf

αi, α∗i≥0

1
2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )Kij + 1
4C

n∑
i=1

(α2
i + (α∗i )2)

+ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

(αi − α∗i )yi

}
.

Finally, for arbitrary z ∈ R it holds

z2 = inf
α,α∗≥0,
α−α∗=z

{α2 + (α∗)2}

12



and therefore, an equivalent formulation of

(DH) sup
P=(P1,...,Pn)T∈Rn,
|Pi|≤εC,i=1,...,n

{
n∑
i=1

Piyi −
1

2C

n∑
i=1

P 2
i −

1
2P

TKP

}

in terms of αi and α∗i , i = 1, . . . , n, is

(Dα
H) inf
αi,α

∗
i∈[0,εC],

i=1,...,n

1
2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )Kij+
1

2C

n∑
i=1

(
α2
i − (α∗i )2

)
−

n∑
i=1

(αi − α∗i )yi

 .
Remark 3. While the corresponding primal problems are either unconstrained nondif-
ferentiable convex optimization problems or reformulations of constrained optimization
problems with differentiable objective functions and not easily handleable inequality
constraints, the duals (Dα

ε ), (Dα
ε2), (Dα

ext) and (Dα
H) assume the minimization of a con-

vex quadratic objective function over some feasible sets expressed via box constraints
or nonnegative orthants. This makes them easier solvable via some standard algorithms
designed for these classes of optimization problems than their corresponding primal
problems. Moreover, if (ᾱ1, ᾱ

∗
1, ..., ᾱn, ᾱ

∗
n) represents an optimal solution of each of

the reformulated dual problems, then P̄ := (P̄1, ..., P̄n)T , P̄i = ᾱi − ᾱ∗i , i = 1, . . . , n,
represents an optimal solution of the corresponding initial dual.

The two particular regression tasks which we consider in this section involve a toy
data set (cf. 4.1) and the popular Boston Housing data set (cf. 4.2). In both situations
we use the Gaussian RBF kernel

k(x, y) = exp
(
−‖x− y‖

2

2σ2

)
(20)

with kernel parameter σ > 0. This gives rise to a positive definite Gram matrix K and,
therefore, according to Remark 2, an optimal solution P̄ := (P̄1, ..., P̄n)T of the dual
will be an optimal solution of the primal, too. Thus, the components of this vector will
provide the decision function one looks for when considering the regression task.

4.1 A toy data set

In this subsection we numerically solve a regression task where the data has been sam-
pled from the function f : R→ R,

f(x) =
{ sin(x)

x , x 6= 0,
1, x = 0.

The function values for all x ∈ X = {−5.0,−4.9, . . . , 4.9, 5.0} resulting in a total of 101
points were sampled. The values f(x), x ∈ X, were perturbed by adding a random
value drawn from the normal distribution N (0, 0.1). In this way a training set D =
{(xi, yi) : i = 1, . . . , 101} was obtained and used for training. On the basis of this set we
solved the dual problems (Dα

ε ), (Dα
ε2), (Dα

H) and (Dα
ext) numerically, while Figure 4.1
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shows the shapes of the resulting regression functions when choosing the corresponding
loss function.

x

f(x)

(a) ε−insensitive loss

x

f(x)

(b) quadratic ε−insensitive loss

x

f(x)

(c) Huber loss

x

f(x)

(d) extended loss

Figure 4.1: Illustrations of the four resulting regression functions (solid lines) for the
corresponding loss function and the ε−tube (dashed lines, where appropriate) based on
the generated training set (dots). (a) C = 100, σ = 0.5, ε = 0.1 (b) C = 100, σ = 0.5,
ε = 0.1 (c) C = 100, σ = 0.5, ε = 0.1 (d) σ = 0.2, ε = 0.1

Table 4.1 shows the corresponding mean squared errors. With respect to this special
setting the use of the ε−insensitive loss function and of the quadratic ε−insensitive loss
function produce similar mean squared errors, while the use of the extended loss function
provides the lowest mean squared error, as expected.

loss function ε−insensitive ε2−insensitive Huber extended

mean squared error 0.008192 0.008193 0.007566 0.006188

Table 4.1: The mean squared error for the four different loss functions obtained by
applying the parameter settings described in the caption of Figure 4.1.

4.2 Boston Housing data set

In this section we solve the dual problems (Dα
ε ), (Dα

ε2), (Dα
H) and (Dα

ext) for the the well
known Boston Housing data set. This data set consists of 506 instances each of them
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described by 13 attributes.

ε

C σ 0.01 0.15 1.0

10 0.1 39.60 41.69 61.78
0.5 10.51 9.21 34.37
1.0 11.83 11.55 26.50

100 0.1 39.60 41.69 61.78
0.5 12.58 10.54 34.13
1.0 10.37 9.46 26.93

1000 0.1 39.60 41.69 61.78
0.5 26.48 14.66 34.13
1.0 15.45 10.16 26.93
(a) ε−insensitive loss

ε

C σ 0.01 0.15 1.0

10 0.1 40.14 42.39 62.42
0.5 8.63 9.30 36.52
1.0 9.79 10.50 31.92

100 0.1 39.64 41.76 61.85
0.5 10.37 9.77 34.39
1.0 8.33 8.85 27.51

1000 0.1 39.60 41.69 61.79
0.5 17.03 11.96 34.16
1.0 10.49 9.85 26.99

(b) quadratic ε−insensitive loss

ε

C σ 0.01 0.15 1.0

10 0.1 72.96 43.66 40.03
0.5 33.79 13.72 8.95
1.0 34.19 15.85 10.89

100 0.1 47.27 39.55 39.55
0.5 15.61 10.18 10.02
1.0 17.32 10.62 8.67

1000 0.1 39.52 39.52 39.52
0.5 10.61 13.38 17.56
1.0 11.89 10.24 10.13

(c) Huber loss

ε

σ 0.01 0.1 0.15 0.25

0.1 39.60 40.84 41.69 43.60
0.2 17.59 16.81 17.15 18.65
0.3 19.15 14.00 13.07 13.14
0.5 48.88 22.47 17.38 11.64
1.0 151.33 79.68 48.66 20.22
2.0 530.87 254.01 147.94 39.83

(d) extended loss

Figure 4.2: Four tables representing the average mean squared error over ten test folds
for the resulting regression functions w. r. t. the corresponding loss functions and dif-
ferent parameter combinations.

For a detailed description of the data set we refer to [18]. In order to determine good
parameter choices for the kernel parameter σ, the regularization parameter C and the
loss function parameter ε, we performed a 10-fold cross validation. In tables 2(a), 2(b),
2(c) and 2(d) the mean test errors over 10 folds for all four loss functions are shown for
a part of the whole tested parameter values, where we choose the mean squared error
for evaluation. As in [13], we scaled the data before solving the problems numerically.
As one can notice, the best result, i. e. the lowest mean squared error over 10 test folds,
is obtained for the quadratic ε−insensitive loss function followed by the ε−insensitive
loss function and the Huber loss function.
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5 Conclusions
In this paper we solved the Support Vector Regression problem by making use of convex
analysis specific techniques. The dual problems, to which the use of different loss
functions for regression in the primal gave rise, were determined and numerically solved
on the basis of two data sets. One can notice that, when considering the Boston Housing
data set, the quadratic ε−insensitive loss and the Huber loss perform a slightly better
regression, at least for our allowed parameter choices, than the standard ε−insensitive
loss.
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