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Abstract. In this paper we consider the inclusion problem involving a maximally mono-
tone operator, a monotone and Lipschitz continuous operator, linear compositions of
parallel-sum type monotone operators as well as the normal cone to the set of zeros of
another monotone and Lipschitz continuous operator. We propose a forward-backward-
forward type algorithm for solving it that assumes an individual evaluation of each oper-
ator. Weak ergodic convergence of the sequence of iterates generated by the algorithmic
scheme is guaranteed under a condition formulated in terms of the Fitzpatrick function
associated to one of the monotone and Lipschitz continuous operators. We also discuss
show how the proposed penalty scheme can be applied to convex minimization problems
and present some numerical experiments in TV-based image inpainting.
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1 Introduction and preliminaries

1.1 Motivation

In the last couple of years a number of papers have been published dealing with the solving
of monotone inclusion problems of the form

0 ∈ Ax+NM (x), (1)
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where H is a real Hilbert space, A : H ⇒ H is a maximally monotone operator, M =
argmin Ψ is the set of global minima of the proper, convex and lower semicontinuous
function Ψ : H → R := R ∪ {±∞} fulfilling min Ψ = 0 and NM : H ⇒ H is the normal
cone to the set M ⊆ H (see [1–3,17,18]).

When A is the convex subdifferential of a proper, convex and lower semicontinuous
function Φ : H → R fulfilling an appropriate qualification condition, then this gives rise
to the solving of a convex minimization problem of the form

min
x∈H
{Φ(x) : x ∈ argmin Ψ}. (2)

The algorithms given in the mentioned literature in the context of solving (1) are
forward-backward type penalty schemes, performing in each iteration a proximal step
with respect to A and a subgradient step with respect to the penalization function Ψ.
Convergence results were usually proven assuming that

for every p ∈ ranNM ,
∑
n∈N

λnβn

[
Ψ∗
(
p

βn

)
− σM

(
p

βn

)]
< +∞, (3)

which is basically the discrete version of a condition given in the continuous case for
nonautonomous differential inclusions in [1]. Here, Ψ∗ : H → R denotes the Fenchel
conjugate function of Ψ, ranNM the range of the normal cone operator NM : H ⇒ H,
σM the support function of M and (λn)n∈N and (βn)n∈N are positive real sequences that
appear in the algorithm. For conditions guaranteeing (3) we refer the reader to [1–3,17,18].

In [10] we investigated the more general inclusion problem

0 ∈ Ax+Dx+NM (x), (4)

where A : H⇒ H is a maximally monotone operator, D : H → H a single-valued cocoer-
cive (respectively, monotone and Lipschitz continuous) operator and M ⊆ H the nonempty
set of zeros of another cocoercive (respectively, monotone and Lipschitz continuous) oper-
ator B : H → H. We formulated a forward-backward type and a Tseng’s type algorithm
for solving these problems and we also generalized (3) to a condition guaranteeing weak
ergodic convergence for the sequence of generated iterates, which we formulated by using
the Fitzpatrick function associated to B.

As a continuation of these developments, we deal in this paper with the solving of
monotone inclusion problems having a more complex structure. We consider the problem
of finding the zeros of a sum of maximally monotone operator with a monotone and Lips-
chitz continuous one, with the linear composition of parallel-sum type monotone operators
and with the normal cone to the set of zeros of another monotone and Lipschitz operator.
We propose a forward-backward-forward type penalty scheme for solving this inclusion
problem. The proof of the convergence result relies on the fruitful idea that the inclusion
problem under investigation can be written as a problem of type (4) in an appropriate
product space. This will be basically done in the next section. In Section 3 we employ the
outcomes of Section 2 in the context of solving convex minimization problems with intri-
cate objective functions. Finally, in the last section of the paper we consider a numerical
example in image inpainting.
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1.2 Notations and preliminary results

For the readers convenience we present first some notations which are used throughout
the paper (see [4, 7, 8, 15, 22, 23]). By N = {1, 2, ...} we denote the set of positive integer
numbers and let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm
‖ · ‖ =

√
〈·, ·〉. When G is another Hilbert space and L : H → G a linear continuous

operator, then the norm of L is defined as ‖L‖ = sup{‖Lx‖ : x ∈ H, ‖x‖ ≤ 1}, while
L∗ : G → H, defined by 〈L∗y, x〉 = 〈y, Lx〉 for all (x, y) ∈ H × G, denotes the adjoint
operator of L.

For a function f : H → R we denote by dom f = {x ∈ H : f(x) < +∞} its effective
domain and say that f is proper, if dom f 6= ∅ and f(x) 6= −∞ for all x ∈ H. Let
f∗ : H → R, f∗(u) = supx∈H{〈u, x〉 − f(x)} for all u ∈ H, be the conjugate function of
f . We denote by Γ(H) the family of proper convex and lower semi-continuous extended
real-valued functions defined on H. The subdifferential of f at x ∈ H, with f(x) ∈ R,
is the set ∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ H}. We take by convention
∂f(x) := ∅, if f(x) ∈ {±∞}. We also denote by min f := infx∈H f(x) and by argmin f :=
{x ∈ H : f(x) = min f}. For f, g : H → R two proper functions, we consider their infimal
convolution, which is the function f�g : H → R, defined by (f�g)(x) = infy∈H{f(y) +
g(x− y)}, for all x ∈ H.

Let M ⊆ H be a nonempty set. The indicator function of M , δM : H → R, is the
function which takes the value 0 on M and +∞ otherwise. The subdifferential of the
indicator function is the normal cone of M , that is NM (x) = {u ∈ H : 〈u, y− x〉 ≤ 0 ∀y ∈
M}, if x ∈M and NM (x) = ∅ for x /∈M . Notice that for x ∈M , u ∈ NM (x) if and only if
σM (u) = 〈u, x〉, where σM is the support function of M , defined by σM (u) = supy∈M 〈y, u〉.
If M ⊆ H is a convex set, we denote by

sqriM := {x ∈M : ∪λ>0λ(M − x) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have intM ⊆ sqriM (in general
this inclusion may be strict). If H is finite-dimensional, then sqriM coincides with riM ,
the relative interior of M , which is the interior of M with respect to its affine hull.

For an arbitrary set-valued operator A : H ⇒ H we denote by GrA = {(x, u) ∈
H × H : u ∈ Ax} its graph, by domA = {x ∈ H : Ax 6= ∅} its domain, by ranA = {u ∈
H : ∃x ∈ H s.t. u ∈ Ax} its range and by A−1 : H ⇒ H its inverse operator, defined by
(u, x) ∈ GrA−1 if and only if (x, u) ∈ GrA. The parallel sum of two set-valued operators
A1, A2 : H⇒ H is defined as

A1�A2 : H⇒ H, A1�A2 =
(
A−1

1 +A−1
2

)−1
.

We use also the notation zerA = {x ∈ H : 0 ∈ Ax} for the set of zeros of the operator A.
We say that A is monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A monotone
operator A is said to be maximally monotone, if there exists no proper monotone extension
of the graph of A on H×H. Let us mention that in case A is maximally monotone, zerA is
a convex and closed set [4, Proposition 23.39]. We refer to [4, Section 23.4] for conditions
ensuring that zerA is nonempty.

The operator A is said to be γ-strongly monotone with γ > 0, if 〈x − y, u − v〉 ≥
γ‖x − y‖2 for all (x, u), (y, v) ∈ GrA. Notice that if A is maximally monotone and
strongly monotone, then zerA is a singleton, thus nonempty (see [4, Corollary 23.37]).
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Let γ > 0 be arbitrary. A single-valued operator A : H → H is said to be γ-cocoercive,
if 〈x− y,Ax− Ay〉 ≥ γ‖Ax− Ay‖2 for all (x, y) ∈ H ×H, and γ-Lipschitz continuous, if
‖Ax−Ay‖ ≤ γ‖x− y‖ for all (x, y) ∈ H ×H.

The resolvent of A, JA : H ⇒ H, is defined by JA = (Id +A)−1, where Id : H →
H, Id(x) = x for all x ∈ H, is the identity operator on H. Moreover, if A is maximally
monotone, then JA : H → H is single-valued and maximally monotone (cf. [4, Proposition
23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see [4, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 Id = Id . (5)

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) +

1

2γ
‖y − x‖2

}
. (6)

Notice that Jγ∂f = (IdH+γ∂f)−1 = proxγf , thus proxγf : H → H is a single-valued
operator fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (7)

Let us also recall that the function f : H → R is said to be γ-strongly convex for γ > 0,
if f − γ

2‖ · ‖
2 is a convex function. Let us mention that this property implies γ-strong

monotonicity of ∂f (see [4, Example 22.3]).
The Fitzpatrick function associated to a monotone operator A, defined as

ϕA : H×H → R, ϕA(x, u) = sup
(y,v)∈GrA

{〈x, v〉+ 〈y, u〉 − 〈y, v〉},

is a convex and lower semicontinuous function and it will play an important role through-
out the paper. Introduced by Fitzpatrick in [16], this notion opened the gate towards
the employment of convex analysis specific tools when investigating the maximality of
monotone operators (see [4–9, 12, 22] and the references therein). In case A is maximally
monotone, ϕA is proper and it fulfills

ϕA(x, u) ≥ 〈x, u〉 ∀(x, u) ∈ H ×H,

with equality if and only if (x, u) ∈ GrA. Notice that if f ∈ Γ(H), then ∂f is a maximally
monotone operator (cf. [19]) and it holds (∂f)−1 = ∂f∗. Furthermore, the following
inequality is true (see [5])

ϕ∂f (x, u) ≤ f(x) + f∗(u) ∀(x, u) ∈ H ×H. (8)

We refer the reader to [5], for formulae of the corresponding Fitzpatrick functions computed
for particular classes of monotone operators.

We close the section by presenting an algorithm and the corresponding convergence
statement for the following monotone inclusion problem, that will be used later in the
paper.
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Problem 1 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator,
D : H → H a monotone and η−1-Lipschitz continuous operator with η > 0, B : H → H
a monotone and µ−1-Lipschitz continuous operator with µ > 0 and suppose that M =
zerB 6= ∅. The monotone inclusion problem to solve is

0 ∈ Ax+Dx+NM (x).

The following forward-backward-forward algorithm for solving Problem 1 was proposed
in [10].

Algorithm 2
Initialization: Choose x1 ∈ H
For n ∈ N set: pn = JλnA(xn − λnDxn − λnβnBxn)

xn+1 = λnβn(Bxn −Bpn) + λn(Dxn −Dpn) + pn,

where (λn)n∈N and (βn)n∈N are sequences of positive real numbers.
For the convergence of the algorithm one needs the following hypotheses:

(Hfitz)


(i) A+NM is maximally monotone and zer(A+D +NM ) 6= ∅;

(ii) For every p ∈ ranNM ,
∑

n∈N λnβn

[
sup
u∈M

ϕB

(
u, p

βn

)
− σM

(
p
βn

)]
< +∞;

(iii) (λn)n∈N ∈ `2 \ `1.

Remark 3 The first part of the statement in (i) is verified if one of the Rockafellar
conditions M ∩ int domA 6= ∅ or domA ∩ intM 6= ∅, is fulfilled (see [20]). We refer the
reader to [4, 6–9, 22] for further conditions which guarantee the maximality of the sum of
maximally monotone operators. Further, we refer to [4, Subsection 23.4] for conditions
eunsuring that the set of zeros of a maximally monotone operator is nonempty. According
to [10, Remark 5], the hypothesis (ii) is a generalization of the condition considered in [3]
(see also (Hopt

fitz) and Remark 11 in Section 3 for conditions guaranteeing (ii)).

Before stating the convergence result, we need the following notation. Let (xn)n∈N be
a sequence in H and (λk)k∈N a sequence of positive numbers such that

∑
k∈N λk = +∞.

Let (zn)n∈N be the sequence of weighted averages defined as (see [3])

zn =
1

τn

n∑
k=1

λkxk, where τn =

n∑
k=1

λk ∀n ∈ N. (9)

The proof of the following theorem was given in [10] and relies on Fejér-type mono-
tonicity techniques.

Theorem 4 (see [10, Theorems 20 and 21]) Let (xn)n∈N and (pn)n∈N be the sequences
generated by Algorithm 2 and (zn)n∈N the sequence defined in (9). If (Hfitz) is fulfilled and

lim supn→+∞

(
λnβn
µ + λn

η

)
< 1, then (zn)n∈N converges weakly to an element in zer(A +

D + NM ) as n → +∞. If, additionally, A is strongly monotone, then (xn)n∈N converges
strongly to the unique element in zer(A+D +NM ) as n→ +∞.
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2 Tseng’s type penalty schemes

In this section we propose a forward-backward-forward algorithm for solving the following
involving linearly composed and parallel-sum type monotone operators and investigate its
convergence.

Problem 5 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator
and C : H → H a monotone and ν-Lipschitz continuous operator for ν > 0. Let m
be a strictly positive integer and for any i ∈ {1, ...,m} let Gi be a real Hilbert space,
Bi : Gi ⇒ Gi a maximally monotone operator, Di : Gi ⇒ Gi a monotone operator such
that D−1

i is νi-Lipschtz continuous for νi > 0 and Li : H → Gi a nonzero linear continuous
operator. Consider also B : H → H a monotone and µ−1-Lipschitz continuous operator
with µ > 0 and suppose that M = zerB 6= ∅. The monotone inclusion problem to solve is

0 ∈ Ax+

m∑
i=1

L∗i (Bi�Di)(Lix) + Cx+NM (x). (10)

Let us present our algorithm for solving this problem.

Algorithm 6
Initialization: Choose (x1, v1,1, ..., vm,1) ∈ H× G1 × ...× Gm
For n ∈ N set: pn = JλnA[xn − λn(Cxn +

∑m
i=1 L

∗
i vi,n)− λnβnBxn]

qi,n = JλnB−1
i

[vi,n + λn(Lixn −D−1
i vi,n)], i = 1, ...,m

xn+1 = λnβn(Bxn −Bpn) + λn(Cxn − Cpn)
+λn

∑m
i=1 L

∗
i (vi,n − qi,n) + pn

vi,n+1 =λnLi(pn − xn) +λn(D−1
i vi,n −D−1

i qi,n) + qi,n, i = 1, ...,m,

where (λn)n∈N and (βn)n∈N are sequences of positive real numbers.

Remark 7 In case Bx = 0 for all x ∈ H, Algorithm 6 collapses into the error-free variant
of the iterative scheme given in [14, Theorem 3.1] for solving the monotone inclusion
problem

0 ∈ Ax+

m∑
i=1

L∗i (Bi�Di)(Lix) + Cx,

since in this case M = H, hence NM (x) = {0} for all x ∈ H.

For the convergence result we need the following additionally hypotheses (we refer the
reader to the remarks 3 and 11 for sufficient conditions guaranteeing (Hpar−sum

fitz )):

(Hpar−sum
fitz )


(i) A+NM is maximally monotone and
zer
(
A+

∑m
i=1 L

∗
i ◦ (Bi�Di) ◦ Li + C +NM

)
6= ∅;

(ii) For every p ∈ ranNM ,
∑
n∈N

λnβn

[
sup
u∈M

ϕB

(
u, p

βn

)
− σM

(
p
βn

)]
< +∞;

(iii) (λn)n∈N ∈ `2 \ `1.

Let us give the main statement of this section. The proof relies on the fact that
Problem 5 can be written in the same form as Problem 1 in an appropriate product space.
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Theorem 8 Consider the sequences generated by Algorithm 6 and (zn)n∈N the sequence

defined in (9). If (Hpar−sum
fitz ) is fulfilled and lim supn→+∞

(
λnβn
µ + λnβ

)
< 1, where

β = max{ν, ν1, ..., νm}+

√√√√ m∑
i=1

‖Li‖2,

then (zn)n∈N converges weakly to an element in zer
(
A+

∑m
i=1 L

∗
i ◦(Bi�Di)◦Li+C+NM

)
as n→ +∞. If, additionally, A and B−1

i , i = 1, ...,m are strongly monotone, then (xn)n∈N
converges strongly to the unique element in zer

(
A +

∑m
i=1 L

∗
i ◦ (Bi�Di) ◦ Li + C + NM

)
as n→ +∞.

Proof. We start the proof by noticing that x ∈ H is a solution to Problem 5 if and only
if there exist v1 ∈ G1, ..., vm ∈ Gm such that{

0 ∈ Ax+
∑m

i=1 L
∗
i vi + Cx+NM (x)

vi ∈ (Bi�Di)(Lix), i = 1, ...,m,
(11)

which is nothing else than{
0 ∈ Ax+

∑m
i=1 L

∗
i vi + Cx+NM (x)

0 ∈ B−1
i vi +D−1

i vi − Lix, i = 1, ...,m.
(12)

In the following we endow the product space H× G1× ...×Gm with inner product and
associated norm defined for all (x, v1, ..., vm), (y, w1, ..., wm) ∈ H× G1 × ...× Gm as

〈(x, v1, ..., vm), (y, w1, ..., wm)〉 = 〈x, y〉+
m∑
i=1

〈vi, wi〉

and

‖(x, v1, ..., vm)‖ =

√√√√‖x‖2 +
m∑
i=1

‖vi‖2,

respectively.
We introduce the operators Ã : H× G1 × ...× Gm ⇒ H× G1 × ...× Gm

Ã(x, v1, ..., vm) = Ax×B−1
1 v1 × ....×B−1

m vm,

D̃ : H× G1 × ...× Gm → H× G1 × ...× Gm,

D̃(x, v1, ..., vm) =
( m∑
i=1

L∗i vi + Cx,D−1
1 v1 − L1x, ...,D

−1
m vm − Lmx

)
and B̃ : H× G1 × ...× Gm → H× G1 × ...× Gm,

B̃(x, v1, ..., vm) = (Bx, 0, ..., 0).

Notice that, since A and Bi, i = 1, ...,m are maximally monotone, Ã is maximally
monotone, too (see [4, Props. 20.22, 20.23]). Further, as it was done in [14, Theorem 3.1],
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one can show that D̃ is a monotone and β-Lipschitz continuous operator. For the sake of
completeness we include here some details of the proof of these two statements.

Let be (x, v1, ..., vm), (y, w1, ..., wm) ∈ H× G1 × ...×Gm. By using the monotonicity of
C and D−1

i , i = 1, ...,m. we have

〈(x, v1, ..., vm)− (y, w1, ..., wm), D̃(x, v1, ..., vm)− D̃(y, w1, ..., wm)〉

= 〈x− y, Cx− Cy〉+
m∑
i=1

〈vi − wi, D−1
i vi −D−1

i wi〉

+
m∑
i=1

(〈x− y, L∗i (vi − wi)〉 − 〈vi − wi, Li(x− y)〉) ≥ 0,

which shows that D̃ is monotone.
The Lipschitz continuity of D̃ follows by noticing that∥∥∥D̃(x, v1, ..., vm)− D̃(y, w1, ..., wm)

∥∥∥
≤
∥∥(Cx− Cy,D−1

1 v1 −D−1
1 w1, ..., D

−1
m vm −D−1

m wm
)∥∥

+

∥∥∥∥∥
(

m∑
i=1

L∗i (vi − wi),−L1(x− y), ...,−Lm(x− y)

)∥∥∥∥∥
≤

√√√√ν2‖x− y‖2 +
m∑
i=1

ν2
i ‖vi − wi‖2 +

√√√√( m∑
i=1

‖Li‖ · ‖vi − wi‖

)2

+

m∑
i=1

‖Li‖2 · ‖x− y‖2

≤ β‖(x, v1, ..., vm)− (y, w1, ..., wm)‖.

Moreover, B̃ is monotone, µ−1-Lipschitz continuous and

zer B̃ = zerB × G1 × ...× Gm = M × G1 × ...× Gm,

hence
N
M̃

(x, v1, ..., vm) = NM (x)× {0} × ...× {0},

where
M̃ = M × G1 × ...× Gm = zer B̃.

Taking into consideration (12), we obtain that x ∈ H is a solution to Problem 5 if and
only if there exist v1 ∈ G1, ..., vm ∈ Gm such that

(x, v1, ..., vm) ∈ zer(Ã+ D̃ +N
M̃

).

Conversely, when (x, v1, ..., vm) ∈ zer(Ã+D̃+N
M̃

), then x ∈ zer
(
A+

∑m
i=1 L

∗
i ◦(Bi�Di)◦

Li +C +NM

)
. This means that determining the zeros of Ã+ D̃+N

M̃
will automatically

provide a solution to Problem 5.
Using that

J
λÃ

(x, v1, ..., vm) = (JλA1(x), JλB−1
1

(v1), ..., JλB−1
m

(vm))
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for every (x, v1, ..., vm) ∈ H× G1 × ... × Gm and every λ > 0 (see [4, Proposition 23.16]),
one can easily see that the iterations of Algorithm 6 read for any n ∈ N:

(pn, q1,n, ..., qm,n) = J
λnÃ

[
(xn, v1,n, ..., vm,n)− λnD̃(xn, v1,n, ..., vm,n)

−λnβnB̃(xn, v1,n, ..., vm,n)
]

(xn+1, v1,n+1, ..., vm,n+1) = λnβn

[
B̃(xn, v1,n, ..., vm,n)− B̃(pn, q1,n, ..., qm,n)

]
+λn

[
D̃(xn, v1,n, ..., vm,n)− D̃(pn, q1,n, ..., qm,n)

]
+ (pn, q1,n, ..., qm,n),

which is nothing else than the iterative scheme of Algorithm 2 employed to the monotone
inclusion problem

0 ∈ Ãx+ D̃x+N
M̃

(x).

In order to compute the Fitzpatrick function of B̃, we consider arbitrary elements
(x, v1, ..., vm), (x′, v′1, ..., v

′
m) ∈ H× G1 × ...× Gm. It holds

ϕ
B̃

(
(x, v1, ..., vm), (x′, v′1, ..., v

′
m)
)

=

sup
(y,w1,...,wm)∈
H×G1×...×Gm

{
〈(x, v1, ..., vm), B̃(y, w1, ..., wm)〉+ 〈(x′, v′1, ..., v′m), (y, w1, ..., wm)〉

− 〈(y, w1, ..., wm), B̃(y, w1, ..., wm)〉
}

= sup
(y,w1,...,wm)∈
H×G1×...×Gm

{
〈x,By〉+ 〈x′, y〉+

m∑
i=1

〈v′i, wi〉 − 〈y,By〉

}
,

thus

ϕ
B̃

(
(x, v1, ..., vm), (x′, v′1, ..., v

′
m)
)

=

{
ϕB(x, x′), if v′1 = ... = v′m = 0,
+∞, otherwise.

Moreover,

σ
M̃

(x, v1, ..., vm) =

{
σM (x), if v1 = ... = vm = 0,
+∞, otherwise,

hence condition (ii) in (Hpar−sum
fitz ) is nothing else than

for each (p, p1, ..., pm) ∈ ranN
M̃

= ranNM × {0} × ...× {0}∑
n∈N

λnβn

[
sup

(u,v1,...,vm)∈M̃
ϕ
B̃

(
(u, v1, ..., vm),

(p, p1, ..., pm)

βn

)
− σ

M̃

(
(p, p1, ..., pm)

βn

)]
<+∞.

Moreover, condition (i) in (Hpar−sum
fitz ) ensures that Ã + N

M̃
is maximally monotone and

zer(Ã+ D̃+N
M̃

) 6= ∅. Hence, we are in the position of applying Theorem 4 in the context

of finding the zeros of Ã+D̃+N
M̃

. The statements of the theorem are an easy consequence
of this result. �

3 Convex minimization problems

In this section we employ the results given for monotone inclusion when minimizing a
convex function with an intricate formulation with respect to the set of minimizers of a
convex and differentiable function with Lipschitz continuous gradient.
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Problem 9 Let H be a real Hilbert space, f ∈ Γ(H) and h : H → R a convex and
differentiable function with a ν-Lipschitz continuous gradient for ν > 0. Let m be a
strictly positive integer and for any i = 1, ...,m let Gi be a real Hilbert space, gi, li ∈ Γ(Gi)
such that li is ν−1

i -strongly convex for νi > 0 and Li : H → Gi a nonzero linear continuous
operator. Further, let Ψ ∈ Γ(H) be differentiable with a µ−1-Lipschitz continuous gradient,
fulfilling min Ψ = 0. The convex minimization problem under investigation is

inf
x∈argmin Ψ

{
f(x) +

m∑
i=1

(gi�li)(Lix) + h(x)

}
. (13)

Consider the maximal monotone operators

A = ∂f,B = ∇Ψ, C = ∇h,Bi = ∂gi and Di = ∂li, i = 1, ...,m.

According to [4, Proposition 17.10, Theorem 18.15], D−1
i = ∇l∗i is a monotone and νi-

Lipschitz continuous operator for i = 1, ...,m. Moreover, B is a monotone and µ−1-
Lipschitz continuous operator and

M := argmin Ψ = zerB.

Taking into account the sum rules of the convex subdifferential, every element of
zer
(
∂f+

∑m
i=1 L

∗
i ◦(∂gi�∂li)◦Li+∇h+NM

)
is an optimal solution of (13). The converse

is true if an appropriate qualification condition is satisfied. For the readers convenience,
let us present some qualification conditions which are suitable in this context. One of the
weakest qualification conditions of interiority-type reads (see, for instance, [14, Proposition
4.3, Remark 4.4])

(0, ..., 0) ∈ sqri

(
m∏
i=1

dom gi − {(L1x, ..., Lmx) : x ∈ dom f ∩M}

)
. (14)

The condition (14) is fulfilled if (i) dom gi = Gi, i = 1, ...,m or (ii) H and Gi are finite-
dimensional and there exists x ∈ ri dom f ∩ riM such that Lix ∈ ri dom gi, i = 1, ...,m
(see [14, Proposition 4.3]).

Algorithm 6 becomes in this particular case

Algorithm 10
Initialization: Choose (x1, v1,1, ..., vm,1) ∈ H× G1 × ...× Gm
For n ∈ N set: pn = proxλnf [xn − λn(∇h(xn) +

∑m
i=1 L

∗
i vi,n)− λnβn∇Ψ(xn)]

qi,n = proxλng∗i [vi,n + λn(Lixn −∇l∗i (vi,n))], i = 1, ...,m

xn+1 = λnβn(∇Ψ(xn)−∇Ψ(pn)) + λn(∇h(xn)−∇h(pn))
+λn

∑m
i=1 L

∗
i (vi,n − qi,n) + pn

vi,n+1 =λnLi(pn − xn) +λn(∇l∗i (vi,n)−∇l∗i (qi,n)) +qi,n, i = 1, ...,m

For the convergence result we need the following hypotheses:

(Hopt
fitz)


(i) ∂f +NM is maximally monotone and (13) has an optimal solution;

(ii) For every p ∈ ranNM ,
∑

n∈N λnβn

[
Ψ∗
(
p
βn

)
− σM

(
p
βn

)]
< +∞;

(iii) (λn)n∈N ∈ `2 \ `1.
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Remark 11 (a) Let us mention that ∂f+NM is maximally monotone, if 0 ∈ sqri(dom f−
M), a condition which is fulfilled if, for instance, f is continuous at a point in dom f ∩M
or intM ∩ dom f 6= ∅.

(b) Since Ψ(x) = 0 for all x ∈M , by (8) it follows that whenever (ii) in (Hopt
fitz) holds,

condition (ii) in (Hpar−sum
fitz ), formulated for B = ∇Ψ, is also true.

(c) Let us mention that hypothesis (ii) is satisfied, if
∑

n∈N
λn
βn
< +∞ and Ψ is bounded

below by a multiple of the square of the distance to C (see [2]). This is for instance the
case when M = zerL = {x ∈ H : Lx = 0}, L : H → H is a linear continuous operator
with closed range and Ψ : H → R,Ψ(x) = ‖Lx‖2 (see [2, 3]). For further situations for
which condition (ii) is fulfilled we refer to [3, Section 4.1].

We are able now to formulate the convergence result.

Theorem 12 Consider the sequences generated by Algorithm 10 and (zn)n∈N the sequence

defined in (9). If (Hopt
fitz) and (14) are fulfilled and lim supn→+∞

(
λnβn
µ + λnβ

)
< 1, where

β = max{ν, ν1, ..., νm}+

√√√√ m∑
i=1

‖Li‖2,

then (zn)n∈N converges weakly to an optimal solution to (13) as n→ +∞. If, additionally,
f and g∗i , i = 1, ...,m are strongly convex, then (xn)n∈N converges strongly to the unique
optimal solution of (13) as n→ +∞.

Remark 13 (a) According to [4, Proposition 17.10, Theorem 18.15], for a function g ∈
Γ(H) one has that g is strongly convex if and only if g is differentiable with Lipschitz
continuous gradient.

(b) Notice that in case Ψ(x) = 0 for all x ∈ H, Algorithm 10 turns out to be the
error-free variant of the iterative scheme given in [14, Theorem 4.2] for solving the convex
minimization problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix) + h(x)

}
. (15)

4 A numerical experiment in TV-based image inpainting

In this section we illustrate the applicability of Algorithm 10 when solving an image
inpainting problem, which aims for recovering lost information. We consider images of
size M ×N as vectors x ∈ Rn for n = M ·N , while each pixel denoted by xi,j , 1 ≤ i ≤M ,
1 ≤ j ≤ N , ranges in the closed interval from 0 (pure black) to 1 (pure white). We denote
by b ∈ Rn the image with missing pixels (in our case set to black) and by K ∈ Rn×n
the diagonal matrix with Ki,i = 0, if the pixel i in the noisy image b ∈ Rn is missing,
and Ki,i = 1, otherwise, i = 1, ..., n (notice that ‖K‖ = 1). The original image will be
reconstructed by considering the following TV-regularized model

inf {TViso(x) : Kx = b, x ∈ [0, 1]n} . (16)
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The objective function TViso : Rn → R is the isotropic total variation defined by

TViso(x) =

M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | .

We show that (16) can be written as an optimization problem of type (9). To this end,
we denote Y = Rn×Rn and define the linear operator L : Rn → Y, xi,j 7→ (L1xi,j , L2xi,j),
where

L1xi,j =

{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =

{
xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient in the horizontal and vertical
directions. One can easily check that ‖L‖2 ≤ 8 and that its adjoint L∗ : Y → Rm is as
easy to implement as the operator itself (cf. [13]). Further, for (y, z), (p, q) ∈ Y, one can
introduce the inner product on Y

〈(y, z), (p, q)〉 =
M∑
i=1

N∑
j=1

(yi,jpi,j + zi,jqi,j),

which induces a norm defined as ‖(y, z)‖× =
∑M

i=1

∑N
j=1

√
y2
i,j + z2

i,j . One can see that

TViso(x) = ‖Lx‖× for every x ∈ Rn.
Further, by considering the function Ψ : Rn → R, Ψ(x) = 1

2‖Kx − b‖
2, problem (16)

can be reformulated as

inf
x∈argmin Ψ

{f(x) + g1(Lx)} , (17)

where f : Rn → R, f = δ[0,1]n and g1 : Y → R, g1(y1, y2) = ‖(y1, y2)‖×. Problem
(17) is of type (9), when one takes m = 1, L1 = L, l1 = δ{0} and h = 0. Notice that
∇Ψ(x) = K(Kx− b) = K(x− b) for every x ∈ Rn, thus ∇Ψ is Lipschitz continuous with
Lipschitz constant µ = 1. The iterative scheme in Algorithm 10 becomes for every n ≥ 0
in this case 

pn = proxλnf [xn − λnL∗v1,n − λnβnK(xn − b)];
q1,n = proxλng∗1 (v1,n + λnLxn);

xn+1 = λnβnK(xn − pn) + λnL
∗(v1,n − q1,n) + pn;

v1,n+1 =λnL(pn − xn) +q1,n.

For the proximal points we have the following formulae:

proxγf (x) = proj[0,1]n(x) ∀γ > 0 and ∀x ∈ Rn

and (see [11])

proxγg∗1 (p, q) = projS (p, q) ∀γ > 0 and ∀(p, q) ∈ Y,
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where

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j ≤ 1


and the projection operator projS : Y → S is defined via

(pi,j , qi,j) 7→
(pi,j , qi,j)

max
{

1,
√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

We tested the algorithm on the fruit image and considered as parameters λn = 0.9 ·n−0.75

and βn = n0.75 for any n ∈ N. Figure 1 shows the original image, the image obtained
from it after setting 80% randomly chosen pixels to black, the nonaveraged reconstructed
image xn and the averaged reconstructed image zn after 1000 iterations.

original noisy image nonaveraged denoised image averaged denoised image

Figure 1: TV image inpainting: the original image, the image with 80% missing pixels,
the nonaveraged reconstructed image xn and the averaged reconstructed image zn after
1000 iterations

The comparisons concerning the quality of the reconstructed images were made by
means of the improvement in signal-to-noise ratio (ISNR), which is defined as

ISNR(n) = 10 log10

(
‖x− b‖2

‖x− xn‖2

)
,

where x, b and xn denote the original, the image with missing pixels and the recovered
image at iteration n, respectively.

Figure 2 shows the evolution of the ISNR values for the averaged and the nonaver-
aged reconstructed images. Both figures illustrate the theoretical outcomes concerning
the sequences involved in Theorem 12, namely that the averaged sequence has better
convergence properties than the nonaveraged one.
Acknowledgements. The authors are thankful to the anonymous reviewers for their
recommendations which improved the quality of the paper.
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