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Abstract. In this paper we analyze the convergence rate of the sequence of objective
function values of a primal-dual proximal-point algorithm recently introduced in the lit-
erature for solving a primal convex optimization problem having as objective the sum of
linearly composed infimal convolutions, nonsmooth and smooth convex functions and its
Fenchel-type dual one. The theoretical part is illustrated by numerical experiments in
image processing.
Key Words. convex optimization, minimization algorithm, duality, gap function, con-
vergence rate, subdifferential
AMS subject classification. 47H05, 65K05, 90C25

1 Introduction and preliminaries
Due to their applications to fields like signal and image processing, support vector ma-
chines classification, multifacility location problems, clustering, network communication,
portfolio optimization, etc., the numerical investigation in Hilbert spaces of nonsmooth op-
timization problems with intricate objective functions through proximal-point algorithms
continues to attract the interest of many researchers (see [1, 2, 6–9,11–14,20]).

The proximal point algorithm [17] for minimizing a convex objective function is an
excellent starting point for anyone interested in this topic. Since than, the number of works
dedicated to this issue grown rapidly, due to handling of optimization problems having
objective functions with more involved structure. Let us mention here the meanwhile
classical forward-backward algorithm (see [1, 12]) and forward-backward-forward (Tseng)
algorithm (see [1, 9, 19]), designed for solving convex optimization problems having as
objective the sum of a proper, convex and lower semicontinuous (and not necessarily
smooth) function with a convex differentiable one with Lipschitzian gradient. Here, a
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backward step means that the nonsmooth function is evaluated in the iterative scheme via
its proximal point, while a forward step means that the smooth function is evaluated via
its gradient.

Lately, a new class of so-called primal-dual splitting algorithms has been intensively
studied in the literature (see [6–9,11,13,14,20]). The iterative schemes in this family have
the remarkable property that they concomitantly solve a primal convex optimization prob-
lem and its Fenchel-type dual and are able to handle optimization problems with intricate
objectives, like the sum of linearly composed infimal convolutions of convex functions,
nonsmooth and smooth convex functions. These methods have as further highlight that
all the functions and operators that are present in the objective are evaluated individually
in the algorithm.

For the primal-dual splitting algorithms mainly convergence statements for the se-
quence of iterates are available. However, especially from the point of view of solving
real-life problems, the investigation of the convergence of the sequence of objective func-
tion is of equal importance (see [8, 11]).

It is the aim of this paper to investigate the convergence property of the sequence of
objective function values of a primal-dual splitting algorithm recently introduced in [20]
for convex optimization problems with intricate objective functions. By making use of the
so-called primal-dual gap function attached to the structure of the problem, we are able
to prove a convergence rate of order O(1/n). The results are formulated in the spirit of
the ones given in [11] in a more particular setting.

The structure of the manuscript is as follows. The reminder of this section is dedicated
to the introduction of some notations which are used throughout the paper and to the
formulation of the primal-dual pair of convex optimization problems under investigation.
In the next section we give the main result and discuss some of its consequences, while in
Section 3 we illustrate the theoretical part by numerical experiments in image processing.

For the notations used we refer the reader to [1, 3, 4, 15, 18, 21]. Let H be a real
Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖ =

√
〈·, ·〉. The symbols

⇀ and → denote weak and strong convergence, respectively. When G is another Hilbert
space and K : H → G a linear continuous operator, then the norm of K is defined as
‖K‖ = sup{‖Kx‖ : x ∈ H, ‖x‖ ≤ 1}, while K∗ : G → H, defined by 〈K∗y, x〉 = 〈y,Kx〉
for all (x, y) ∈ H × G, denotes the adjoint operator of K.

For a function f : H → R, where R := R∪{±∞} is the extended real line, we denote by
dom f = {x ∈ H : f(x) < +∞} its effective domain and say that f is proper if dom f 6= ∅
and f(x) 6= −∞ for all x ∈ H. We denote by Γ(H) the family of proper convex and lower
semi-continuous extended real-valued functions defined on H. Let f∗ : H → R, f∗(u) =
supx∈H{〈u, x〉− f(x)} for all u ∈ H, be the conjugate function of f . The subdifferential of
f at x ∈ H, with f(x) ∈ R, is the set ∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y− x〉 ∀y ∈ H}.
We take by convention ∂f(x) := ∅, if f(x) ∈ {±∞}. We denote by ran(∂f) = ∪x∈H∂f(x)
the range of the subdifferential operator. The operator (∂f)−1 : H ⇒ H is defined by
x ∈ (∂f)−1u if and only if u ∈ ∂f(x). Notice that in case f ∈ Γ(H) we have (∂f)−1 = ∂f∗.
For f, g : H → R two proper functions, we consider their infimal convolution, which is the
function f�g : H → R, defined by (f�g)(x) = infy∈H{f(y) + g(x − y)}, for all x ∈ H.
Further, the parallel sum of the subdifferential operators ∂f, ∂g : H ⇒ H is defined by
∂f�∂g : H ⇒ H, ∂f�∂g = ((∂f)−1 + (∂g)−1)−1. In case f, g ∈ Γ(H) and a regularity
condition is fulfilled, according to [1, Proposition 24.27] we have ∂f�∂g = ∂(f�g), and
this justifies the notation used for the parallel sum.
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Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function
which takes the value 0 on S and +∞ otherwise. The subdifferential of the indicator
function is the normal cone of S, that is NS(x) = {u ∈ H : 〈u, y − x〉 ≤ 0 ∀y ∈ S}, if
x ∈ S and NS(x) = ∅ for x /∈ S.

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) + 1

2γ ‖y − x‖
2
}
. (1)

Let us mention that proxγf : H → H, called proximal mapping, is a single-valued operator
fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (2)

We notice that for f = δS , where S ⊆ H is a nonempty convex and closed set, it holds

proxγδS
= PS , (3)

where PS : H → C denotes the orthogonal projection operator on S (see [1, Example
23.3 and Example 23.4]). Finally, let us recall that the function f : H → R is said to be
γ-strongly convex for γ > 0, if f − γ

2‖ · ‖
2 is a convex function.

1.1 Problem formulation

The starting point of our investigation is the following problem.

Problem 1 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a convex
and differentiable function with a η−1-Lipschitz continuous gradient for η > 0. Let m
be a strictly positive integer and for i = 1, ...,m, let Gi be a real Hilbert space, ri ∈ Gi,
gi, li ∈ Γ(Gi) such that li is νi-strongly convex for νi > 0 and Li : H → Gi a nonzero linear
continuous operator. Consider the convex optimization problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉
}

(4)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)}
. (5)

By employing the classical forward-backward algorithm (see [12]) in a renormed prod-
uct space, Vũ proposed in [20] an iterative scheme for solving a slightly modified version of
Problem 1 formulated in the presence of weights wi ∈ (0, 1], i = 1,...,m, with

∑m
i=1wi = 1

for the terms occurring in the second summand of the primal optimization problem and
with the corresponding dual. The following result is an adaption of [20, Theorem 3.1] to
Problem 1 to the error-free case and when λn = 1 for any n ≥ 0.
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Theorem 2 In Problem 1 suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i
(
(∂gi�∂li)(Li · −ri)

)
+∇h

)
. (6)

Let τ and σi, i = 1,...,m, be strictly positive numbers such that

2 ·min{τ−1, σ−1
1 ,..., σ−1

m } ·min{η, ν1,..., νm} ·

1−

√√√√τ m∑
i=1

σi‖Li‖2
 > 1. (7)

Let (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm and for any n ≥ 0 set:

xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = 2xn+1 − xn
vi,n+1 = proxσig∗i

[vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1,...,m.

Then the following statements are true:
(a) there exist x ∈ H, an optimal solution to (4), and (v1,..., vm) ∈ G1 ×...× Gm, an

optimal solution to (5), such that the optimal objective values of the two problems coincide,
the optimality conditions

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m (8)

are fulfilled and xn ⇀ x and (v1,n,..., vm,n) ⇀ (v1,..., vm) as n→ +∞.
(b) if h is strongly convex, then xn → x as n→ +∞.
(c) if l∗i is strongly convex for some i ∈ {1, ...,m}, then vi,n → vi as n→ +∞.

Notice that the research in [20] is closely related to [11] and [14], where the solving
of primal-dual pairs of convex optimization problems by proximal splitting methods is
considered, as well. More exactly, the convergence property of [11, Algorithm 1] proved
in [11, Theorem 1] follow as special instance of the main result in [20]. On the other hand,
Condat proposes [14] an algorithm which is also an extension of the one given in [11]. Let
us also mention that two variants of the algorithm in Theorem 2 (one of them under the
use of variable step sizes) have been proposed in [7] for which it was possible to determine
convergence rates for the sequence of iterates.

Before we proceed, some comments are in order.

Remark 3 The function l∗i is Fréchet differentiable with ν−1
i -Lipschitz continuous gradi-

ent for i = 1,...,m (see [1, Theorem 18.15], [21, Corollary 3.5.11, Remark 3.5.3]), hence
the use of the gradient of l∗i in the algorithm makes sense.

Remark 4 If (x, v1,..., vm) ∈ H× G1× ...×Gm satisfies the conditions in (8), then x is an
optimal solution of (4), (v1,..., vm) is an optimal solution of (5) and the optimal objective
values of the two problems coincide.

In case a regularity condition is fulfilled, the optimality conditions (8) are also neces-
sary. More precisely, if the primal problem (4) has an optimal solution x and a suitable
regularity condition is fulfilled, then relation (6) holds and there exists (v1,..., vm), an
optimal solution to (5), such that (x, v1,..., vm) satisfies the optimality conditions (8).
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For the readers convenience we present some regularity conditions which are suitable
in this context. One of the weakest qualification conditions of interiority-type reads (see,
for instance, [13, Proposition 4.3, Remark 4.4], [21, Theorem 2.8.3 (vii)])

(r1,..., rm) ∈ sqri
(
m∏
i=1

(dom gi + dom li)− {(L1x,..., Lmx) : x ∈ dom f}
)
. (9)

Here, for H a real Hilbert space and S ⊆ H a convex set, we denote by

sqriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have intS ⊆ sqriS (in general
this inclusion may be strict). If H is finite-dimensional, then sqriS coincides with riS, the
relative interior of S, which is the interior of S with respect to its affine hull. The condition
(9) is fulfilled if (i) for any i = 1,...,m, dom gi = Gi or dom hi = Gi or (ii) H and Gi are
finite-dimensional and there exists x ∈ ri dom f such that Lix− ri ∈ ri dom gi + ri dom li,
i = 1,...,m (see [13, Proposition 4.3]). For other regularity conditions we refer the reader
to [1, 3–5,21].

Remark 5 In the previous remark the existence of optimal solutions for problem (4) has
been considered as a hypothesis for being able to formulate optimality conditions. Next we
will discuss some conditions ensuring the existence of a primal optimal solution. Suppose
that the primal problem (4) is feasible, which means that its optimal objective value is
not identical +∞. The existence of optimal solutions for (4) is guaranteed if for instance,
f + h + 〈·,−z〉 is coercive (that is lim‖x‖→∞(f + h + 〈·,−z〉)(x) = +∞) and for any
i = 1, ...,m, gi is bounded from below. Indeed, under these circumstances, the objective
function of (4) is coercive (use also [1, Corollary 11.16 and Proposition 12.14] to show that
for any i = 1, ...,m, gi�li is bounded from below and gi�li ∈ Γ(Gi)) and the statement
follows via [1, Corollary 11.15]. On the other hand, if f + h is strongly convex, then the
objective function of (4) is strongly convex, too, thus (4) has a unique optimal solution
(see [1, Corollary 11.16]).

Remark 6 In case z = 0, h ≡ 0, ri = 0 and li = δ{0} for any i = 1, ...,m, the optimization
problems (4) and (5) become

inf
x∈H

{
f(x) +

m∑
i=1

(gi ◦ Li)(x)
}

(10)

and, respectively

sup
vi∈Gi, i=1,...,m

{
−f∗

(
−

m∑
i=1

L∗i vi

)
−

m∑
i=1

g∗i (vi)
}
. (11)

It is mentioned in [20, Remark 3.3] that the convergence results in Theorem 2 hold if one
replaces (7) by the condition

τ
m∑
i=1

σi‖Li‖2 < 1. (12)

The convergence (of an equivalent form) of the algorithm obtained in this setting has been
investigated also in [6]. Moreover, the case m = 1 has been addressed in [11].

5



2 Convergence rate
In the setting of Problem 1 we introduce for B1 ⊆ H and B2 ⊆ G1×...×Gm given nonempty
sets the primal-dual gap function GB1,B2 : H×G1×...× Gm → R defined by

GB1,B2(x, v1, ..., vm) =

sup
(v′1,...,v′m)∈B2

{
m∑
i=1
〈Lix− ri, v′i〉+ f(x) + h(x)− 〈x, z〉 −

m∑
i=1

(
g∗i (v′i) + l∗i (v′i)

)}

− inf
x′∈B1

{
m∑
i=1
〈Lix′ − ri, vi〉+ f(x′) + h(x′)− 〈x′, z〉 −

m∑
i=1

(
g∗i (vi) + h∗i (vi)

)}

= f(x) + h(x)− 〈x, z〉+ sup
(v′1,...,v′m)∈B2

[
m∑
i=1
〈Lix− ri, v′i〉 −

m∑
i=1

(
g∗i (v′i) + l∗i (v′i)

)]

−
{
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)
+ inf
x′∈B1

[
m∑
i=1
〈Lix′, vi〉+ f(x′) + h(x′)− 〈x′, z〉

]}
.

Remark 7 If we consider the primal-dual pair of convex optimization problems from
Remark 6 in case m = 1, then the primal-dual gap function defined above is nothing else
than the one introduced in [11].

Remark 8 The primal-dual gap function defined above has been used in [8] in order inves-
tigate the convergence rate for the sequence of objective function values for the primal-dual
splitting algorithm of forward-backward-forward type proposed in [13]. If (x, v1,..., vm) ∈
H×G1 ×...× Gm satisfies the optimality conditions (8), then GB1,B2(x, v1, ..., vm) ≥ 0 (see
also [8, 11]).

We are now able to state the main result of the paper.

Theorem 9 In Problem 1 suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i
(
(∂gi�∂li)(Li · −ri)

)
+∇h

)
. (13)

Let τ and σi, i = 1,...,m, be strictly positive numbers such that

min{τ−1, σ−1
1 ,..., σ−1

m } ·min{η, ν1,..., νm} ·

1−

√√√√τ m∑
i=1

σi‖Li‖2
 > 1. (14)

Let (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm and for any n ≥ 0 set:

xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = 2xn+1 − xn
vi,n+1 = proxσig∗i

[vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1,...,m.

Then the following statements are true:
(a) there exist x ∈ H, an optimal solution to (4), and (v1,..., vm) ∈ G1 ×...× Gm, an

optimal solution to (5), such that the optimal objective values of the two problems coincide,
the optimality conditions

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m (15)
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are fulfilled and xn ⇀ x and (v1,n,..., vm,n) ⇀ (v1,..., vm) as n→ +∞;
(b) if B1 ⊆ H and B2 ⊆ G1×... × Gm are nonempty bounded sets, then for xN =

1
N

∑N
n=1 xn+1 and vNi = 1

N

∑N
n=1 vi,n we have (xN , vN1 , ..., vNm) ⇀ (x, v1, ..., vm) as N →

+∞ and for any N ≥ 1

GB1,B2(xN , vN1 , ..., vNm) ≤ C(B1, B2)
N

,

where

C(B1, B2) = sup
x∈B1

{ 1
2τ ‖x1 − x‖2

}
+
√
τ
∑m
i=1 σi‖Li‖2

2τ ‖x1 − x0‖2 +

sup
(v1,...,vm)∈B2

{
m∑
i=1

1
2σi
‖vi,0 − vi‖2 +

m∑
i=1
〈Li(x1 − x0), vi,0 − vi〉

}
;

(c) if gi is Lipschitz continuous on Gi for any i = 1, ...,m, then for any N ≥ 1 we have

0 ≤
(
f(xN ) +

m∑
i=1

(gi�li)(LixN − ri) + h(xN )− 〈xN , z〉
)

−
(
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉
)
≤ C(B1, B2)

N
(16)

where B1 is any bounded and weak sequentially closed set containing the sequence (xn)n∈N
(which is the case if for instance B1 is bounded, convex and closed with respect to the strong
topology of H and contains the sequence (xn)n∈N) and B2 is any bounded set containing
dom g∗1 × ...× dom g∗m;

(d) if dom gi + dom li = Gi for any i = 1, ...,m, and one of the following conditions is
fulfilled:

(d1) H is finite-dimensional;

(d2) Gi is finite-dimensional for any i = 1, ...,m;

(d3) h is strongly convex;

then the inequality (16) holds for any N ≥ 1, where B1 is taken as in (c) and B2 is any
bounded set containing Πm

i=1 ∪N≥1 ∂(gi�li)(LixN − ri).

Proof. In order to allow the reader to follow much easier the proof of the main result of
the paper we will give it for m = 1. The general case can be shown in a similar manner.
Further, we denote G := G1, r := r1, g := g1, l := l1, ν := ν1, L := L1, σ := σ1, vn := v1,n
for any n ≥ 0, vN := vN1 for any N ≥ 1 and v̄ := v̄1. Hence, τ and σ are strictly positive
numbers fulfilling that

min{τ−1, σ−1} ·min{η, ν} ·
(

1−
√
τσ‖L‖2

)
> 1, (17)

while for (x0, v0) ∈ H× G and for any n ≥ 0 the iterative scheme reads:

xn+1 = proxτf
[
xn − τ

(
L∗vn +∇h(xn)− z

)]
yn = 2xn+1 − xn
vn+1 = proxσg∗ [vn + σ(Lyn −∇l∗(vn)− r)].
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(a) The statement is a direct consequence of Theorem 2, since condition (14) implies
(7).

(b) The fact that (xN , vN ) ⇀ (x, v) as N → +∞ follows from the Stolz-Cesàro The-
orem. Let us show now the inequality concerning the primal-dual gap function. To this
aim we fix for the beginning n ≥ 0.

From the definition of the iterates we derive

1
τ

(xn+1 − xn+2)− (L∗vn+1 +∇h(xn+1)− z) ∈ ∂f(xn+2),

hence the definition of the subdifferential delivers the inequality

f(x) ≥ f(xn+2) + 1
τ
〈xn+1 − xn+2, x− xn+2〉 − 〈L∗vn+1 − z, x− xn+2〉

−〈∇h(xn+1), x− xn+2〉 ∀x ∈ H. (18)

Similarly, we deduce

1
σ

(vn − vn+1) + Lyn −∇l∗(vn)− r ∈ ∂g∗(vn+1),

hence

g∗(v) ≥ g∗(vn+1) + 1
σ
〈vn − vn+1, v − vn+1〉+ 〈Lyn − r, v − vn+1〉

−〈∇l∗(vn), v − vn+1〉 ∀v ∈ G. (19)

We claim that

h(x)− h(xn+2)− 〈∇h(xn+1), x− xn+2〉 ≥ −
η−1

2 ‖xn+2 − xn+1‖2 ∀x ∈ H. (20)

Indeed, we have

h(x)− h(xn+2)− 〈∇h(xn+1), x− xn+2〉
≥ h(xn+1) + 〈∇h(xn+1), x− xn+1〉 − h(xn+2)− 〈∇h(xn+1), x− xn+2〉
= h(xn+1)− h(xn+2) + 〈∇h(xn+1), xn+2 − xn+1〉

≥ − η−1

2 ‖xn+2 − xn+1‖2,

where the first inequality holds since h is convex and the second one follows by choosing
x = xn+1 and y = xn+2 in the inequality

h(y) ≤ h(x) + 〈∇h(x), y − x〉+ η−1

2 ‖y − x‖
2,

which is valid for an arbitrary continuously differentiable function with η−1-Lipschitz
continuous gradient (see [16, Lemma 1.2.3]). Hence (20) holds.

Similarly one can prove that

l∗(v)− l∗(vn+1)− 〈∇l∗(vn), v − vn+1〉 ≥ −
ν−1

2 ‖vn+1 − vn‖2 ∀v ∈ G. (21)
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By adding the inequalities (18), (19), (20), (21) and noticing that

〈xn+1 − xn+2, x− xn+2〉 = −‖xn+1 − x‖2

2 + ‖xn+1 − xn+2‖2

2 + ‖xn+2 − x‖2

2
and

〈vn − vn+1, v − vn+1〉 = −‖vn − v‖
2

2 + ‖vn+1 − vn‖2

2 + ‖vn+1 − v‖2

2 ,

we deduce that for all (x, v) ∈ H× G

‖xn+1 − x‖2

2τ + ‖vn − v‖
2

2σ ≥

‖xn+2 − x‖2

2τ + ‖vn+1 − v‖2

2σ + 1− η−1τ

2τ ‖xn+1 − xn+2‖2 + 1− ν−1σ

2σ ‖vn+1 − vn‖2

+
(
〈Lxn+2 − r, v〉+ f(xn+2) + h(xn+2)− 〈xn+2, z〉 −

(
g∗(v) + l∗(v)

))
−
(
〈Lx− r, vn+1〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vn+1) + l∗(vn+1)

))
+〈L(xn+2 − yn), vn+1 − v〉.

Taking into account the definition of yn, we get the following estimation for the last
term:

〈L(xn+2 − yn), vn+1 − v〉 =
〈L(xn+2 − xn+1), vn+1 − v〉 − 〈L(xn+1 − xn), vn − v〉+ 〈L(xn+1 − xn), vn − vn+1〉
≥〈L(xn+2 − xn+1), vn+1 − v〉 − 〈L(xn+1 − xn), vn − v〉

−
(

σ‖L‖2

2
√
τσ‖L‖2

‖xn+1 − xn‖2 +
√
τσ‖L‖2

2σ ‖vn+1 − vn‖2
)
,

hence we obtain the inequality

‖xn+1 − x‖2

2τ + ‖vn − v‖
2

2σ ≥

‖xn+2 − x‖2

2τ + ‖vn+1 − v‖2

2σ + 1− η−1τ

2τ ‖xn+1 − xn+2‖2 −
√
τσ‖L‖2

2τ ‖xn+1 − xn‖2

+1− ν−1σ −
√
τσ‖L‖2

2σ ‖vn+1 − vn‖2

+
(
〈Lxn+2 − r, v〉+ f(xn+2) + h(xn+2)− 〈xn+2, z〉 −

(
g∗(v) + l∗(v)

))
−
(
〈Lx− r, vn+1〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vn+1) + l∗(vn+1)

))
+
(
〈L(xn+2 − xn+1), vn+1 − v〉 − 〈L(xn+1 − xn), vn − v〉

)
.

Summing up the above inequality from n = 0 to N − 1, where N ∈ N, N ≥ 1, we get

‖x1 − x‖2

2τ + ‖v0 − v‖2

2σ ≥ ‖xN+1 − x‖2

2τ + ‖vN − v‖
2

2σ

+
N−1∑
n=1

1− η−1τ

2τ ‖xn+1 − xn‖2 + 1− η−1τ

2τ ‖xN − xN+1‖2 −
√
τσ‖L‖2

2τ

N−1∑
n=1
‖xn+1 − xn‖2

9



−
√
τσ‖L‖2

2τ ‖x1 − x0‖2 +
N−1∑
n=0

1− ν−1σ −
√
τσ‖L‖2

2σ ‖vn+1 − vn‖2

+
N∑
n=1

(
〈Lxn+1 − r, v〉+ f(xn+1) + h(xn+1)− 〈xn+1, z〉 −

(
g∗(v) + l∗(v)

))

−
N∑
n=1

(
〈Lx− r, vn〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vn) + l∗(vn)

))
+
(
〈L(xN+1 − xN ), vN − v〉 − 〈L(x1 − x0), v0 − v〉

)
.

Further, for the last term we use the estimate (notice that 1− η−1τ > 0 due to (17))

〈L(xN+1−xN ), vN−v〉 ≥ −
(

(1− η−1τ)σ‖L‖2

2τσ‖L‖2 ‖xN+1 − xN‖2 + τσ‖L‖2

2σ(1− η−1τ)‖vN − v‖
2
)

and conclude that for all (x, v) ∈ H× G

‖xN+1 − x‖2

2τ + 1− η−1τ − τσ‖L‖2

2σ ‖vN − v‖2

+
N−1∑
n=1

1− η−1τ −
√
τσ‖L‖2

2τ ‖xn+1 − xn‖2 +
N−1∑
n=0

1− ν−1σ −
√
τσ‖L‖2

2σ ‖vn+1 − vn‖2

+
N∑
n=1

(
〈Lxn+1 − r, v〉+ f(xn+1) + h(xn+1)− 〈xn+1, z〉 −

(
g∗(v) + l∗(v)

))

−
N∑
n=1

(
〈Lx− r, vn〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vn) + l∗(vn)

))
≤‖x1 − x‖2

2τ + ‖v0 − v‖2

2σ +
√
τσ‖L‖2

2τ ‖x1 − x0‖2 + 〈L(x1 − x0), v0 − v〉.

We can discard the first four terms in the left-hand side of the above inequality, since
due to (17), we have

1− η−1τ −
√
τσ‖L‖2 > 0 (22)

and
1− ν−1σ −

√
τσ‖L‖2 > 0. (23)

Thus we obtain for all (x, v) ∈ H× G that

N∑
n=1

(
〈Lxn+1 − r, v〉+ f(xn+1) + h(xn+1)− 〈xn+1, z〉 −

(
g∗(v) + l∗(v)

))

−
N∑
n=1

(
〈Lx− r, vn〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vn) + l∗(vn)

))
≤‖x1 − x‖2

2τ + ‖v0 − v‖2

2σ +
√
τσ‖L‖2

2τ ‖x1 − x0‖2 + 〈L(x1 − x0), v0 − v〉.

The conclusion follows by dividing by N both terms of the previous inequality, taking into
account the definition of (xN , vN ) and the convexity of the functions f, h and g∗, l∗, then
passing to supremum over x ∈ B1 and v ∈ B2.

10



(c) According to [3, Proposition 4.4.6], the set dom g∗ is bounded. Since B1 is weak
sequentially closed and xn ⇀ x we have x ∈ B1. Let be N ≥ 1 fixed. We get from (b)
that

C(B1, B2)
N

≥ GB1,B2(xN , vN )

≥ f(xN ) + h(xN )− 〈xN , z〉+ sup
v′∈dom g∗

{
〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)

}
−
(
〈Lx− r, vN 〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vN ) + l∗(vN )

))
.

Further, it follows

sup
v′∈dom g∗

{
〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)

}
= sup

v′∈G

{
〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)

}
= (g∗ + l∗)∗(LxN − r) = (g∗∗�l∗∗)(LxN − r) = (g�l)(LxN − r),

where we used [1, Proposition 15.2] (notice that dom l∗ = G) and the Fenchel-Moreau
Theorem (see for example [1, Theorem 13.32]). Furthermore, the Young-Fenchel inequality
(see [1, Proposition 13.13]) guarantees that

g∗(vN ) + l∗(vN )− 〈Lx− r, vN 〉 = (g�h)∗(vN )− 〈Lx− r, vN 〉 ≥ −(g�l)(Lx− r)

and the conclusion follows.
(d) We notice first that each of the conditions (d1),(d2) and (d3) implies that

LxN → Lx as N → +∞. (24)

Indeed, in case of (d1) we use that xN ⇀ x as N → +∞, in case (d2) that LxN ⇀ Lx
as N → +∞ (which is a consequence of xN ⇀ x as N → +∞), while in the last case we
appeal Theorem 2(b).

We show first that ∪N≥1∂(g�l)(LxN−r) is a nonempty bounded set. The function g�l
belongs to Γ(H), as already mentioned above. Further, as dom(g�l) = dom g+dom l = G,
it follows that g�l is everywhere continuous (see [1, Corollary 8.30]) and, consequently,
everywhere subdifferentiable (see [1, Proposition 16.14(iv)]). Hence the claim concern-
ing the nonemptiness of the set ∪N≥1∂(g�l)(LxN − r) is true. Moreover, since the
subdifferential of g�l is locally bounded at Lx − r (see [1, Proposition 16.14(iii)]) and
LxN − r → Lx − r as N → +∞ we easily derive from [1, Proposition 16.14(iii) and (ii)]
that the set ∪N≥1∂(g�l)(LxN − r) is bounded.

Now we prove that the inequality (16) holds. Similarly as in (c), we have
C(B1, B2)

N
≥ GB1,B2(xN , vN )

≥ f(xN ) + h(xN )− 〈xN , z〉+ sup
v′∈∪N′≥1∂(g�l)(LxN′−r)

{
〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)

}
−
(
〈Lx− r, vN 〉+ f(x) + h(x)− 〈x, z〉 −

(
g∗(vN ) + l∗(vN )

))
.

Further, for any N ≥ 1 we have

sup
v′∈∪N′≥1∂(g�l)(LxN′−r)

{
〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)

}
≥ sup

v′∈∂(g�l)(LxN−r)

{
〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)

}
= (g�l)(LxN − r),
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where the last equality follows since ∂(g�l)(LxN − r) 6= ∅ via

〈LxN − r, v′〉 − (g∗(v′) + l∗(v′)) = 〈LxN − r, v′〉 − (g�h)∗(v′) = (g�l)(LxN − r),

which holds for every v′ ∈ ∂(g�l)(LxN − r) (see [1, Proposition 16.9]).
Using the same arguments as at the end of the proof of statement (c), the conclusion

follows. �

Remark 10 The conclusion of the above theorem remains true if condition (14) is re-
placed by (7), (22) and (23). Moreover, if one works in the setting of Remark 6, one can
show that the conclusion of Theorem 9 remains valid if instead of (14) one assumes (12).

Remark 11 Let us mention that in Theorem 9(c) and (d) one can chose for B1 any
bounded set containing x.

Remark 12 If f is Lipschitz continuous, then, similarly to Theorem 9(c), one can prove
via Theorem 9(b) a convergence rate of order O(1/n) for the sequence of values of the
objective function of the dual problem (5). The same conclusion follows in case f has full
domain and one of the conditions (d1), (d2) and (d3’) is fulfilled, where (d3’) assumes
that l∗i is strongly convex for any i = 1, ...,m.

3 Numerical experiments in imaging
The aim of this section is to illustrate the theoretical results obtained in the previous
section by means of two problems occurring in imaging. For the applications discussed in
this section the images have been normalized, in order to make their pixels range in the
closed interval from 0 to 1.

3.1 TV-L2-based image deblurring

The first numerical experiment that we consider concerns addresses an ill-conditioned
linear inverse problem which arises in image deblurring. For a given matrix A ∈ Rn×n
describing a blur operator and a given vector b ∈ Rn representing the blurred and noisy
image, the task is to estimate the unknown original image x ∈ Rn fulfilling

Ax = b.

To this end we solve the following regularized convex minimization problem

inf
x∈[0,1]n

{
‖Ax− b‖1 + λ(TViso(x) + ‖x‖2)

}
, (25)

where λ > 0 is a regularization parameter and TViso : Rn → R is the discrete isotropic total
variation functional. In this context, x ∈ Rn represents the vectorized image X ∈ RM×N ,
where n = M · N and xi,j denotes the normalized value of the pixel located in the i-th
row and the j-th column, for i = 1, . . . ,M and j = 1, . . . , N .
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The isotropic total variation TViso : Rn → R is defined by

TViso(x) =
M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1
|xi+1,N − xi,N |+

N−1∑
j=1
|xM,j+1 − xM,j | .

We show first that the optimization problem (25) can be written in the framework of
Problem 1.

We denote Y = Rn × Rn and define the linear operator L : Rn → Y, xi,j 7→
(L1xi,j , L2xi,j), where

L1xi,j =
{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =
{
xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient using reflexive (Neumann)
boundary conditions and standard finite differences and fulfills ‖L‖2 ≤ 8. For the for-
mula for its adjoint operator L∗ : Y → Rn we refer to [10].

For (y, z), (p, q) ∈ Y, we introduce the inner product

〈(y, z), (p, q)〉 =
M∑
i=1

N∑
j=1

yi,jpi,j + zi,jqi,j

and define ‖(y, z)‖× =
∑M
i=1

∑N
j=1

√
y2
i,j + z2

i,j . One can check that ‖·‖× is a norm on Y and
that for every x ∈ Rn it holds TViso(x) = ‖Lx‖×. The conjugate function (‖·‖×)∗ : Y → R
of ‖ · ‖× is for every (p, q) ∈ Y given by

(‖ · ‖×)∗(p, q) =
{

0, if ‖(p, q)‖×∗ ≤ 1
+∞, otherwise ,

where
‖(p, q)‖×∗ = sup

‖(y,z)‖×≤1
〈(p, q), (y, z)〉 = max

1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j .

Therefore, the optimization problem (25) can be written in the form of

inf
x∈Rn

{f(x) + g1(Ax) + g2(Lx) + h(x)},

where f : Rn → R, f(x) = δ[0,1]n(x), g1 : Rn → R, g1(y) = ‖y − b‖1, g2 : Y → R,
g2(y, z) = λ ‖(y, z)‖× and h : Rn → R, h(x) = λ‖x‖2 (notice that the functions li are
taken to be δ{0} for i = 1, 2). For every p ∈ Rn, it holds g∗1(p) = δ[−1,1]n(p) + pT b, while
for every (p, q) ∈ Y, we have g∗2(p, q) = δS(p, q), with S = {(p, q) ∈ Y : ‖(p, q)‖×∗ ≤ λ}.
Moreover, h is differentiable with η−1 := 2λ-Lipschitz continuous gradient. We solved this
problem by the algorithm considered in this paper and to this end we made use of the
following formulae

proxγf (x) = P[0,1]n (x) ∀x ∈ Rn

proxγg∗1 (p) = P[−1,1]n (p− γb) ∀p ∈ Rn

13



(a) Original image (b) Blurred and noisy image (c) Reconstructed image

Figure 1: Figure (a) shows the original 256 × 256 boat test image, figure (b) shows the blurred
and noisy image and figure (c) shows the averaged iterate generated by the algorithm after 400
iterations.

proxγg∗2 (p, q) = PS (p, q) ∀(p, q) ∈ Y,

where γ > 0 and the projection operator PS : Y → S is defined as (see [8])

(pi,j , qi,j) 7→ λ
(pi,j , qi,j)

max
{
λ,
√
p2
i,j + q2

i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

For the experiments we considered the 256 × 256 boat test image and constructed
the blurred image by making use of a Gaussian blur operator of size 9 × 9 and standard
deviation 4. In order to obtain the blurred and noisy image we added a zero-mean white
Gaussian noise with standard deviation 10−3. Figure 1 shows the original boat test image
and the blurred and noisy one. It also shows the image reconstructed by the algorithm after
400 iterations in terms of the averaged iterate, when taking as regularization parameter
λ = 0.001 and by choosing as parameters σ1 = 0.01, σ2 = 0.7, τ = 0.49. On the other hand,
in Figure 2 a comparison of the decrease of the objective function values is provided, in
terms of the last and averaged iterates, underlying the rate of convergence of order O(1/n)
for the latter.

3.2 TV-based image denoising

The second numerical experiment aims the solving of an image denoising problem via total
variation regularization. More precisely, we deal with the convex optimization problem

inf
x∈Rn

{
λTVaniso(x) + 1

2‖x− b‖
2
}
, (26)

14



10
0

10
1

10
2

10
−1

10
0

10
1

10
2

iterations

 

 

Last iterate
Averaged iterate
O(1/n)

Figure 2: The figure shows the relative error in terms of function values for both the last and the
averaged iterate generated by the algorithm after 400 iterations.

where b ∈ Rn is the observed noisy image, λ > 0 is the regularization parameter and
TVaniso : Rn → R is the discrete anisotropic total variation functional defined by

TVaniso(x) =
M−1∑
i=1

N−1∑
j=1
|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

+
M−1∑
i=1
|xi+1,N − xi,N |+

N−1∑
j=1
|xM,j+1 − xM,j | .

The optimization problem (26) can be equivalently written as

inf
x∈Rn

{g(Lx) + h(x)} ,

where L and Y are the operator and the space, respectively, introduced in Section 3.1,
g : Y → R is defined as g(y1, y2) = λ‖(y1, y2)‖1 and h : Rn → R, h(x) = 1

2‖x − b‖
2 is

differentiable with η−1 := 1-Lipschitz continuous gradient. Further, g∗ : Y → R is nothing
else than

g∗(p1, p2) = (λ‖ · ‖1)∗ (p1, p2) = λ

∥∥∥∥(p1
λ
,
p2
λ

)∥∥∥∥∗
1

= δ[−λ,λ]n×[−λ,λ]n(p1, p2),

hence
proxγg∗(p1, p2) = P[−λ,λ]n×[−λ,λ]n(p1, p2) ∀γ > 0 ∀(p1, p2) ∈ Y.

For the experiments we used the 216 × 216 parrot test image. The noisy image was
obtained after adding to the original image white Gaussian noise with standard deviation
σ = 0.12.
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(a) Original imageoriginal (b) Noisy imagenoisy image (c) Reconstructed image

Figure 3: Figure (a) shows the original 216 × 216 parrot test image, figure (b) shows the noisy
image and figure (c) shows the averaged iterate generated by the algorithm after 150 iterations.

Figure 3 shows the original, the noisy image and the image reconstructed by the
algorithm after 150 iterations in terms of the averaged iterate and by using as parameters
σ1 = 0.2, τ = 0.479 and λ = 0.07.

Let us notice that the function 1
2‖ · −b‖

2 in the objective of the optimization problem
(26) can be evaluated in the algorithm by a forward step via its gradient, but also by a
backward step via its proximal mapping, which is given by

proxγh(x) = 1
1 + γ

(x+ γb) ∀γ > 0 ∀x ∈ Rn.

In Figure 4 we plotted the objective function values generated by the algorithm in
Theorem 9 by evaluating h in both ways. We called the obtained plots (FB-f), when h
was evaluated via its gradient (forward step), and (FB-b), when h was evaluated via its
proximal mapping (backward step), respectively. We also solved the optimization problem
(26), by dealing with h in a similar way, with the forward-backward-forward primal-dual
algorithm introduced in [13], for the objective function values of which similar convergence
properties have been reported (see [8]). In the case when h was evaluated via its gradient
(called FBF-f) we took γn = 1−ε

1+
√

8 with ε = 1
20(2+

√
8) , while when h was evaluated via its

proximal mapping (called FBF-b) we took γn = 1−ε√
8 with ε = 1

20(1+
√

8) .
One can notice that from the point of view of the decrease of the objective function

values generated by the two algorithms, the forward-backward-forward (FBF) primal-dual
scheme proposed in [13] slightly overperforms the forward-backward (FB) one proposed
in [20]. However, one should notice that (FBF) is more time and resources consuming
then (FB), since for the first in each step the calculation of an additional iterate is needed.

Acknowledgements. The authors are grateful to Christopher Hendrich for the MAT-
LAB implementations of the algorithms with respect to which the comparisons have been
made and to an anonymous reviewer for comments and suggestions which improved the
quality of the paper.

16



10
0

10
1

10
2

1200

1400

1600

1800

2000

2200

2400

2600

iterations

 

 

FB−f
FB−b
FBF−f
FBF−b

Figure 4: The figure shows the decrease of the objective function values for the averaged iterates
generated by the (FB) and (FBF) algorithms.

References
[1] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011

[2] A. Beck, M. Teboulle, A fast iterative shrinkage-tresholding algorithm for linear in-
verse problems, SIAM Journal on Imaging Sciences 2(1), 183–202, 2009

[3] J.M. Borwein, J.D. Vanderwerff, Convex Functions: Constructions, Characterizations
and Counterexamples, Cambridge University Press, 2010

[4] R.I. Boţ, Conjugate Duality in Convex Optimization, Lecture Notes in Economics
and Mathematical Systems, Vol. 637, Springer-Verlag, Berlin Heidelberg, 2010

[5] R.I. Boţ, E.R. Csetnek, Regularity conditions via generalized interiority notions in
convex optimization: new achievements and their relation to some classical state-
ments, Optimization 61(1), 35–65, 2012

[6] R.I. Boţ, E.R. Csetnek, A. Heinrich, A primal-dual splitting algorithm for finding zeros
of sums of maximally monotone operators, SIAM Journal on Optimization 23(4),
2011–2036, 2013

[7] R.I. Boţ, E.R. Csetnek, A. Heinrich, C. Hendrich, On the convergence rate improve-
ment of a primal-dual splitting algorithm for solving monotone inclusion problems,
Mathematical Programming, DOI 10.1007/s10107-014-0766-0

17



[8] R.I. Boţ, C. Hendrich, Convergence analysis for a primal-dual monotone + skew split-
ting algorithm with applications to total variation minimization, Journal of Mathe-
matical Imaging and Vision 49(3), 551–568, 2014

[9] L.M. Briceño-Arias, P.L. Combettes, A monotone + skew splitting model for compos-
ite monotone inclusions in duality, SIAM Journal on Optimization 21(4), 1230–1250,
2011

[10] A. Chambolle, An algorithm for total variation minimization and applications, Jour-
nal of Mathematical Imaging and Vision 20(1–2), 89–97, 2004

[11] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, Journal of Mathematical Imaging and Vision 40(1), 120–145,
2011

[12] P.L. Combettes, Solving monotone inclusions via compositions of nonexpansive aver-
aged operators, Optimization 53(5-6), 475–504, 2004

[13] P.L. Combettes, J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions
with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators,
Set-Valued and Variational Analysis 20(2), 307–330, 2012

[14] L. Condat, A primal-dual splitting method for convex optimization involving Lip-
schitzian, proximable and linear composite terms, Journal of Optimization Theory
and Applications 158(2), 460–479, 2013

[15] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland
Publishing Company, Amsterdam, 1976

[16] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer
Academic Publishers, Dordrecht, 2004

[17] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Jour-
nal on Control and Optimization 14(5), 877–898, 1976

[18] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, Berlin, 2008

[19] P. Tseng, A modified forward-backward splitting method for maximal monotone map-
pings, SIAM Journal on Control and Optimization 38(2), 431–446, 2000
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