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Abstract. We propose an inertial Douglas-Rachford splitting algorithm for finding the
set of zeros of the sum of two maximally monotone operators in Hilbert spaces and in-
vestigate its convergence properties. To this end we formulate first the inertial version of
the Krasnosel’skĭı–Mann algorithm for approximating the set of fixed points of a nonex-
pansive operator, for which we also provide an exhaustive convergence analysis. By using
a product space approach we employ these results to the solving of monotone inclusion
problems involving linearly composed and parallel-sum type operators and provide in this
way iterative schemes where each of the maximally monotone mappings is accessed sep-
arately via its resolvent. We consider also the special instance of solving a primal-dual
pair of nonsmooth convex optimization problems and illustrate the theoretical results via
some numerical experiments in clustering and location theory.
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1 Introduction and preliminaries

The problem of approaching the set of zeros of maximally monotone operators by means
of splitting iterative algorithms, where each of the operators involved is evaluated sepa-
rately, either via its resolvent in the set-valued case, or by means of the operator itself
in the single-valued case, continues to be a very attractive research area. This is due
to its applicability in the context of solving real-life problems which can be modeled as
nondifferentiable convex optimization problems, like those arising in image processing, sig-
nal recovery, support vector machines classification, location theory, clustering, network
communications, etc.
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In this manuscript we focus our attention on the Douglas-Rachford algorithm which
approximates the set of zeros of the sum of two maximally monotone operators. Introduced
in [25] in the particular context of solving matrix equations, its convergence properties
have been investigated also in [28]. One of the methods for proving the convergence
of the classical Douglas–Rachford splitting method is by treating it as a particular case
of the Krasnosel’skĭı–Mann algorithm designed for finding fixed points of nonexpansive
operators (see [6], [22]). This approach has the advantage of allowing the inclusion of
relaxation parameters in the update rules of the iterates.

In this paper we introduce and investigate the convergence properties of an inertial
Douglas-Rachford splitting algorithm. Inertial proximal methods go back to [1, 3], where
it has been noticed that the discretization of a differential system of second-order in
time gives rise to a generalization of the classical proximal-point algorithm for finding the
zeros of a maximally monotone operator (see [38]), nowadays called inertial proximal-point
algorithm. One of the main features of the inertial proximal algorithm is that the next
iterate is defined by making use of the last two iterates. Since its introduction, one can
notice an increasing interest in algorithms having this particularity, see [2–4,11,17,19,20,
29,30,33,35,36].

In order to prove the convergence of the proposed inertial Douglas-Rachford algorithm
we formulate first the inertial version of the Krasnosel’skĭı–Mann algorithm for approxi-
mating the set of fixed points of a nonexpansive operator and investigate its convergence
properties. The convergence of the inertial Douglas-Rachford scheme is then derived by
applying the inertial version of the Krasnosel’skĭı–Mann algorithm to the composition of
the reflected resolvents of the maximally monotone operators involved in the monotone
inclusion problem.

The second major aim of the paper is to make use of these results when formulating
an inertial Douglas-Rachford primal-dual algorithm designed to solve monotone inclusion
problems involving linearly composed and parallel-sum type operators. Let us mention
that the classical Douglas-Rachford algorithm cannot handle monotone inclusion problems
where some of the set-valued mappings involved are composed with linear continuous
operators, since in general there is no closed form for the resolvent of the composition.
The same applies in the case of monotone inclusion problems involving parallel-sum type
operators. Primal-dual methods are modern techniques which overcome this drawback.
We underline further highlights of these methods, like their full decomposability and the
fact that they are able to solve concomitantly a primal monotone inclusion problem and
its dual one in the sense of Attouch-Théra [5] (see [12–16,18,23,24,41] for more details).

The structure of the paper is the following. In the remainder of this section we recall
some elements of the theory of maximal monotone operators and some convergence results
needed in the paper. The next section contains the inertial type of the Krasnosel’skĭı–
Mann scheme followed by the inertial Douglas-Rachford algorithm with corresponding
weak and strong convergence results. In Section 3 we formulate the inertial Douglas-
Rachford primal-dual splitting algorithm and study its convergence, while in Section 4 we
make use of this iterative scheme when solving primal-dual pairs of convex optimization
problems. We close the paper by illustrating the theoretical results via some numerical
experiments in clustering and location theory.

For the notions and results presented as follows we refer the reader to [6,8,9,26,39,42].
Let N = {0, 1, 2, ...} be the set of nonnegative integers. Let H be a real Hilbert space with
inner product 〈·, ·〉 and associated norm ‖ · ‖ =

√
〈·, ·〉. The symbols ⇀ and → denote
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weak and strong convergence, respectively. The following identity will be used several
times in the paper (see [6, Corollary 2.14]):

‖αx+ (1−α)y‖2 +α(1−α)‖x− y‖2 = α‖x‖2 + (1−α)‖y‖2 ∀α ∈ R ∀(x, y) ∈ H×H. (1)

When G is another Hilbert space and K : H → G a linear continuous operator, then
the norm of K is defined as ‖K‖ = sup{‖Kx‖ : x ∈ H, ‖x‖ ≤ 1}, while K∗ : G → H,
defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H × G, denotes the adjoint operator of K.

For an arbitrary set-valued operator A : H⇒ H we denote by GrA = {(x, u) ∈ H×H :
u ∈ Ax} its graph, by domA = {x ∈ H : Ax 6= ∅} its domain, by ranA = ∪x∈HAx its
range and by A−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ GrA−1 if and only if
(x, u) ∈ GrA. We use also the notation zerA = {x ∈ H : 0 ∈ Ax} for the set of zeros of A.
We say that A is monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A monotone
operator A is said to be maximally monotone, if there exists no proper monotone extension
of the graph of A on H×H. The resolvent of A is

JA : H⇒ H, JA = (IdH+A)−1,

and the reflected resolvent of A is

RA : H⇒ H, RA = 2JA − IdH,

where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity operator on H. Moreover,
if A is maximally monotone, then JA : H → H is single-valued and maximally monotone
(see [6, Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see [6,
Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA

and (see [6, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 IdH = IdH . (2)

Further, let us mention some classes of operators that are used in the paper. The
operator A is said to be uniformly monotone if there exists an increasing function φA :
[0,+∞)→ [0,+∞] that vanishes only at 0, and

〈x− y, u− v〉 ≥ φA (‖x− y‖) ∀(x, u), (y, v) ∈ GrA. (3)

Prominent representatives of the class of uniformly monotone operators are the strongly
monotone operators. Let γ > 0 be arbitrary. We say that A is γ-strongly monotone, if
〈x− y, u− v〉 ≥ γ‖x− y‖2 for all (x, u), (y, v) ∈ GrA.

We consider also the class of nonexpansive operators. An operator T : D → H, where
D ⊆ H is nonempty, is said to be nonexpansive, if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ D.
We use the notation FixT = {x ∈ D : Tx = x} for the set of fixed points of T . Let us
mention that the resolvent and the reflected resolvent of a maximally monotone operator
are both nonexpansive (see [6, Corollary 23.10]).

The following result, which is a consequence of the demiclosedness principle (see [6,
Theorem 4.17]), will be useful in the proof of the convergence of the inertial version of the
Krasnosel’skĭı–Mann algorithm.
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Lemma 1 (see [6, Corollary 4.18]) Let D ⊆ H be nonempty closed and convex, T : D →
H be nonexpansive and let (xn)n∈N be a sequence in D and x ∈ H such that xn ⇀ x and
Txn − xn → 0 as n→ +∞. Then x ∈ FixT .

The parallel sum of two operators A,B : H⇒ H is defined by A�B : H⇒ H, A�B =
(A−1 +B−1)−1. If A and B are monotone, then we have the following characterization of
the set of zeros of their sum (see [6, Proposition 25.1(ii)]):

zer(A+B) = JγB(FixRγARγB) ∀γ > 0. (4)

The following result is a direct consequence of [6, Corollary 25.5] and will be used in
the proof of the convergence of the inertial Douglas–Rachford splitting algorithm.

Lemma 2 Let A,B : H ⇒ H be maximally monotone operators and the sequences
(xn, un)n∈N ∈ GrA, (yn, vn)n∈N ∈ GrB such that xn ⇀ x, un ⇀ u, yn ⇀ y, vn ⇀ v,
un + vn → 0 and xn − yn → 0 as n→ +∞. Then x = y ∈ zer(A+B), (x, u) ∈ GrA and
(y, v) ∈ GrB.

We close this section by presenting two convergence results which will be crucial for
the proof of the main results in the next section.

Lemma 3 (see [2, Lemma 3]) Let (ϕn)n∈N, (δn)n∈N and (αn)n∈N be sequences in [0,+∞)
such that ϕn+1 ≤ ϕn +αn(ϕn−ϕn−1) + δn for all n ≥ 1,

∑
n∈N δn < +∞ and there exists

a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:

(i)
∑

n≥1[ϕn − ϕn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗.

Finally, we recall a well known result on weak convergence in Hilbert spaces.

Lemma 4 (Opial) Let C be a nonempty set of H and (xn)n∈N be a sequence in H such
that the following two conditions hold:

(a) for every x ∈ C, limn→+∞ ‖xn − x‖ exists;

(b) every sequential weak cluster point of (xn)n∈N is in C.

Then (xn)n∈N converges weakly to a point in C.

2 An inertial Douglas–Rachford splitting algorithm

This section is dedicated to the formulation of an inertial Douglas–Rachford splitting
algorithm for finding the set of zeros of the sum of two maximally monotone operators
and to the investigation of its convergence properties.

In the first part we propose an inertial version of the Krasnosel’skĭı–Mann algorithm for
approximating the set of fixed points of a nonexpansive operator, a result which has its own
interest. Notice that due to the presence of affine combinations in the iterative scheme,
we have to restrict the setting to nonexpansive operators defined on affine subspaces.
Let us underline that this assumption is fulfilled when considering the composition of
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the reflected resolvents of maximally monotone operators, which will be the case for the
inertial Douglas–Rachford algorithm. Let us also mention that some inertial versions of the
Krasnosel’skĭı–Mann algorithm have been proposed also in [29], which, however, in order
to ensure the convergence of the generated sequence of iterates, ask for a summability
condition formulated in terms of this sequence.

Theorem 5 Let M be a nonempty closed affine subset of H and T : M → M a nonex-
pansive operator such that FixT 6= ∅. We consider the following iterative scheme:

xn+1 = xn+αn(xn−xn−1)+λn

[
T
(
xn+αn(xn−xn−1)

)
−xn−αn(xn−xn−1)

]
∀n ≥ 1 (5)

where x0, x1 are arbitrarily chosen in M , (αn)n≥1 is nondecreasing with α1 = 0 and
0 ≤ αn ≤ α < 1 for every n ≥ 1 and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1. (6)

Then the following statements are true:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞;

(ii) (xn)n∈N converges weakly to a point in FixT .

Proof. Let us start with the remark that, due to the choice of δ, λn ∈ (0, 1) for every
n ≥ 1. Furthermore, we would like to notice that, since M is affine, the iterative scheme
provides a well-defined sequence in M .

(i) We denote
wn := xn + αn(xn − xn−1) ∀n ≥ 1.

Then the iterative scheme reads for every n ≥ 1:

xn+1 = wn + λn(Twn − wn). (7)

Let us fix an element y ∈ FixT and n ≥ 1. It follows from (1) and the nonexpansiveness
of T that

‖xn+1 − y‖2 = (1− λn)‖wn − y‖2 + λn‖Twn − Ty‖2 − λn(1− λn)‖Twn − wn‖2

≤ ‖wn − y‖2 − λn(1− λn)‖Twn − wn‖2. (8)

Applying (1) again, we have

‖wn − y‖2 = ‖(1 + αn)(xn − y)− αn(xn−1 − y)‖2

= (1 + αn)‖xn − y‖2 − αn‖xn−1 − y‖2 + αn(1 + αn)‖xn − xn−1‖2,

hence from (8) we obtain

‖xn+1 − y‖2 − (1 + αn)‖xn − y‖2 + αn‖xn−1 − y‖2 ≤− λn(1− λn)‖Twn − wn‖2

+ αn(1 + αn)‖xn − xn−1‖2. (9)
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Furthermore, we have

‖Twn − wn‖2 =

∥∥∥∥ 1

λn
(xn+1 − xn) +

αn
λn

(xn−1 − xn)

∥∥∥∥2

=
1

λ2
n

‖xn+1 − xn‖2 +
α2
n

λ2
n

‖xn − xn−1‖2 + 2
αn
λ2
n

〈xn+1 − xn, xn−1 − xn〉

≥ 1

λ2
n

‖xn+1 − xn‖2 +
α2
n

λ2
n

‖xn − xn−1‖2

+
αn
λ2
n

(
−ρn‖xn+1 − xn‖2 −

1

ρn
‖xn − xn−1‖2

)
, (10)

where we denote ρn := 1
αn+δλn

.
We derive from (9) and (10) the inequality

‖xn+1 − y‖2 − (1 + αn)‖xn − y‖2 + αn‖xn−1 − y‖2 ≤
(1− λn)(αnρn − 1)

λn
‖xn+1 − xn‖2

+ γn‖xn − xn−1‖2, (11)

where

γn := αn(1 + αn) + αn(1− λn)
1− ρnαn
ρnλn

> 0, (12)

since ρnαn < 1 and λn ∈ (0, 1).
Again, taking into account the choice of ρn we have

δ =
1− ρnαn
ρnλn

and from (12), it follows

γn = αn(1 + αn) + αn(1− λn)δ ≤ α(1 + α) + αδ ∀n ≥ 1. (13)

In the following we use some techniques from [3] adapted to our setting. We define the
sequences ϕn := ‖xn − y‖2 for all n ∈ N and µn := ϕn − αnϕn−1 + γn‖xn − xn−1‖2 for all
n ≥ 1. Using the monotonicity of (αn)n≥1 and the fact that ϕn ≥ 0 for all n ∈ N, we get

µn+1 − µn ≤ ϕn+1 − (1 + αn)ϕn + αnϕn−1 + γn+1‖xn+1 − xn‖2 − γn‖xn − xn−1‖2.

Employing (11), we have

µn+1 − µn ≤
(

(1− λn)(αnρn − 1)

λn
+ γn+1

)
‖xn+1 − xn‖2 ∀n ≥ 1. (14)

We claim that
(1− λn)(αnρn − 1)

λn
+ γn+1 ≤ −σ ∀n ≥ 1. (15)

Let be n ≥ 1. Indeed, by the choice of ρn, we get

(1− λn)(αnρn − 1)

λn
+ γn+1 ≤ −σ

⇐⇒ λn(γn+1 + σ) + (αnρn − 1)(1− λn) ≤ 0

⇐⇒ λn(γn+1 + σ)− δλn(1− λn)

αn + δλn
≤ 0

⇐⇒ (αn + δλn)(γn+1 + σ) + δλn ≤ δ.
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By using (13), we have

(αn + δλn)(γn+1 + σ) + δλn ≤ (α+ δλn)
(
α(1 + α) + αδ + σ

)
+ δλn ≤ δ,

where the last inequality follows by using the upper bound for (λn)n≥1 in (6). Hence the
claim in (15) is true.

We obtain from (14) and (15) that

µn+1 − µn ≤ −σ‖xn+1 − xn‖2 ∀n ≥ 1. (16)

The sequence (µn)n≥1 is nonincreasing and the bound for (αn)n≥1 delivers

−αϕn−1 ≤ ϕn − αϕn−1 ≤ µn ≤ µ1 ∀n ≥ 1. (17)

We obtain

ϕn ≤ αnϕ0 + µ1

n−1∑
k=0

αk ≤ αnϕ0 +
µ1

1− α
∀n ≥ 1,

where we notice that µ1 = ϕ1 ≥ 0 (due to the relation α1 = 0). Combining (16) and (17),
we get for all n ≥ 1

σ
n∑
k=1

‖xk+1 − xk‖2 ≤ µ1 − µn+1 ≤ µ1 + αϕn ≤ αn+1ϕ0 +
µ1

1− α
,

which shows that
∑

n∈N ‖xn+1 − xn‖2 < +∞.
(ii) We prove this by using the result of Opial given in Lemma 4. We have proven

above that for an arbitrary y ∈ FixT the inequality (11) is true. By part (i), (13) and
Lemma 3 we derive that limn→+∞ ‖xn− y‖ exists (we take into consideration also that in
(11) αnρn < 1 for all n ≥ 1). On the other hand, let x be a sequential weak cluster point
of (xn)n∈N, that is, the latter has a subsequence (xnk

)k∈N fulfilling xnk
⇀ x as k → +∞.

By part (i), the definition of wn and the upper bound for (αn)n≥1, we get wnk
⇀ x as

k → +∞. Furthermore, from (7) we have

‖Twn−wn‖ =
1

λn
‖xn+1−wn‖ ≤

1

λ
‖xn+1−wn‖ ≤

1

λ

(
‖xn+1−xn‖+α‖xn−xn−1‖

)
, (18)

thus by (i) we obtain Twnk
− wnk

→ 0 as k → +∞. Applying now Lemma 1 for the
sequence (wnk

)k∈N we conclude that x ∈ FixT . Since the two assumptions of Lemma 4
are verified, it follows that (xn)n∈N converges weakly to a point in FixT . �

Remark 6 The condition α1 = 0 was imposed in order to ensure µ1 ≥ 0, which is needed
in the proof. An alternative is to require that x0 = x1, in which case the assumption
α1 = 0 is not anymore necessary.

Remark 7 Assuming that α = 0 (which forces αn = 0 for all n ≥ 1), the iterative scheme
in the previous theorem is nothing else than the one in the classical Krasnosel’skĭı–Mann
algorithm:

xn+1 = xn + λn(Txn − xn) ∀n ≥ 1. (19)

Let us mention that the convergence of this iterative scheme can be proved under more
general hypotheses, namely when M is a nonempty closed and convex set and the sequence
(λn)n∈N satisfies the relation

∑
n∈N λn(1− λn) = +∞ (see [6, Theorem 5.14]).
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We are now in position to state the inertial Douglas–Rachford splitting algorithm and
to present its convergence properties.

Theorem 8 (Inertial Douglas–Rachford splitting algorithm) Let A,B : H ⇒ H be max-
imally monotone operators such that zer(A + B) 6= ∅. Consider the following iterative
scheme:

(∀n ≥ 1)


yn = JγB[xn + αn(xn − xn−1)]
zn = JγA[2yn − xn − αn(xn − xn−1)]
xn+1 = xn + αn(xn − xn−1) + λn(zn − yn)

where γ > 0, x0, x1 are arbitrarily chosen in H, (αn)n≥1 is nondecreasing with α1 = 0 and
0 ≤ αn ≤ α < 1 for every n ≥ 1 and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤ 2

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1.

Then there exists x ∈ Fix(RγARγB) such that the following statements are true:

(i) JγBx ∈ zer(A+B);

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞;

(iii) (xn)n∈N converges weakly to x;

(iv) yn − zn → 0 as n→ +∞;

(v) (yn)n≥1 converges weakly to JγBx;

(vi) (zn)n≥1 converges weakly to JγBx;

(vii) if A or B is uniformly monotone, then (yn)n≥1 and (zn)n≥1 converge strongly to the
unique point in zer(A+B).

Proof. We use again the notation wn = xn + αn(xn − xn−1) for all n ≥ 1. Taking
into account the iteration rules and the definition of the reflected resolvent, the iterative
scheme in the enunciation of the theorem can be written as

(∀n ≥ 1) xn+1 = wn + λn

[
JγA ◦ (2JγB − Id)wn − JγBwn

]
= wn + λn

[(
Id +RγA

2
◦RγB

)
wn −

Id +RγB
2

wn

]
= wn +

λn
2

(Twn − wn), (20)

where T := RγA◦RγB : H → H is a nonexpansive operator. From (4) we have zer(A+B) =
JγB(FixT ), hence FixT 6= ∅. By applying Theorem 5, there exists x ∈ FixT such that
(i)-(iii) hold.

(iv) follows from Theorem 5, (18) and that zn − yn = 1
2(Twn − wn) for n ≥ 1.

(v) We will show that (yn)n≥1 is bounded and that JγBx is the unique weak sequential
cluster point of (yn)n≥1. From here the conclusion will automatically follow. By using
that JγB is nonexpansive, for all n ≥ 1 we have

‖yn − y1‖ = ‖JγBwn − JγBw1‖ ≤ ‖wn − w1‖ = ‖xn − x1 + αn(xn − xn−1)‖.
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Since (xn)n∈N is bounded (by (iii)) and (αn)n≥1 is also bounded, so is the sequence (yn)n≥1.
Now let y be a sequential weak cluster point of (yn)n≥1, that is, the latter has a

subsequence (ynk
)k∈N fulfilling ynk

⇀ y as k → +∞. We use the notations un := 2yn −
wn − zn and vn := wn − yn for all n ≥ 1. The definitions of the resolvent yields

(zn, un) ∈ Gr(γA), (yn, vn) ∈ Gr(γB) and un + vn = yn − zn ∀n ≥ 1. (21)

Furthermore, by (ii), (iii) and (iv) we derive

znk
⇀ y,wnk

⇀ x, unk
⇀ y − x and vnk

⇀ x− y as k → +∞.

Using again (ii) and Lemma 2 we obtain y ∈ zer(γA+γB) = zer(A+B), (y, y−x) ∈ Gr γA
and (y, x− y) ∈ Gr γB. As a consequence, y = JγBx.

(vi) Follows from (iv) and (v).
(vii) We prove the statement in case A is uniformly monotone, the situation when

B fulfills this condition being similar. Denote y = JγBx. There exists an increasing
function φA : [0,+∞)→ [0,+∞] that vanishes only at 0 such that (see also (21) and the
considerations made in the proof of (v))

γφA(‖zn − y‖) ≤ 〈zn − y, un − y + x〉 ∀n ≥ 1.

Moreover, since B is monotone we have (see (21))

0 ≤ 〈yn − y, vn − x+ y〉 = 〈yn − y, yn − zn − un − x+ y〉 ∀n ≥ 1.

Summing up the last two inequalities we obtain

γφA(‖zn − y‖) ≤ 〈zn − yn, un − yn + x〉 = 〈zn − yn, yn − zn − wn + x〉 ∀n ≥ 1.

Since zn − yn → 0 and wn ⇀ x as n → +∞, from the last inequality we get
limn→+∞ φA(‖zn − y‖) = 0, hence zn → y and therefore yn → y as n→ +∞. �

Remark 9 In case α = 0, which forces αn = 0 for all n ≥ 1, the iterative scheme in
Theorem 8 becomes the classical Douglas–Rachford splitting algorithm (see [6, Theorem
25.6]):

(∀n ≥ 1)


yn = JγBxn
zn = JγA(2yn − xn)
xn+1 = xn + λn(zn − yn),

the convergence of which holds under the assumption
∑

n∈N λn(2 − λn) = +∞. Let us
mention that the weak convergence of the sequence (yn)n≥1 to a point in zer(A+B) has
been for the first time reported in [40].

Remark 10 In case Bx = 0 for all x ∈ H, the iterative scheme in Theorem 8 becomes

xn+1 = λnJγA
(
xn + αn(xn − xn−1)

)
+ (1− λn)(xn + αn(xn − xn−1)) ∀n ≥ 1,

which was already considered in [2] as a proximal-point algorithm (see [38]) in the context
of solving the monotone inclusion problem 0 ∈ Ax. Notice that in this scheme in each
iteration a constant step-size γ > 0 is considered. Proximal-point algorithms of inertial-
type with variable step-sizes have been proposed and investigated, for instance, in [3,
Theorem 2.1], [2] and [11, Remark 7].
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3 Solving monotone inclusion problems involving mixtures
of linearly composed and parallel-sum type operators

In this section we apply the inertial Douglas–Rachford algorithm proposed in Section 2 to a
highly structured primal-dual system of monotone inclusions by making use of appropriate
splitting techniques. The problem under investiagtion reads as follows.

Problem 11 Let A : H ⇒ H be a maximally monotone operator and let z ∈ H. More-
over, let m be a strictly positive integer and for every i ∈ {1,...,m}, let ri ∈ Gi, Bi : Gi ⇒ Gi
and Di : Gi ⇒ Gi be maximally monotone operators and let Li : H → Gi be nonzero linear
continuous operators. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i (Bi�Di)(Lix− ri) (22)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that (∃x ∈ H)

{
z −

∑m
i=1 L

∗
i vi ∈ Ax

vi ∈(Bi�Di)(Lix− ri), i = 1,...,m.
(23)

We say that (x, v1,..., vm) ∈ H×G1 ...×Gm is a primal-dual solution to Problem 11, if

z −
m∑
i=1

L∗i vi ∈ Ax and vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m. (24)

Note that, if (x, v1,..., vm) ∈ H×G1 ...×Gm is a primal-dual solution to Problem 11, then
x is a solution to (22) and (v1,..., vm) is a solution to (23). On the other hand, if x ∈ H
is a solution to (22), then there exists (v1,..., vm) ∈ G1 × ...× Gm such that (x, v1,..., vm)
is a primal-dual solution to Problem 11. Equivalently, if (v1,..., vm) ∈ G1 × ... × Gm is a
solution to (23), then there exists x ∈ H such that (x, v1,..., vm) is a primal-dual solution
to Problem 11.

Several particular instances of the primal-dual system of monotone inclusions (22)–(23)
when applied to convex optimization problems can be found in [23,41].

The inertial primal-dual Douglas-Rachford algorithm we would like to propose for
solving (22)–(23) is formulated as follows.

Algorithm 12 Let x0, x1 ∈ H, vi,0, vi,1 ∈ Gi, i = 1,...,m, and τ, σi > 0, i = 1,...,m, be
such that

τ

m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (αn)n≥1 be a nondecreasing sequence with α1 = 0 and 0 ≤ αn ≤ α < 1
for every n ≥ 1 and λ, σ, δ > 0 and the sequence (λn)n≥1 be such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤ 2

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1.

10



Set

(∀n ≥ 1)



p1,n = JτA
(
xn + αn(xn − xn−1)− τ

2

∑m
i=1 L

∗
i (vi,n + αn(vi,n − vi,n−1)) + τz

)
w1,n = 2p1,n − xn − αn(xn − xn−1)
For i = 1,...,m⌊
p2,i,n = JσiB−1

i

(
vi,n + αn(vi,n − vi,n−1) + σi

2 Liw1,n − σiri
)

w2,i,n = 2p2,i,n − vi,n − αn(vi,n − vi,n−1)

z1,n = w1,n − τ
2

∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + αn(xn − xn−1) + λn(z1,n − p1,n)
For i = 1,...,m⌊
z2,i,n = JσiD−1

i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

vi,n+1 = vi,n + αn(vi,n − vi,n−1) + λn(z2,i,n − p2,i,n).

(25)

Theorem 13 In Problem 11, suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i (Bi�Di)(Li · −ri)
)
, (26)

and consider the sequences generated by Algorithm 12. Then there exists (x, v1,..., vm) ∈
H × G1 ...× Gm such that the following statements are true:

(i) By setting

p1 = JτA

(
x− τ

2

m∑
i=1

L∗i vi + τz

)
,

p2,i = JσiB−1
i

(
vi +

σi
2
Li(2p1 − x)− σiri

)
, i = 1,...,m,

the element (p1, p2,1,..., p2,m) ∈ H×G1×...×Gm is a primal-dual solution to Problem
11;

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖vi,n+1 − vi,n‖2 < +∞, i = 1,...,m;

(iii) (xn, v1,n,..., vm,n)n∈N converges weakly to (x, v1,..., vm);

(iv) (p1,n − z1,n, p2,1,n − z2,1,n,..., p2,m,n − z2,m,n)→ 0 as n→ +∞;

(v) (p1,n, p2,1,n,..., p2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vi) (z1,n, z2,1,n,..., z2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vii) if A and B−1
i , i = 1,...,m, are uniformly monotone, then (p1,n, p2,1,n,..., p2,m,n)n≥1

and (z1,n, z2,1,n,..., z2,m,n)n≥1 converge strongly to the unique primal-dual solution
(p1, p2,1,..., p2,m) to Problem 11.

Proof. For the proof we use Theorem 8 and adapt the techniques from [15] (see also [41])
to the given settings. We consider the Hilbert space K = H×G1× ...×Gm endowed with
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inner product and associated norm defined, for (x, v1,..., vm), (y, q1,..., qm) ∈ K, via

〈(x, v1,..., vm), (y, q1,..., qm)〉K = 〈x, y〉H +

m∑
i=1

〈vi, qi〉Gi

and ‖(x, v1,..., vm)‖K =

√√√√‖x‖2H +

m∑
i=1

‖vi‖2Gi ,

(27)

respectively. Furthermore, we consider the set-valued operator

M : K ⇒ K, (x, v1,..., vm) 7→ (−z +Ax, r1 +B−1
1 v1,..., rm +B−1

m vm),

which is maximally monotone, since A and Bi, i = 1,...,m, are maximally monotone
(see [6, Proposition 20.22 and Proposition 20.23]), and the linear continuous operator

S : K→ K, (x, v1,..., vm) 7→

(
m∑
i=1

L∗i vi,−L1x,...,−Lmx

)
,

which is skew-symmetric (i. e. S∗ = −S) and hence maximally monotone (see [6, Example
20.30]). Moreover, we consider the set-valued operator

Q : K ⇒ K, (x, v1,..., vm) 7→
(
0, D−1

1 v1,..., D
−1
m vm

)
,

which is once again maximally monotone, since Di is maximally monotone for i = 1,...,m.
Therefore, since domS = K, both 1

2S +Q and 1
2S +M are maximally monotone (see [6,

Corollary 24.4(i)]). Furthermore, one can easily notice that

(26)⇔ zer (M + S + Q) 6= ∅

and

(x, v1,..., vm) ∈ zer (M + S + Q)

⇒(x, v1,..., vm) is a primal-dual solution to Problem 11.
(28)

We also introduce the linear continuous operator

V : K→ K, (x, v1,..., vm) 7→

(
x

τ
− 1

2

m∑
i=1

L∗i vi,
v1

σ1
− 1

2
L1x,...,

vm
σm
− 1

2
Lmx

)
,

which is self-adjoint and ρ-strongly positive (see [15]) for

ρ :=

1− 1

2

√√√√τ
m∑
i=1

σi‖Li‖2

min

{
1

τ
,

1

σ1
, . . . ,

1

σm

}
> 0,

namely, the following inequality holds

〈x,V x〉K ≥ ρ‖x‖
2
K ∀x ∈ K.

Therefore, its inverse operator V −1 exists and it fulfills ‖V −1‖ ≤ 1
ρ .
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Note that the algorithmic scheme (25) is equivalent to

(∀n ≥ 1)



xn−p1,n
τ + αn

xn−xn−1

τ − 1
2

∑m
i=1 L

∗
i (vi,n + αn(vi,n − vi,n−1)) ∈ Ap1,n − z

w1,n = 2p1,n − xn − αn(xn − xn−1)
For i = 1,...,m vi,n−p2,i,n

σi
+ αn

vi,n−vi,n−1

σi
− 1

2Li(xn − p1,n + αn(xn − xn−1))

∈ −1
2Lip1,n +B−1

i p2,i,n + ri
w2,i,n = 2p2,i,n − vi,n − αn(vi,n − vi,n−1)

w1,n−z1,n
τ − 1

2

∑m
i=1 L

∗
iw2,i,n = 0

xn+1 = xn + αn(xn − xn−1) + λn(z1,n − p1,n)
For i = 1,...,m⌊

w2,i,n−z2,i,n
σi

− 1
2Li(w1,n − z1,n) ∈ −1

2Liz1,n +D−1
i z2,i,n

vi,n+1 = vi,n + αn(vi,n − vi,n−1) + λn(z2,i,n − p2,i,n).

(29)

By introducing the sequences

xn = (xn, v1,n,..., vm,n), yn = (p1,n, p2,1,n,..., p2,m,n), zn = (z1,n, z2,1,n,..., z2,m,n) ∀n ≥ 1,

the scheme (29) can equivalently be written in the form

(∀n ≥ 1)

 V (xn − yn + αn(xn − xn−1)) ∈
(

1
2S + M

)
yn

V (2yn − xn − zn − αn(xn − xn−1)) ∈
(

1
2S + Q

)
zn

xn+1 = xn + αn(xn − xn−1) + λn (zn − yn) ,
(30)

which is equivalent to

(∀n ≥ 1)

 yn =
(
Id +V −1(1

2S + M)
)−1

(xn + αn(xn − xn−1))

zn =
(
Id +V −1(1

2S + Q)
)−1

(2yn − xn − αn(xn − xn−1))
xn+1 = xn + αn(xn − xn−1) + λn (zn − yn) ,

(31)

In the following, we consider the Hilbert space KV with inner product and norm respec-
tively defined, for x,y ∈ K, via

〈x,y〉KV
= 〈x,V y〉K and ‖x‖KV

=
√
〈x,V x〉K. (32)

As the set-valued operators 1
2S + M and 1

2S + Q are maximally monotone on K, the
operators

B := V −1

(
1

2
S + M

)
and A := V −1

(
1

2
S + Q

)
(33)

are maximally monotone on KV . Moreover, since V is self-adjoint and ρ-strongly positive,
weak and strong convergence in KV are equivalent with weak and strong convergence in
K, respectively.

Taking this into account, it shows that (31) becomes

(∀n ≥ 1)

 yn = JB (xn + αn(xn − xn−1))
zn = JA (2yn − xn − αn(xn − xn−1))
xn+1 = xn + αn(xn − xn−1) + λn (zn − yn) ,

(34)
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which is the inertial Douglas–Rachford algorithm presented in Theorem 8 in the space KV

for γ = 1. Furthermore, we have

zer(A + B) = zer(V −1 (M + S + Q)) = zer(M + S + Q).

(i) By Theorem 8 (i), there exists x = (x, v1, ..., vm) ∈ Fix(RARB), such that JBx ∈
zer(A + B) = zer(M + S + Q). The claim follows from (28) and by identifying JBx.

(ii) Since V is ρ-strongly positive, we obtain from Theorem 8 (ii) that

ρ
∑
n∈N
‖xn+1 − xn‖2K ≤

∑
n∈N
‖xn+1 − xn‖2KV

< +∞,

and therefore the claim follows by considering (27).
(iii)–(vi) Follows directly from Theorem 8 (iii)–(vi).
(vii) The uniform monotonicity of A and B−1

i , i = 1,...,m, implies uniform monotonic-
ity of M on K (see, for instance, [15, Theorem 2.1 (ii)]), while this further implies uniform
monotonicity of B on KV . Therefore, the claim follows from Theorem 8 (vii). �

4 Convex optimization problems

The aim of this section is to show how the inertial Douglas-Rachford primal-dual algorithm
can be implemented when solving a primal-dual pair of convex optimization problems.

We recall first some notations used in the variational case, see [6, 8, 9, 26, 39, 42]. For
a function f : H → R, where R := R ∪ {±∞} is the extended real line, we denote by
dom f = {x ∈ H : f(x) < +∞} its effective domain and say that f is proper if dom f 6= ∅
and f(x) 6= −∞ for all x ∈ H. We denote by Γ(H) the family of proper, convex and lower
semi-continuous extended real-valued functions defined on H. Let f∗ : H → R, f∗(u) =
supx∈H{〈u, x〉− f(x)} for all u ∈ H, be the conjugate function of f . The subdifferential of
f at x ∈ H, with f(x) ∈ R, is the set ∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y− x〉 ∀y ∈ H}.
We take by convention ∂f(x) := ∅, if f(x) ∈ {±∞}. Notice that if f ∈ Γ(H), then
∂f is a maximally monotone operator (see [37]) and it holds (∂f)−1 = ∂f∗. For two
proper functions f, g : H → R, we consider their infimal convolution, which is the function
f � g : H → R, defined by (f � g)(x) = infy∈H{f(y) + g(x− y)}, for all x ∈ H.

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function
which takes the value 0 on S and +∞ otherwise. The subdifferential of the indicator
function is the normal cone of S, that is NS(x) = {u ∈ H : 〈u, y − x〉 ≤ 0 ∀y ∈ S}, if
x ∈ S and NS(x) = ∅ for x /∈ S.

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) +

1

2γ
‖y − x‖2

}
. (35)

Notice that Jγ∂f = (IdH+γ∂f)−1 = proxγf , thus proxγf : H → H is a single-valued
operator fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (36)
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Let us also recall that a proper function f : H → R is said to be uniformly convex, if there
exists an increasing function φ : [0,+∞) → [0,+∞] which vanishes only at 0 and such
that

f(tx+ (1− t)y) + t(1− t)φ(‖x− y‖) ≤ tf(x) + (1− t)f(y) ∀x, y ∈ dom f and ∀t ∈ (0, 1).

In case this inequality holds for φ = (β/2)(·)2, where β > 0, then f is said to be β-
strongly convex. Let us mention that this property implies β-strong monotonicity of ∂f
(see [6, Example 22.3]) (more general, if f is uniformly convex, then ∂f is uniformly
monotone, see [6, Example 22.3]).

Finally, we notice that for f = δS , where S ⊆ H is a nonempty convex and closed set,
it holds

JγNS
= JNS

= J∂δS = (IdH+NS)−1 = proxδS = PS , (37)

where PS : H → C denotes the orthogonal projection operator on S (see [6, Example 23.3
and Example 23.4]).

In the sequel we consider the following primal-dual pair of convex optimization prob-
lems.

Problem 14 Let H be a real Hilbert space and let f ∈ Γ(H), z ∈ H. Let m be a strictly
positive integer and for every i ∈ {1,...,m}, suppose that Gi is a real Hilbert space, let
gi, li ∈ Γ(Gi), ri ∈ Gi and let Li : H → Gi be a nonzero bounded linear operator. Consider
the convex optimization problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi� li)(Lix− ri)− 〈x, z〉

}
(38)

and its conjugate dual problem

(D) sup
(v1,...,vm)∈G1× ...×Gm

{
−f∗

(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(g∗i (vi) + l∗i (vi) + 〈vi, ri〉)

}
. (39)

By taking into account the maximal monotone operators

A = ∂f, Bi = ∂gi and Di = ∂li, i = 1,...,m,

the monotone inclusion problem (22) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑
i=1

L∗i (∂gi�∂li)(Lix− ri), (40)

while the dual inclusion problem (23) reads

find v1 ∈ G1, ..., vm ∈ Gm such that (∃x ∈ H)

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x)

vi ∈(∂gi�∂li)(Lix− ri), i = 1,...,m.
(41)

If (x, v1,..., vm) ∈ H × G1 ...× Gm is a primal-dual solution to (40)–(41), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m, (42)
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then x is an optimal solution to (P ), (v1,..., vm) is an optimal solution to (D) and the opti-
mal objective values of the two problems, which we denote by v(P ) and v(D), respectively,
coincide (thus, strong duality holds).

Combining this statement with Algorithm 12 and Theorem 13 gives rise to the follow-
ing iterative scheme and corresponding convergence theorem for the primal-dual pair of
optimization problems (P )–(D).

Algorithm 15 Let x0, x1 ∈ H, vi,0, vi,1 ∈ Gi, i = 1,...,m, and τ, σi > 0, i = 1,...,m, be
such that

τ
m∑
i=1

σi‖Li‖2 < 4.

Furthermore, let (αn)n≥1 be a nondecreasing sequence with α1 = 0 and 0 ≤ αn ≤ α < 1
for every n ≥ 1 and λ, σ, δ > 0 and the sequence (λn)n≥1 be such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤ 2

δ − α
[
α(1 + α) + αδ + σ

]
δ
[
1 + α(1 + α) + αδ + σ

] ∀n ≥ 1.

Set

(∀n ≥ 1)



p1,n = proxτf
(
xn + αn(xn − xn−1)− τ

2

∑m
i=1 L

∗
i (vi,n + αn(vi,n − vi,n−1)) + τz

)
w1,n = 2p1,n − xn − αn(xn − xn−1)
For i = 1,...,m⌊
p2,i,n = proxσig∗i

(
vi,n + αn(vi,n − vi,n−1) + σi

2 Liw1,n − σiri
)

w2,i,n = 2p2,i,n − vi,n − αn(vi,n − vi,n−1)
z1,n = w1,n − τ

2

∑m
i=1 L

∗
iw2,i,n

xn+1 = xn + αn(xn − xn−1) + λn(z1,n − p1,n)
For i = 1,...,m⌊
z2,i,n = proxσil∗i

(
w2,i,n + σi

2 Li(2z1,n − w1,n)
)

vi,n+1 = vi,n + αn(vi,n − vi,n−1) + λn(z2,i,n − p2,i,n).

(43)

Theorem 16 In Problem 14, suppose that

z ∈ ran

(
∂f +

m∑
i=1

L∗i (∂gi�∂li)(Li · −ri)
)
, (44)

and consider the sequences generated by Algorithm 15. Then there exists (x, v1,..., vm) ∈
H × G1 ...× Gm such that the following statements are true:

(i) By setting

p1 = proxτf

(
x− τ

2

m∑
i=1

L∗i vi + τz

)
,

p2,i = proxσig∗i

(
vi +

σi
2
Li(2p1 − x)− σiri

)
, i = 1,...,m,

the element (p1, p2,1,..., p2,m) ∈ H×G1×...×Gm is a primal-dual solution to Problem
14, hence p1 is an optimal solution to (P ) and (p2,1,..., p2,m) is an optimal solution
to (D);
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(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞, and
∑

n∈N ‖vi,n+1 − vi,n‖2 < +∞, i = 1,...,m;

(iii) (xn, v1,n,..., vm,n)n∈N converges weakly to (x, v1,..., vm);

(iv) (p1,n − z1,n, p2,1,n − z2,1,n,..., p2,m,n − z2,m,n)→ 0 as n→ +∞;

(v) (p1,n, p2,1,n,..., p2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vi) (z1,n, z2,1,n,..., z2,m,n)n≥1 converges weakly to (p1, p2,1,..., p2,m);

(vii) if f and g∗i , i = 1,...,m, are uniformly convex, then (p1,n, p2,1,n,..., p2,m,n)n≥1 and
(z1,n, z2,1,n,..., z2,m,n)n≥1 converge strongly to the unique primal-dual solution
(p1, p2,1,..., p2,m) to Problem 14.

We refer the reader to [15, 23] for qualification conditions which guarantee that the
inclusion in (44) holds. Finally, let us mention that for i = 1, ...,m, the function g∗i is
uniformly convex if it is αi-strongly convex for αi > 0 and this is the case if and only if gi
is Fréchet-differentiable with α−1

i -Lipschitz gradient (see [6, Theorem 18.15]).

5 Numerical experiments

5.1 Clustering

In cluster analysis one aims for grouping a set of points such that points in the same group
are more similar to each other than to points in other groups. Let ui ∈ Rn, i = 1, . . . ,m,
be given points. For each point ui we are looking for determining the associated cluster
center xi ∈ Rn, i = 1, . . . ,m. By taking into account [21,27], clustering can be formulated
as the convex optimization problem

inf
xi∈Rn, i=1,...,m

1

2

m∑
i=1

‖xi − ui‖2 + γ
∑
i<j

ωij‖xi − xj‖p

 , (45)

where γ ∈ R+ is a tuning parameter, p ∈ {1, 2} and ωij ∈ R+ represent weights on the
terms ‖xi − xj‖p, for i, j ∈ {1, . . . ,m}, i < j. Since the objective function is strongly
convex, there exists a unique solution to (45).

The tuning parameter γ ∈ R+ plays a central role within the clustering problem.
Taking γ = 0, each cluster center xi will coincide with the associated point ui. As γ
increases, the cluster centers will start to coalesce, where two points ui, uj are said to
belong to the same cluster when xi = xj . One finally obtains a single cluster containing
all points when γ becomes sufficiently large.

−3 −2 −1 0 1 2 3
−2
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Figure 1: Clustering two interlocking half moons.
The colors (resp. the shapes) show the correct
affiliations.
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p = 2, γ = 5.2 p = 1, γ = 4

ε = 10−4 ε = 10−8 ε = 10−4 ε = 10−8

Algorithm 15 0.65s (175) 1.36s (371) 0.63s (176) 1.27s (374)
DR [15] 0.78s (216) 1.68s (460) 0.78s (218) 1.68s (464)
FB [41] 2.48s (1353) 5.72s (3090) 2.01s (1092) 4.05s (2226)
FB Acc [13] 2.04s (1102) 4.11s (2205) 1.74s (950) 3.84s (2005)
FBF [23] 7.67s (2123) 17.58s (4879) 6.33s (1781) 13.22s (3716)
FBF Acc [14] 5.05s (1384) 10.27s (2801) 4.83s (1334) 9.98s (2765)
PD [18] 1.48s (780) 3.26s (1708) 1.44s (772) 3.18s (1722)
PD Acc [18] 1.28s (671) 3.14s (1649) 1.23s (665) 3.12s (1641)
Nesterov [34] 7.85s (3811) 42.69s (21805) 7.46s (3936) > 190s (> 100000)
FISTA [7] 7.55s (4055) 51.01s (27356) 6.55s (3550) 47.81s (26069)

Table 1: Performance evaluation for the clustering problem. The entries refer to the CPU times in
seconds and the number of iterations, respectively, needed in order to attain a root mean squared
error for the iterates below the tolerance ε. The tuning parameter γ is chosen in order to guarantee
a correct separation of the input data into the two half moons.

In addition to this, the choice of the weights is important as well, since cluster centers
may coalesce immediately as γ passes certain critical values. In terms of our weight
selection, we use a K-nearest neighbors strategy, as proposed in [21]. Therefore, whenever
i, j ∈ {1, . . . ,m}, i < j, we set the weight to ωij = ιKij exp(−φ‖xi − xj‖22), where

ιKij =

{
1, if j is among i’s K-nearest neighbors or vice versa,
0, otherwise.

We use the values K = 10 and φ = 0.5, which are the best ones reported in [21] on a
similar dataset.

Let k be the number of nonzero weights ωij . Then, one can introduce a linear operator
A : Rmn → Rkn, such that problem (45) can be equivalently written as

inf
x∈Rmn

{h(x) + g(Ax)} , (46)

the function h being 1-strongly convex and differentiable with 1-Lipschitz continuous gra-
dient. Also, by taking p ∈ {1, 2}, the proximal points with respect to g∗ are known to be
available via explicit formulae.

For our numerical tests we consider the standard data set consisting of two interlocking
half moons in R2, each of them being composed of 100 points (see Figure 1). The stopping
criterion asks the root-mean-square error (RMSE) to be less than or equal to a given
bound ε which is either ε = 10−4 or ε = 10−8. As tuning parameters we use γ = 4 for
p = 1 and γ = 5.2 for p = 2 since both choices lead to a correct separation of the input
data into the two half moons.

Given Table 1, it shows that Algorithm 15 performs better than the noninertial
Douglas–Rachford (DR) method proposed in [15, Algorithm 2.1]. One can also see that
the inertial Douglas–Rachford algorithm is faster than other popular primal-dual solvers,
among them the forward-backward-forward (FBF) method from [23], and the forward-
backward (FB) method from [41], where in both methods the function h is processed via a
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Figure 2: Generalized Heron problem with cubes and ball constraint set on the left-hand side,
performance evaluation for the RMSE on the right-hand side.

forward step. The accelerated versions of the latter and of the primal-dual (PD) method
from [18] converge in less time than their regular variants, but are still slower than Algo-
rithm 12. Notice that the methods called Nesterov and FISTA are accelerated proximal
gradient algorithms which are applied to the Fenchel dual problem to (46).

5.2 The generalized Heron problem

In the sequel we investigate the generalized Heron problem which has been recently inves-
tigated in [31,32] and where for its solving subgradient-type methods have been proposed.

While the classical Heron problem concerns the finding of a point u on a given straight
line in the plane such that the sum of its distances to two given points is minimal, the
problem that we address here aims to find a point in a closed convex set Ω ⊆ Rn which
minimizes the sum of the distances to given convex closed sets Ωi ⊆ Rn, i = 1, . . . ,m.

The distance function from a point x ∈ Rn to a nonempty set Ω ⊆ Rn is defined as

d(x; Ω) = (‖ · ‖� δΩ)(x) = inf
z∈Ω
‖x− z‖.

Thus the generalized Heron problem reads

inf
x∈Ω

m∑
i=1

d(x; Ωi), (47)

where the sets Ω ⊆ Rn and Ωi ⊆ Rn, i = 1, . . . ,m, are assumed to be nonempty, closed
and convex. We observe that (47) perfectly fits into the framework considered in Problem
14 when setting

f = δΩ, and gi = ‖ · ‖, li = δΩi for all i = 1, . . . ,m. (48)

However, note that (47) cannot be solved via the primal-dual methods in [23] and [41],
which require for each i = 1,...,m, that either gi or li is strongly convex, unless one
substantially increases the number of primal and dual variables. Notice that

g∗i : Rn → R, g∗i (p) = sup
x∈Rn

{〈p, x〉 − ‖x‖} = δB(0,1)(p), i = 1, . . . ,m,
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Algorithm 15 Douglas–Rachford, [15] Subgradient, [31, 32]

ε = 10−5 ε = 10−10 ε = 10−5 ε = 10−10 ε = 10−5 ε = 10−10

n = 2, m = 5 0.01s (33) 0.03s (72) 0.01s (30) 0.03s (63) – –
n = 2, m = 10 0.01s (21) 0.03s (59) 0.01s (21) 0.02s (43) 0.01s (8) 0.03s (120)
n = 2, m = 20 0.06s (295) 0.11s (522) 0.11s (329) 0.19s (583) 0.05s (204) 16.78s (69016)
n = 2, m = 50 0.18s (517) 0.45s (1308) 0.22s (579) 0.55s (1460) 0.04s (152) 4.82s (19401)

n = 3, m = 5 0.01s (16) 0.01s (37) 0.01s (16) 0.01s (33) 0.02s (70) 2.17s (8081)
n = 3, m = 10 0.01s (37) 0.03s (91) 0.01s (41) 0.03s (101) 0.01s (11) 0.03s (199)
n = 3, m = 20 0.01s (22) 0.03s (52) 0.01s (25) 0.03s (59) 0.01s (6) 0.01s (32)
n = 3, m = 50 0.01s (19) 0.02s (44) 0.01s (21) 0.02s (51) 0.01s (10) 0.01s (17)

Table 2: Performance evaluation for the Heron problem. The entries refer to the CPU times in
seconds and the number of iterations, respectively, needed in order to attain a root-mean-square
error lower than the tolerance ε.

where B(0, 1) denotes the closed unit ball, thus the proximal points of f , g∗i and l∗i , i =
1, . . . ,m, can be calculated via projections, in case of the latter via Moreau’s decomposition
formula (36).

In the following we solve a number of random problems where the closed convex set
Ω ⊆ Rn will always be the unit ball centered at (1,..., 1)T . The sets Ωi ⊆ Rn, i = 1,...,m,
are boxes in right position (i. e., the edges are parallel to the axes) with side length 1.
The box centers are created via independent identically distributed Gaussian entries from
N (0, n2) where the random seed in Matlab is set to 0. After determining a solution, the
stopping criterion asks the root-mean-square error (RMSE) to be less than or equal to a
given bound ε.

Table 2 shows a comparison between Algorithm 15, the Douglas–Rachford type method
from [15, Algorithm 3.1], and the subgradient approach described in [31,32] when applied
to different instances of the generalized Heron problem. One such particular case is dis-
played in Figure 2 when n = 3 and m = 5, while the evolution of the RMSE values is
given there in more detail. Empty cells in Table 2 indicate that it took more than 60
seconds to pass the stopping criterion. Based on the provided data, one can say that both
Algorithm 15 and the noninertial Douglas–Rachford type method are performing well in
this example and that differences in the computational performance are almost negligible.
However, one very interesting observation arises when the dimension of the space is set to
n = 3, as the subgradient approach then becomes better and surpasses both primal-dual
methods.
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