
A variable smoothing algorithm for solving convex
optimization problems

Radu Ioan Boţ ∗ Christopher Hendrich †

March 16, 2014

Abstract. In this article we propose a method for solving unconstrained optimization
problems with convex and Lipschitz continuous objective functions. By making use of the
Moreau envelopes of the functions occurring in the objective, we smooth them to convex
and differentiable functions with Lipschitz continuous gradients by using both variable
and constant smoothing parameters. The resulting problem is solved via an accelerated
first-order method and this allows us to recover approximately the optimal solutions to
the initial optimization problem with a rate of convergence of order O(ln k

k) for variable
smoothing and of order O(1

k) for constant smoothing. Some numerical experiments
employing the variable smoothing method in image processing and in supervised learning
classification are also presented.

Keywords. Moreau envelope, regularization, variable smoothing, fast gradient
method

AMS subject classification. 90C25, 90C46, 47A52

1 Introduction
In this paper we introduce and investigate the convergence properties of an efficient
algorithm for solving nondifferentiable optimization problems of type

inf
x∈H

{f(x) + g(Kx)}, (1.1)

where H and K are real Hilbert spaces, f : H → R and g : K → R are convex and Lipschitz
continuous functions and the operator K : H → K is linear and continuous. By replacing
the functions f and g through their Moreau envelopes, approach which can be seen as
part of the family of smoothing techniques introduced in [24–26], we approximate (1.1)
by a convex optimization problem with a differentiable objective function with Lipschitz
continuous gradient. This smoothing approach can be seen as the counterpart of the so-
called double smoothing method investigated in [8,9,20], which assumes the smoothing of
the Fenchel-dual problem to (1.1) to an optimization problem with a strongly convex and
differentiable objective function with Lipschitz continuous gradient. There, the smoothed
dual problem is solved via an appropriate fast gradient method (cf. [27]) and a primal

∗University of Vienna, Faculty of Mathematics, Nordbergstraße 15, A-1090 Vienna, Austria, e-mail:
radu.bot@univie.ac.at. Research partially supported by DFG (German Research Foundation), project
BO 2516/4-1.

†Chemnitz University of Technology, Department of Mathematics, D-09107 Chemnitz, Germany, e-
mail: christopher.hendrich@mathematik.tu-chemnitz.de. Research supported by a Graduate Fellowship
of the Free State Saxony, Germany.

1

optimal solution is reconstructed with a given level of accuracy. In contrast to that
approach, which asks for the boundedness of the effective domains of f and g, determinant
is here the boundedness of the effective domains of the conjugate functions f∗ and g∗,
which is automatically guaranteed by the Lipschitz continuity of f and g, respectively.
For solving the resulting smoothed problem we propose an extension of the accelerated
gradient method of Nesterov (cf. [28]) for convex optimization problems involving variable
smoothing parameters which are updated in each iteration. For the implementation of
the provided iterative scheme one only needs to determine the proximal points of the
functions f and g (respectively, of their conjugate functions), while the operator K and
its adjoint are involved via forward evaluations. For a large class of problems arising
in location theory, machine learning, clustering, signal and image processing, etc., exact
formulae for the proximal point mappings are available (see, for instance, [15,17,19]).

The algorithmic scheme we propose in this paper yields for the minimization of the
objective of the initial problem a rate of convergence of order O(ln k

k), while, in the
particular case when the smoothing parameters are constant, the order of the rate of
convergence becomes O(1

k). Nonetheless, using variable smoothing parameters has an
important advantage, although the theoretical rate of convergence is not as good as
when these are constant. In the first case the approach generates a sequence of iterates
(xk)k≥1 such that (f(xk) + g(Kxk))k≥1 converges to the optimal objective value of (1.1).
In the case of constant smoothing variables the approach provides a sequence of iterates
which solves the problem (1.1) with a given a priori accuracy, however, the sequence
(f(xk) + g(Kxk))k≥1 may not converge to the optimal objective value of the problem to
be solved. More than that, when implementing the variable smoothing scheme, different
to the constant smoothing one, it is not necessary to know the Lipschitz constants of the
functions f and g in advance.

In addition, we show, on the one hand, that the two approaches can be designed
and keep the same convergence behavior also in the case when f is differentiable with
Lipschitz continuous gradient and, on the other hand, that they can be employed also
for solving the extended version of (1.1)

inf
x∈H

{
f(x) +

m∑
i=1

gi(Kix)
}

, (1.2)

where Ki are real Hilbert spaces, gi : Ki → R are convex and Lipschitz continuous
functions and Ki : H → Ki, i = 1, . . . , m, are linear continuous operators.

We would like to notice that variable smoothing parameters have been recently con-
sidered in [29] for the PRISMA algorithm in relation to nonsmooth optimization problems
having as objective the sum of three convex functions with different properties. How-
ever, our approach allows considering compositions with linear continuous operators as
summands in the objective, an aspect which is relevant in many practical applications,
as it is emphasized by the numerical experiments considered in the last section. On the
other hand, when comparing it to the popular augmented Lagrangian method (ALM)
and alternating direction method of multipliers (ADMM) (see [12]), our method has the
advantage that the linear continuous operators (and, respectively, their adjoints) are eval-
uated via forward steps, while for the nondifferentiable functions separate proximal steps
are performed. In contrast to this splitting philosophy, the numerical schemes which
arise in the implementation of augmented Lagrangian methods build on (possibly) ex-
pensive linear operator inversions. Thus, from the point of view of the implementation,

2

the variable smoothing method shares similarities with the recently introduced class of
primal-dual algorithms (see, for instance, [10,13,15,18,32]).

The accelerated gradient method of Nesterov from [28] has been employed also in
the context of solving optimization problems of type (1.1) in finite-dimensional spaces by
Beck and Teboulle in [2] in order to obtain improved rates of convergence, however, under
the restrictive assumption that g is convex and differentiable with a Lipschitz continuous
gradient, but by allowing f to be a proper, convex and lower semicontinuous function.
It also worth to notice that in the setting in which our approach is introduced, one can
smooth the functions also by using other appropriate methods (see, for instance, [3]).
We opted for the use of the Moreau envelope in this scope, not only because its gradient
is Lipschitz continuous, but also because it can be expressed by means of the proximal
points of the function in discussion. In the light of Moreau’s decomposition formula, this
fact also allows a unitary treatment of the involved functions and of their conjugates.

The structure of this paper is as follows. In Section 2 we recall some elements of
convex analysis and establish the working framework. Section 3 is mainly devoted to the
description of the iterative methods for solving (1.1) and of their convergence properties
for both variable and constant smoothing and to the presentation of some of their variants.
In Section 4, numerical experiments employing the variable smoothing method in image
processing and in supervised vector machines classification are presented.

2 Preliminaries of convex analysis and problem formula-
tion

In the following we are considering the real Hilbert spaces H and K endowed with the
inner product 〈·, ·〉 and associated norm ‖·‖ =

√
〈·, ·〉. By BH ⊆ H and R++ we denote

the closed unit ball of H and the set of strictly positive real numbers, respectively. The
indicator function of the set C ⊆ H is the function δC : H → R := R ∪ {±∞} defined
by δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise. For a function f : H → R
we denote by dom f := {x ∈ H : f(x) < +∞} its effective domain. We call f proper if
dom f 6= ∅ and f(x) > −∞ for all x ∈ H. The conjugate function of f is f∗ : H → R,
f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for all p ∈ H. The biconjugate function of f is
f∗∗ : H → R, f∗∗(x) = sup {〈x, p〉 − f∗(p) : p ∈ H} and, when f is proper, convex
and lower semicontinuous, according to the Fenchel-Moreau Theorem, one has f = f∗∗.
The (convex) subdifferential of the function f at x ∈ H is the set ∂f(x) = {p ∈ H :
f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if f(x) ∈ R, and is taken to be the empty set,
otherwise. For a linear operator K : H → K, the operator K∗ : K → H is the adjoint
operator of K and is defined by 〈K∗y, x〉 = 〈y, Kx〉 for all x ∈ H and all y ∈ K.

Having two functions f, g : H → R, their infimal convolution is defined by f � g :
H → R, (f � g)(x) = infy∈H {f(y) + g(x − y)} for all x ∈ H. When f, g : H → R are
proper and convex, then

(f + g)∗ = f∗ � g∗ (2.1)

provided that f (or g) is continuous at a point belonging to dom f ∩ dom g. For other
qualification conditions guaranteeing (2.1) we refer the reader to [6, 14,22,31].

The Moreau envelope of parameter γ ∈ R++ of a proper, convex and lower semicon-
tinuous function f : H → R is the function γf : H → R, defined as (see [23])

γf(x) := f �
(1

2γ
‖·‖2

)
(x) = inf

y∈H

{
f(y) + 1

2γ
‖x − y‖2

}
∀x ∈ H.

3

For every x ∈ H, we denote by Proxγf (x) the proximal point of parameter γ of f at x,
namely, the unique optimal solution of the optimization problem

inf
y∈H

{
f(y) + 1

2γ
‖y − x‖2

}
. (2.2)

Notice that Proxγf : H → H is single-valued and firmly nonexpansive (cf. [1, Proposition
12.27]), i. e.,

‖Proxγf (x) − Proxγf (y)‖2 + ‖(x − Proxγf (x)) − (y − Proxγf (y))‖2 ≤ ‖x − y‖2 ∀x, y ∈ H.
(2.3)

Hence, it is Lipschitz continuous with Lipschitz constant equal to 1. For a large class of
functions arising in different fields of applications, the proximal point mappings are given
by exact formulae, whereby it is often more convenient to calculate the proximal point
mappings of the conjugates and then to deduce from here, via the formulae given bellow,
the ones of the functions themselves (cf. [1,17,19]). We also have (cf. [1, Theorem 14.3])

γf(x) +
1
γ f∗(x

γ) = ‖x‖2

2γ
∀x ∈ H (2.4)

and the extended Moreau’s decomposition formula

Proxγf (x) + γProx 1
γ f∗

(
x
γ

)
= x ∀x ∈ H. (2.5)

The function γf is (Fréchet) differentiable on H and its gradient ∇(γf) : H → H fulfills
(cf. [1, Proposition 12.29])

∇(γf)(x) = 1
γ (x − Proxγf (x)) ∀x ∈ H, (2.6)

being in the light of (2.3) 1
γ -Lipschitz continuous. For a nonempty, convex and closed

set C ⊆ H and γ ∈ R++, it holds ProxγδC
= PC , where PC : H → C, PC(x) =

arg minz∈C ‖x − z‖, denotes the projection operator on C.
When f : H → R is convex and differentiable having an L∇f -Lipschitz continuous

gradient, then for all x, y ∈ H, it holds (see, for instance, [1, 27,28])

f(y) ≤ f(x) + 〈∇f(x), y − x〉 + L∇f

2
‖y − x‖2 . (2.7)

The optimization problem that we investigate in this paper is

(P) inf
x∈H

{f(x) + g(Kx)},

where K : H → K is a linear continuous operator and f : H → R and g : K → R are
convex and Lf -Lipschitz continuous and Lg-Lipschitz continuous functions, respectively.
According to [5, Proposition 4.4.6], we have that

dom f∗ ⊆ Lf BH and dom g∗ ⊆ LgBK. (2.8)

4

3 The algorithm and its variants

3.1 The smoothing of the problem (P)

The algorithms we would like to introduce and analyze from the point of view of their
convergence properties assume in a first instance an appropriate smoothing of the problem
(P) which we are going to describe in the following.

For ρ ∈ R++, we smooth f , which is proper, convex and lower semicontinuous, via
its Moreau envelope of parameter ρ, which yields ρf : H → R, ρf(x) =

(
f � 1

2ρ ‖·‖2
)

(x)
for every x ∈ H. According to the Fenchel-Moreau Theorem and due to (2.1), one has
for x ∈ H

ρf(x) =
(

f∗∗ �
1
2ρ

‖·‖2
)

(x) =
(

f∗ + ρ

2
‖·‖2

)∗
(x) = sup

p∈H

{
〈x, p〉 − f∗(p) − ρ

2
‖p‖2

}
.

As already seen, ρf is differentiable and its gradient (cf. (2.6) and (2.5))

∇(ρf) : H → H, ∇(ρf) = 1
ρ(x − Proxρf (x)) = Prox 1

ρ
f∗

(
x

ρ

)
∀x ∈ H,

is 1
ρ -Lipschitz continuous (see, for instance, [4, Proposition 3.4]).
For µ ∈ R++, we smooth g ◦ K via µg ◦ K : H → R, µg ◦ K(x) =

(
g � 1

2µ ‖·‖2
)

(Kx)
for every x ∈ H. The function µg◦K is differentiable and its gradient ∇(µg◦K) : H → H
fulfills (cf. (2.6) and (2.5))

∇(µg ◦ K)(x) = K∗∇(µg)(Kx) = 1
µK∗(Kx − Proxµg(Kx)) = K∗Prox 1

µ g∗

(
Kx
µ

)
∀x ∈ H.

Further, for every x, y ∈ H, it holds (see (2.3))

‖∇(µg ◦ K)(x) − ∇(µg ◦ K)(y)‖ ≤ 1
µ‖K‖ ‖(Kx − Proxµg(Kx)) − (Ky − Proxµg(Ky))‖

≤ ‖K‖2

µ
‖x − y‖ ,

which shows that ∇(µg ◦ K) is ‖K‖2

µ -Lipschitz continuous.
Finally, we consider as smoothing function for f + g ◦ K the function F ρ,µ : H → R,

F ρ,µ(x) = ρf(x) + µg ◦ K(x), which is differentiable with L(ρ, µ)-Lipschitz continuous
gradient ∇F ρ,µ : H → H given by

∇F ρ,µ(x) = Prox1
ρ f∗

(
x
ρ

)
+ K∗Prox 1

µ g∗

(
Kx
µ

)
∀x ∈ H,

where L(ρ, µ) := 1
ρ + ‖K‖2

µ .
For ρ2 ≥ ρ1 > 0 and every x ∈ H, it holds (cf. (2.8))

ρ1f(x) = sup
p∈dom f∗

{
〈x, p〉 − f∗(p) − ρ1

2
‖p‖2

}
≤ sup

p∈dom f∗

{
〈x, p〉 − f∗(p) − ρ2

2
‖p‖2

}
+ sup

p∈dom f∗

{
ρ2 − ρ1

2
‖p‖2

}

≤ ρ2f(x) + (ρ2 − ρ1)
L2

f

2
,

5

which yields, letting ρ1 ↓ 0 (cf. [1, Proposition 12.32]),

ρ2f(x) ≤ f(x) ≤ ρ2f(x) + ρ2
L2

f

2
.

Similarly, for µ2 ≥ µ1 > 0 and every y ∈ K, it holds

µ1g(y) ≤ µ2g(y) + (µ2 − µ1)
L2

g

2
,

and
µ2g(y) ≤ g(y) ≤ µ2g(y) + µ2

L2
g

2
.

Consequently, for ρ2 ≥ ρ1 > 0, µ2 ≥ µ1 > 0 and every x ∈ H, we have

F ρ2,µ2(x) ≤ F ρ1,µ1(x) ≤ F ρ2,µ2(x) + (ρ2 − ρ1)
L2

f

2
+ (µ2 − µ1)

L2
g

2
(3.1)

and

F ρ2,µ2(x) ≤ F (x) ≤F ρ2,µ2(x) + ρ2
L2

f

2
+ µ2

L2
g

2
. (3.2)

3.2 The variable smoothing and the constant smoothing algorithms

Throughout this paper F : H → R, F (x) = f(x) + g(Kx), will denote the objective
function of (P). The variable smoothing algorithm which we present at the beginning of
this subsection can be seen as an extension of the accelerated gradient method of Nesterov
(cf. [28]) by using variable smoothing parameters, which we update in each iteration.

Algorithm 3.1. Let y1 = x0 ∈ H, (ρk)k≥1, (µk)k≥1 ⊆ R++, let t1 = 1, and set

(∀k ≥ 1)


Lk = 1

ρk
+ ‖K‖2

µk
,

xk = yk − 1
Lk

(
Prox 1

ρk
f∗

(
yk
ρk

)
+ K∗Prox 1

µk
g∗

(
Kyk
µk

))
,

tk+1 = 1+
√

1+4t2
k

2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(3.3)

The convergence of Algorithm 3.1 is proved by the following theorem.

Theorem 3.1. Let f : H → R be a convex and Lf -Lipschitz continuous function, g :
K → R a convex and Lg-Lipschitz continuous function, K : H → K a linear continuous
operator and x∗ ∈ H an optimal solution to (P). Then, when choosing

ρk = 1
ak

and µk = 1
bk

∀k ≥ 1,

where a, b ∈ R++, Algorithm 3.1 generates a sequence (xk)k≥1 ⊆ H satisfying

F (xk+1) − F (x∗) ≤ 2(a + b ‖K‖2)
k + 2

‖x0 − x∗‖2 + 2(1 + ln(k + 1))
k + 2

(
L2

f

a
+

L2
g

b

)
∀k ≥ 1.

(3.4)

This yields a rate of convergence for the objective of order O(ln k
k).

6

Proof. For any k ≥ 1, we denote F k := F ρk,µk , pk := (tk − 1)(xk−1 − xk) and

ξk := ∇F k(yk) = Prox 1
ρk

f∗

(
yk

ρk

)
+ K∗Prox 1

µk
g∗

(
Kyk

µk

)
.

For any k ≥ 1, it holds

pk+1 − xk+1 = (tk+1 − 1)(xk − xk+1) − xk+1

= (tk+1 − 1)xk − tk+1

(
yk+1 − 1

Lk+1
ξk+1

)
= pk − xk + tk+1

Lk+1
ξk+1,

and from here, it follows

‖pk+1 − xk+1 + x∗‖2

= ‖pk − xk + x∗‖2 + 2
〈

pk − xk + x∗,
tk+1
Lk+1

ξk+1

〉
+
(

tk+1
Lk+1

)2
‖ξk+1‖2

= ‖pk − xk + x∗‖2 + 2tk+1
Lk+1

〈pk, ξk+1〉

+ 2tk+1
Lk+1

〈
x∗ − yk+1 − pk

tk+1
, ξk+1

〉
+
(

tk+1
Lk+1

)2
‖ξk+1‖2

= ‖pk − xk + x∗‖2 + 2(tk+1 − 1)
Lk+1

〈pk, ξk+1〉 + 2tk+1
Lk+1

〈x∗ − yk+1, ξk+1〉 +
(

tk+1
Lk+1

)2
‖ξk+1‖2 .

Further, using (2.7), since xk+1 = yk+1 − 1
Lk+1

ξk+1, it follows

F k+1(xk+1) ≤ F k+1(yk+1) + 〈ξk+1, xk+1 − yk+1〉 + Lk+1
2

‖xk+1 − yk+1‖2

= F k+1(yk+1) − 1
Lk+1

‖ξk+1‖2 + 1
2Lk+1

‖ξk+1‖2

= F k+1(yk+1) − 1
2Lk+1

‖ξk+1‖2 , (3.5)

and, from here, by making use of the convexity of F k+1, we have

〈x∗ − yk+1, ξk+1〉 ≤ F k+1(x∗) − F k+1(yk+1)
(3.5)
≤ F k+1(x∗) − F k+1(xk+1) − 1

2Lk+1
‖ξk+1‖2 ∀k ≥ 1. (3.6)

On the other hand, since F k+1(xk) − F k+1(yk+1) ≥ 〈ξk+1, xk − yk+1〉, we obtain

‖ξk+1‖2(3.5)
≤ 2Lk+1(F k+1(yk+1) − F k+1(xk+1))

≤ 2Lk+1

(
F k+1(xk) − F k+1(xk+1) − 1

tk+1
〈ξk+1, pk〉

)
∀k ≥ 1. (3.7)

Thus, as t2
k+1 − tk+1 = t2

k and by making use of (3.1), for any k ≥ 1, it yields

‖pk+1 − xk+1 + x∗‖2 − ‖pk − xk + x∗‖2

7

(3.6)
≤ 2(tk+1 − 1)

Lk+1
〈pk, ξk+1〉 + 2tk+1

Lk+1
(F k+1(x∗) − F k+1(xk+1)) +

t2
k+1 − tk+1

L2
k+1

‖ξk+1‖2

(3.7)
≤ 2tk+1

Lk+1
(F k+1(x∗) − F k+1(xk+1)) +

2(t2
k+1 − tk+1)

Lk+1
(F k+1(xk) − F k+1(xk+1))

= 2t2
k

Lk+1
(F k+1(xk) − F k+1(x∗)) −

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

(3.1)
≤ 2t2

k

Lk+1

(
F k(xk) − F k(x∗) + (ρk − ρk+1)

L2
f

2
+ (µk − µk+1)

L2
g

2

)

−
2t2

k+1
Lk+1

(F k+1(xk+1) − F k+1(x∗))

= 2t2
k

Lk+1

(
F k(xk) − F k(x∗) + ρk

L2
f

2
+ µk

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

− 2t2
k

Lk+1

(
ρk+1

L2
f

2
+ µk+1

L2
g

2

)
.

By using (3.2), it follows that for any k ≥ 1

F k(xk) − F k(x∗) + ρk

L2
f

2
+ µk

L2
g

2
≥ F (xk) − F k(x∗) ≥ F (xk) − F (x∗) ≥ 0,

thus

‖pk+1 − xk+1 + x∗‖2 − ‖pk − xk + x∗‖2

≤ 2t2
k

Lk

(
F k(xk) − F k(x∗) + ρk

L2
f

2
+ µk

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

− 2t2
k

Lk+1

(
ρk+1

L2
f

2
+ µk+1

L2
g

2

)

= 2t2
k

Lk

(
F k(xk) − F k(x∗) + ρk

L2
f

2
+ µk

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

−
2t2

k+1
Lk+1

(
ρk+1

L2
f

2
+ µk+1

L2
g

2

)
+ 2tk+1

Lk+1

(
ρk+1

L2
f

2
+ µk+1

Lg
f

2

)
,

which implies that

‖pk+1 − xk+1 + x∗‖2 +
2t2

k+1
Lk+1

(
F k+1(xk+1) − F k+1(x∗) + ρk+1

L2
f

2
+ µk+1

L2
g

2

)

≤ ‖pk − xk + x∗‖2 + 2t2
k

Lk

(
F k(xk) − F k(x∗) + ρk

L2
f

2
+ µk

L2
g

2

)

+ 2tk+1
Lk+1

(
ρk+1

L2
f

2
+ µk+1

L2
g

2

)
.

8

Making again use of (3.2), this further yields for any k ≥ 1

2t2
k+1

Lk+1
(F (xk+1) − F (x∗))

≤
2t2

k+1
Lk+1

(
F k+1(xk+1) − F k+1(x∗) + ρk+1

L2
f

2
+ µk+1

L2
g

2

)
+ ‖pk+1 − xk+1 + x∗‖2

≤ 2t2
1

L1

(
F 1(x1) − F 1(x∗) + ρ1

L2
f

2
+ µ1

L2
g

2

)
+ ‖p1 − x1 + x∗‖2

+
k∑

s=1

2ts+1
Ls+1

(
ρs+1

L2
f

2
+ µs+1

L2
g

2

)
. (3.8)

Since x1 = y1 − 1
L1

∇F 1(y1) and

F 1(x∗) ≥ F 1(y1) +
〈
∇F 1(y1), x∗ − y1

〉
F 1(x1) ≤ F 1(y1) +

〈
∇F 1(y1), x1 − y1

〉
+ L1

2
‖x1 − y1‖2 ,

we get

2t2
1

L1

(
F 1(x1) − F 1(x∗)

)
+ ‖p1 − x1 + x∗‖2

≤ 2〈x1 − y1, x∗ − y1〉 − ‖x1 − y1‖2 + ‖x1 − x∗‖2 = ‖y1 − x∗‖2 = ‖x0 − x∗‖2,

and this, together with (3.8), give rise to the following estimate

2t2
k+1

Lk+1
(F (xk+1) − F (x∗)) ≤ ‖x0 − x∗‖2 +

k+1∑
s=1

ts

Ls

(
ρsL2

f + µsL2
g

)
. (3.9)

Furthermore, since tk+1 ≥ 1
2 + tk for any k ≥ 1, it follows that tk+1 ≥ k+2

2 , which, along
with the fact that Lk = 1

ρk
+ ‖K‖2

µk
= (a + b ‖K‖2)k, lead for any k ≥ 1 to the following

estimate

F (xk+1) − F (x∗)

≤ 2(a + b ‖K‖2)(k + 1)
(k + 2)2

(
‖x0 − x∗‖2 + L2

f

k+1∑
s=1

tsρs

Ls
+ L2

g

k+1∑
s=1

tsµs

Ls

)

≤ 2(a + b ‖K‖2)
k + 2

‖x0 − x∗‖2 + 2
k + 2

k+1∑
s=1

ts

s2

(
L2

f

a
+

L2
f

b

)
.

Using now that tk+1 ≤ 1 + tk for any k ≥ 1, it yields that tk+1 ≤ k + 1 for any k ≥ 0,
thus

k+1∑
s=1

ts

s2 ≤
k+1∑
s=1

1
s

≤ 1 +
k+1∑
s=2

∫ s

s−1

1
x

dx = 1 +
∫ k+1

1

1
x

dx = 1 + ln(k + 1).

Finally, we obtain that

F (xk+1) − F (x∗) ≤ 2(a + b ‖K‖2)
k + 2

‖x0 − x∗‖2 + 2(1 + ln(k + 1))
k + 2

(
L2

f

a
+

L2
g

b

)
∀k ≥ 1,

which concludes the proof.

9

In the second part of this subsection we propose a variant of Algorithm 3.1 formulated
with constant smoothing parameters:

Algorithm 3.2. Let y1 = x0 ∈ H, ρ, µ ∈ R++, let t1 = 1, L(ρ, µ) = 1
ρ + ‖K‖2

µ , and set

(∀k ≥ 1)


xk = yk − 1

L(ρ,µ)

(
Prox 1

ρ
f∗

(
yk
ρ

)
+ K∗Prox 1

µ
g∗

(
Kyk

µ

))
,

tk+1 = 1+
√

1+4t2
k

2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(3.10)

Remark 3.1. Algorithm 3.2 is nothing else than the accelerated gradient method
proposed by Nesterov in [28] employed to the minimization of the function F ρ,µ =
ρf + µg ◦ K. It generates a sequence (xk)k≥1 ⊆ H which provides a rate of conver-
gence for the objective F ρ,µ of order O(1

k2). In Theorem 3.2 we will discuss the rate of
convergence of (F (xk))k≥1.

Remark 3.2. Constant smoothing parameters have been also used in [20] and [8, 9]
within the framework of double smoothing algorithms, which assume the regularization
in two steps of the Fenchel dual problem to (P) and, consequently, the solving of an
unconstrained optimization problem with a strongly convex and differentiable objective
function having a Lipschitz continuous gradient.

Theorem 3.2. Let f : H → R be a convex and Lf -Lipschitz continuous function, g :
K → R a convex and Lg-Lipschitz continuous function, K : H → K a linear continuous
operator and x∗ ∈ H an optimal solution to (P). Then, when choosing for ε > 0

ρ = 2ε

3L2
f

and µ = 2ε

3L2
g

,

Algorithm 3.2 generates a sequence (xk)k≥1 ⊆ H which provides an ε-optimal solution to
(P) with a rate of convergence for the objective of order O(1

k).

Proof. In order to prove this statement, one has only to reproduce the first part of the
proof of Theorem 3.1 when

ρk = ρ, µk = µ and Lk = L(ρ, µ) = 1
ρ

+ ‖K‖2

µ
∀k ≥ 1,

fact which leads to (3.9). This inequality reads in this particular situation

F (xk+1) − F (x∗) ≤ L(ρ, µ) ‖x0 − x∗‖2

2t2
k+1

+
ρL2

f + µL2
g

2t2
k+1

k+1∑
s=1

ts ∀k ≥ 1.

Since t2
k+1 = t2

k + tk+1 for any k ≥ 1, one can inductively prove that t2
k+1 =

∑k+1
s=1 ts,

which, together with the fact that tk+1 ≥ k+2
2 for any k ≥ 1, yields

F (xk+1) − F (x∗) ≤ 2L(ρ, µ) ‖x0 − x∗‖2

(k + 2)2 +
ρL2

f + µL2
g

2
∀k ≥ 1. (3.11)

In order to obtain ε-optimality for the objective of the problem (P), where ε > 0 is a
given level of accuracy, we choose ρ = 2ε

3L2
f

and µ = 2ε
3L2

g
and, thus, we only have to force

10

the first term in the right-hand side of the above estimate to be less than or equal to ε
3 .

Taking also into account that in this situation L(ρ, µ) = 3L2
f +3L2

g‖K‖2

2ε , it holds

ε

3
≥ 2L(ρ, µ) ‖x0 − x∗‖2

(k + 2)2 =
3
(
L2

f + L2
g‖K‖2

)
‖x0 − x∗‖2

ε(k + 2)2

⇔ ε2

9
≥

(
L2

f + L2
g‖K‖2

)
‖x0 − x∗‖2

(k + 2)2

⇔ ε

3
≥

√
L2

f + L2
g‖K‖2 ‖x0 − x∗‖
k + 2

,

which shows that an ε-optimal solution to (P) can be provided with a rate of convergence
for the objective of order O(1

k).

Remark 3.3. The rate of convergence of Algorithm 3.1 may not be as good as the one
proved for the algorithm with constant smoothing parameters depending on a fixed level
of accuracy ε > 0. However, the main advantage of the variable smoothing methods is
given by the fact that the sequence of objective values (f(xk) + g(Kxk))k≥1 converges to
the optimal objective value of (P), whereas, when generated by Algorithm 3.2, despite of
the fact that it approximates the optimal objective value with a better convergence rate,
this sequence may not converge to the optimal objective value. Indeed, by taking into
account (3.11), one can see that the right-hand side of this inequality is bounded from
below by some strictly positive real number.

3.3 The case when f is differentiable with Lipschitz continuous gradient

In this subsection we show how Algorithm 3.1 and Algorithm 3.2 for solving the problem
(P) can be adapted to the situation when f is a differentiable function with Lipschitz
continuous gradient. We provide iterative schemes with variable and constant smoothing
variables and corresponding convergence statements. More precisely, we deal with the
optimization problem

(P) inf
x∈H

{f(x) + g(Kx)},

where K : H → K is a linear continuous operator, f : H → R is a convex and differentiable
function with L∇f -Lipschitz continuous gradient and g : K → R is a convex and Lg-
Lipschitz continuous function.

Algorithm 3.1 can be adapted to this framework as follows.

Algorithm 3.3. Let y1 = x0 ∈ H, (µk)k≥1 ⊆ R++, let t1 = 1, and set

(∀k ≥ 1)


Lk = L∇f + ‖K‖2

µk
,

xk = yk − 1
Lk

(
∇f(yk) + K∗Prox 1

µk
g∗

(
Kyk
µk

))
,

tk+1 = 1+
√

1+4t2
k

2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(3.12)

Its convergence is furnished by the following theorem.

11

Theorem 3.3. Let f : H → R be a convex and differentiable function with L∇f -Lipschitz
continuous gradient, g : K → R a convex and Lg-Lipschitz continuous function, K : H →
K a nonzero linear continuous operator and x∗ ∈ H an optimal solution to (P). Then,
when choosing

µk = 1
bk

∀k ≥ 1,

where b ∈ R++, Algorithm 3.3 generates a sequence (xk)k≥1 ⊆ H satisfying for any k ≥ 1

F (xk+1) − F (x∗) ≤ 2(L∇f + b ‖K‖2)
k + 2

‖x0 − x∗‖2 + 2(1 + ln(k + 1))
k + 2

L2
g(L∇f + b ‖K‖2)

b2 ‖K‖2 .

(3.13)

This yields a rate of convergence for the objective of order O(ln k
k).

Proof. For any k ≥ 1, we let F k : H → R, F k(x) = f(x) + µkg(Kx). For any k ≥ 1 and
every x ∈ H, it holds ∇F k(x) = ∇f(x) + K∗Prox 1

µk
g∗

(
Kx
µk

)
and ∇F k is Lk-Lipschitz

continuous, where Lk = L∇f + ‖K‖2

µk
.

As in the proof of Theorem 3.1, by defining pk := (tk − 1)(xk−1 − xk), we obtain for
any k ≥ 1

‖pk+1 − xk+1 + x∗‖2 − ‖pk − xk + x∗‖2

≤ 2t2
k

Lk+1

(
F k+1(xk) − F k+1(x∗)

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

≤ 2t2
k

Lk+1

(
F k(xk) − F k+1(x∗) + (µk − µk+1)

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

≤ 2t2
k

Lk+1

(
F k(xk) − F k(x∗) + µk

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗)) − t2

k

Lk+1
µk+1L2

g

≤ 2t2
k

Lk

(
F k(xk) − F k(x∗) + µk

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗)) − t2

k

Lk+1
µk+1L2

g

= 2t2
k

Lk

(
F k(xk) − F k(x∗) + µk

L2
g

2

)
−

2t2
k+1

Lk+1
(F k+1(xk+1) − F k+1(x∗))

−
t2
k+1L2

g

Lk+1
µk+1 +

tk+1L2
g

Lk+1
µk+1

and, consequently,

‖pk+1 − xk+1 + x∗‖2 +
2t2

k+1
Lk+1

(
F k+1(xk+1) − F k+1(x∗) + µk+1

L2
g

2

)

≤ ‖pk − xk + x∗‖2 + 2t2
k

Lk

(
F k(xk) − F k(x∗) + µk

L2
g

2

)
+

tk+1L2
g

Lk+1
µk+1.

12

For any k ≥ 1, it holds

2t2
k+1

Lk+1
(F (xk+1) − F (x∗))

≤
2t2

k+1
Lk+1

(
F k+1(xk+1) − F k+1(x∗) + µk+1

L2
g

2

)
+ ‖pk+1 − xk+1 + x∗‖2

≤ 2t2
1

L1

(
F 1(x1) − F 1(x∗) + µ1

L2
g

2

)
+ ‖p1 − x1 + x∗‖2 +

k∑
s=1

ts+1L2
g

Ls+1
µs+1,

which yields

2t2
k+1

Lk+1
(F (xk+1) − F (x∗)) ≤ ‖x0 − x∗‖2 +

k+1∑
s=1

tsL2
g

Ls
µs. (3.14)

For any k ≥ 1, since tk+1 ≥ k+2
2 and Lk = L∇f + ‖K‖2

µk
= L∇f + b ‖K‖2 k, it follows

F (xk+1) − F (x∗)

≤ 2(L∇f + b ‖K‖2 (k + 1))
(k + 2)2

(
‖x0 − x∗‖2 +

k+1∑
s=1

tsL2
g

(L∇f + b ‖K‖2 s)sb

)
.

Thus, for any k ≥ 1, since tk ≤ k, it yields

F (xk+1) − F (x∗)

≤ 2(L∇f + b ‖K‖2 (k + 1))
(k + 2)2

(
‖x0 − x∗‖2 +

k+1∑
s=1

L2
g

(L∇f + b ‖K‖2 s)b

)

≤ 2(L∇f + b ‖K‖2 (k + 1))
(k + 2)2

(
‖x0 − x∗‖2 +

k+1∑
s=1

L2
g

b2 ‖K‖2 s

)

≤ 2(L∇f + b ‖K‖2 (k + 1))
(k + 2)2

(
‖x0 − x∗‖2 +

L2
g

b2 ‖K‖2 (1 + ln(k + 1))
)

≤ 2(L∇f + b ‖K‖2)
k + 2

(
‖x0 − x∗‖2 +

L2
g

b2 ‖K‖2 (1 + ln(k + 1))
)

≤ 2(L∇f + b ‖K‖2)
k + 2

‖x0 − x∗‖2 + 2(1 + ln(k + 1))
k + 2

L2
g(L∇f + b ‖K‖2)

b2 ‖K‖2 .

By adapting Algorithm 3.3 to the framework considered in this subsection, we obtain
the following algorithm with constant smoothing variables:

Algorithm 3.4. Let y1 = x0 ∈ H, µ ∈ R++, let t1 = 1, L(µ) = L∇f + ‖K‖2

µ , and set

(∀k ≥ 1)


xk = yk − 1

L(µ)

(
∇f(yk) + K∗Prox 1

µ
g∗

(
Kyk

µ

))
,

tk+1 = 1+
√

1+4t2
k

2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(3.15)

13

The convergence of Algorithm 3.4 is stated by the following theorem, which can be
proved in the lines of the proof of Theorem 3.3.

Theorem 3.4. Let f : H → R be a convex and differentiable function with L∇f -Lipschitz
continuous gradient, g : K → R a convex and Lg-Lipschitz continuous function, K : H →
K a nonzero linear continuous operator and x∗ ∈ H an optimal solution to (P). Then,
when choosing for ε > 0

µ = ε

L2
g

,

Algorithm 3.4 generates a sequence (xk)k≥1 ⊆ H which provides an ε-optimal solution to
(P) with a rate of convergence for the objective of order O(1

k).

Remark 3.4. Algorithm 3.2 is the accelerated gradient method from [28] employed to
the minimization of the function F µ = f + µg ◦ K, which provides a rate of convergence
for the objective F µ of order O(1

k2). Make use of the terminology in [3], one can notice
that g ◦ K is (‖K‖2,

L2
g

2 , 0)-smoothable, thus, for the choice of the smoothing parameter
µ in Algorithm 3.4, such that the generated sequence (xk)k≥1 ⊆ H provides an ε-optimal
solution to (P) with a rate of convergence for the objective of order O(1

k), one can make
use of [3, Theorem 3.1]. A simple calculation shows that this will lead to the same value
for µ as given in Theorem 3.4.

3.4 The optimization problem with the sum of more than two functions
in the objective

We close this section by discussing the employment of the algorithmic schemes presented
in the previous two subsections to the optimization problem (1.2)

inf
x∈H

{
f(x) +

m∑
i=1

gi(Kix)
}

,

where H and Ki, i = 1, . . . , m, are real Hilbert spaces, f : H → R is a convex and
either Lf -Lipschitz continuous or differentiable with L∇f -continuous gradient function,
gi : Ki → R are convex and Lgi-Lipschitz continuous functions and Ki : H → Ki,
i = 1, . . . , m, are linear continuous operators. By endowing K := K1 × . . . × Km with the
inner product defined as

〈y, z〉 =
m∑

i=1
〈yi, zi〉 ∀y, z ∈ K,

and with the corresponding norm and by defining g : K → R, g(y1, . . . , ym) =
∑m

i=1 gi(yi)
and K : H → K, Kx = (K1x, . . . , Kmx), problem (1.2) can equivalently be written as

inf
x∈H

{f(x) + g(Kx)}

and, consequently, solved via one of the variable or constant smoothing algorithms in-
troduced in the subsections 3.2 and 3.3, depending on the properties the function f is
endowed with.

In the following we determine the elements related to the above constructed function g
which appear in these iterative schemes and in the corresponding convergence statements.
Obviously, the function g is convex and, since for every (y1, . . . , ym), (z1, . . . , zm) ∈ K

|g(y1,..., ym) − g(z1,..., zm)| ≤
m∑

i=1
Lgi‖yi − zi‖ ≤

(
m∑

i=1
L2

gi

) 1
2

‖(y1,..., ym) − (z1,..., zm)‖,

14

it is
(∑m

i=1 L2
gi

) 1
2 -Lipschitz continuous. On the other hand, for each µ ∈ R++ and

(y1, . . . , ym) ∈ K, it holds
µg(y1, . . . , ym) =

m∑
i=1

µgi(yi),

thus

∇(µg)(y1, . . . , ym) = (∇(µg1)(y1), . . . , ∇(µgm)(ym))

=
(

Prox 1
µ

g∗
i

(
y1
µ

)
, . . . , Prox 1

µ
g∗

m

(
ym

µ

))
.

Since K∗(y1, . . . , ym) =
∑m

i=1 K∗
i yi, for every (y1, . . . , ym) ∈ K, we have

∇(µg ◦ K)(x) = K∗∇(µg)(K1x, . . . , Kmx) =
m∑

i=1
K∗

i ∇(µgi)(Kix)

=
m∑

i=1
K∗

i Prox 1
µ

g∗
i

(
Kix

µ

)
∀x ∈ H.

Finally, we notice that for arbitrary x, y ∈ H, one has

‖∇(µg ◦ K)(x) − ∇(µg ◦ K)(y)‖ =
∥∥∥∥∥

m∑
i=1

K∗
i ∇(µgi)(Kix) −

m∑
i=1

K∗
i ∇(µgi)(Kiy)

∥∥∥∥∥
≤

m∑
i=1

‖Ki‖ ‖∇(µgi)(Kix) − ∇(µgi)(Kiy)‖

≤
m∑

i=1

‖Ki‖
µ

‖Kix − Kiy‖ ≤
∑m

i=1 ‖Ki‖2

µ
‖x − y‖ ,

which shows that ∇(µg ◦ K) is
∑m

i=1‖Ki‖2

µ -Lipschitz continuous. In order to deduce the
Lipschitz constant of ∇(µg ◦ K) one can alternatively apply [3, Lemma 2.1 and Lemma
2.2].

4 Numerical experiments

4.1 Image processing

The first numerical experiment involving the variable smoothing algorithm concerns the
solving of an extremely ill-conditioned linear inverse problem which arises in the field of
signal and image processing, by basically solving the regularized nondifferentiable convex
optimization problem (see, for instance, [15, Subsection 6.2.2])

inf
x∈Rn

{‖Ax − u‖1 + λ ‖Wx‖1}, (4.1)

where u ∈ Rn is the blurred and noisy image, A : Rn → Rn is a blurring operator,
W : Rn → Rn is the discrete Haar wavelet transform with four levels and λ > 0 is the
regularization parameter. Here we use a robust l1 data fidelity term, which is contrast
invariant (cf. [15]) and nonsmooth. The norms of the linear continuous operators involved
are ‖A‖ = 1 and ‖W‖ = 1.

15

original blurred and noisy

Figure 4.1: The 256 × 256 cameraman test image

The optimization problem (4.1) can be written as

inf
x∈Rn

{f(x) + g1(Ax) + g2(Wx)},

where f : Rn → R is taking to be f ≡ 0 with the Lipschitz constant of its gradient
L∇f = 0, g1 : Rn → R, g1(y) = ‖y − u‖1 is convex and

√
n-Lipschitz continuous and

g2 : Rn → R, g2(y) = λ ‖y‖1 is convex and λ
√

n-Lipschitz continuous. For every p ∈ Rn,
it holds g∗

1(p) = δ[−1,1]n(p) + pT u and g∗
2(p) = δ[−λ,λ]n(p) (see, for instance, [6]). By also

using the considerations made in Subsection 3.4, we solved this problem with Algorithm
3.3 and computed to this aim for µ ∈ R++ and x ∈ Rn

Prox 1
µ

g∗
1

(
Ax

µ

)
= arg min

p∈[−1,1]n

{
1
µ

pT u + 1
2

∥∥∥∥Ax

µ
− p

∥∥∥∥2
}

= P[−1,1]n
(

Ax − u

µ

)
,

and

Prox 1
µ

g∗
2

(
Wx

µ

)
= arg min

p∈[−λ,λ]n

1
2

∥∥∥∥Wx

µ
− p

∥∥∥∥2
= P[−λ,λ]n

(
Wx

µ

)
.

Hence, choosing µk = 1
ak , for some parameter a ∈ R++ and taking into account that

Lk = ‖A‖2+‖W ‖2

µk
= 2ak, for k ≥ 1, the iterative scheme in Algorithm 3.3 with starting

point u ∈ Rn becomes

Algorithm 4.1. Let y1 = x0 = u ∈ Rn, a ∈ R++, let t1 = 1, and set

(∀k ≥ 1)


µk = 1

ak , Lk = 2ak,

xk = yk − 1
Lk

(
A∗P[−1,1]n

(
Ayk−u

µk

)
+ W ∗P[−λ,λ]n

(
W yk
µk

))
,

tk+1 = 1+
√

1+4t2
k

2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(4.2)

We considered the 256 × 256 cameraman test image, which is part of the image
processing toolbox in Matlab, that we vectorized (to a vector of dimension n = 2562 =
65536) and normalized, in order to make pixels range in the closed interval from 0 (black)
to 1 (white). In addition, we added white Gaussian noise with standard deviation 10−3

and set the regularization parameter to λ = 2e-5. The original and observed images are
shown in Figure 4.1.

16

PD
5 sec

 = 69.870007 SS
5 sec

 = 143.902831 VS
5 sec

 = 45.186265

Figure 4.2: Results furnished by the primal-dual (PD), the skew splitting (SS) and the variable
smoothing (VS) algorithms after 5 seconds of CPU time.

When measuring the quality of the restored images, we made use of the improvement
in signal-to-noise ratio (ISNR, cf. [16]), which is defined as

ISNRk = 10 log10

(
‖x − u‖2

‖x − xk‖2

)
,

where x, u and xk denote the original, the observed and the estimated image at iteration
k ≥ 1, respectively. We tested several values for a ∈ R++ and we obtained after 100
iterations the objective values and the ISNR values presented in Table 4.1.

a 1e-4 1e-3 1e-2 1e-1 1 1e+1 1e+2 1e+3
fval 129.560 65.392 47.711 45.316 44.534 49.257 168.110 472.602
ISNR 2.141 4.590 6.100 6.133 6.117 5.258 1.570 0.301

Table 4.1: Objective values (fval) and ISNR values (higher is better) after 5 seconds of
CPU time.

In the context of solving the problem (4.1), we compared the variable smoothing
approach (VS) for a = 1e-1 with the operator-splitting algorithm based on skew splitting
(SS) proposed in [13,18] with parameters ε = 1

10(
√

2+1) and γk = γ = 1−ε√
2 , for any k ≥ 1,

and with the primal-dual algorithm (PD) from [15] with parameters θ = 1, σ = 0.01 and
τ = 70.001. The parameters considered for the three approaches provide the best results
when solving (4.1). The output of these three algorithms after 5 seconds of CPU time,
along with the corresponding objective values, can be seen in Figure 4.2 and they show
that the variable smoothing approach outperforms the other two methods. Figure 4.3
shows the evolution of the values of the objective function and of the improvement in
signal-to-noise ratio within the first 5 seconds.

4.2 Support vector machines classification

The second numerical experiment we consider for the variable smoothing algorithm con-
cerns the solving of the problem of classifying images via support vector machines clas-
sification, an approach which belongs to the class of kernel based learning methods.

The given data set consisting of 11339 training images and 1850 test images of size
28 × 28 was taken from the website http://www.cs.nyu.edu/~roweis/data.html. The

17

0 1 2 3 4 5

50

100

150

200

250

300
Function values

CPU time in seconds

Variable Smoothing
Primal−Dual
Skew Splitting

0 1 2 3 4 5
0

1

2

3

4

5

6

7
ISNR values

CPU time in seconds

Variable Smoothing
Primal−Dual
Skew Splitting

Figure 4.3: The evolution of the values of the objective function and of the ISNR for the primal-
dual (PD), the skew splitting (SS) and the variable smoothing (VS) algorithms after 5 seconds
of CPU time.

problem we consider is to determine a decision function based on a pool of handwritten
digits showing either the number five or the number six, labeled by +1 and −1, respec-
tively (see Figure 4.4). Subsequently, we evaluate the quality of the decision function on
the test data set by computing the percentage of misclassified images. In order to reduce
the computational effort, we used only half of the available images from the training data
set.

Figure 4.4: A sample of images belonging to the classes +1 and −1, respectively.

The classifier functional f is assumed to be an element of the Reproducing Kernel
Hilbert Space (RHKS) Hκ, which in our case is induced by the symmetric and finitely
positive definite Gaussian kernel function

κ : Rd × Rd → R, κ(x, y) = exp
(

−‖x − y‖2

2σ2

)
.

Let 〈·, ·〉κ denote the inner product on Hκ, ‖ · ‖κ the corresponding norm and K ∈ Rn×n

the Gram matrix with respect to the training data set Z = {(X1, Y1), . . . , (Xn, Yn)} ⊆
Rd × {+1, −1}, namely the symmetric and positive definite matrix with entries Kij =
κ(Xi, Xj) for i, j = 1, . . . , n. Within this example we make use of the hinge loss
v : R × R → R, v(x, y) = max{1 − xy, 0}, which penalizes the deviation between the
predicted value f(x) and the true value y ∈ {+1, −1}. The smoothness of the deci-
sion function f ∈ Hκ is employed by means of the smoothness functional Ω : Hκ → R,
Ω(f) = ‖f‖2

κ, taking high values for nonsmooth functions and low values for smooth
ones. The decision function f we are looking for is the optimal solution of the Tikhonov

18

regularization problem

inf
f∈Hκ

{
1
2

Ω(f) + C
n∑

i=1
v(f(Xi), Yi)

}
, (4.3)

where C > 0 denotes the regularization parameter controlling the tradeoff between the
loss function and the smoothness functional.

The representer theorem (cf. [30]) ensures the existence of a vector of coefficients
c = (c1, . . . , cn)T ∈ Rn such that the minimizer f of (4.3) can be expressed as a kernel
expansion in terms of the training data, i.e., f(·) =

∑n
i=1 ciκ(·, Xi). Thus, the smoothness

functional becomes Ω(f) = ‖f‖2
κ = 〈f, f〉κ =

∑n
i=1

∑n
j=1 cicjκ(Xi, Xj) = cT Kc and for

i = 1, . . . , n, it holds f(Xi) =
∑n

j=1 cjκ(Xi, Xj) = (Kc)i. Hence, in order to determine
the decision function one has to solve the convex optimization problem

inf
c∈Rn

{
f(c) +

n∑
i=1

gi(Kc)
}

, (4.4)

where f : Rn → R, f(c) = 1
2cT Kc, and gi : Rn → R, gi(c) = Cv(ci, Yi) for i = 1, . . . , n.

The function f : Rn → R is convex and differentiable and it fulfills ∇f(c) = Kc for every
c ∈ Rn, thus ∇f is Lipschitz continuous with Lipschitz constant L∇f = ‖K‖. For any i =
1, . . . , n the function gi : Rn → R is convex and C-Lipschitz continuous, properties which
allowed us to solve the problem (4.4) with Algorithm 3.3, by using also the considerations
made in Subsection 3.4. For any i = 1, . . . , n and every p = (p1, . . . , pn)T ∈ Rn, it holds
(see, also, [7, 11])

g∗
i (p) = sup

c∈Rn
{〈p, c〉 − Cv(ci, Yi)} = C sup

c∈Rn

{〈
p

C
, c

〉
− v(ci, Yi)

}

=

C(v(·, Yi))∗
(

pi

C

)
, if pj = 0, i 6= j,

+ ∞, otherwise,

=
{

piYi, if pj = 0, i 6= j and piYi ∈ [−C, 0],
+ ∞, otherwise.

Thus, for µ ∈ R++, c = (c1, . . . , cn)T and i = 1, . . . , n, we have

Prox 1
µ

g∗
i

(
c

µ

)
= arg min

piYi∈[−C,0]
pj=0,j 6=i

{
piYi

µ
+ 1

2

(
ci

µ
− pi

)2
}

.

For Yi = 1, we have

Prox 1
µ

g∗
i

(
c

µ

)
= arg min

pi∈[−C,0]
pj=0,j 6=i

{
pi + µ

2

(
ci

µ
− pi

)2
}

=
(

0, . . . , P[−C,0]

(
ci − 1

µ

)
, . . . , 0

)T

,

while for Yi = −1, it holds

Prox 1
µ

g∗
i

(
c

µ

)
= arg min

pi∈[0,C]
pj=0,j 6=i

{
−pi + µ

2

(
ci

µ
− pi

)2
}

=
(

0, . . . , P[0,C]

(
ci + 1

µ

)
, . . . , 0

)T

.

19

Summarizing, it follows

Prox 1
µ

g∗
i

(
c

µ

)
=
(

0, . . . , PYi[−C,0]

(
ci − Yi

µ

)
, . . . , 0

)T

.

Thus, for every c = (c1, . . . , cn)T , we have

∇
(

n∑
i=1

(µgi ◦ K)
)

(c) =
n∑

i=1
∇(µgi ◦ K)(c) =

n∑
i=1

K∗Prox 1
µ

g∗
i

(
Kc

µ

)

= K∗
(

PY1[−C,0]

((Kc)1 − Y1
µ

)
, . . . , PYn[−C,0]

((Kc)n − Yn

µ

))T

.

Using the nonexpansiveness of the projection operator, we obtain for every c, d ∈ Rn∥∥∥∥∥∇
(

n∑
i=1

(µgi ◦ K)
)

(c) − ∇
(

n∑
i=1

(µgi ◦ K)
)

(d)
∥∥∥∥∥ ≤ ‖K∗‖

∥∥∥∥Kc − Kd

µ

∥∥∥∥ ≤ ‖K‖2

µ
‖c − d‖ .

Choosing µk = 1
ak , for some parameter a ∈ R++ and taking into account that Lk =

‖K‖ + ak ‖K‖2, for k ≥ 1, the iterative scheme in Algorithm 3.3 with starting point
x0 = 0 ∈ Rn becomes

Algorithm 4.2. Let y1 = x0 = 0 ∈ Rn, a ∈ R++, let t1 = 1, and set

(∀k ≥ 1)


µk = 1

ak , Lk = ‖K‖ + ak ‖K‖2 ,

xk = yk − 1
Lk

(
Kyk + K∗

(
PYi[−C,0]

(
(Kyk)i−Yi

µk

))T

i=1,n

)
,

tk+1 = 1+
√

1+4t2
k

2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(4.5)

We denote by D = {(Xi, Yi), i = 1, . . . , 5670} ⊆ R784 × {+1, −1} the set of available
training data consisting of 2711 images in the class +1 and 2959 images in the class
−1. Notice that a sample from each class of images is shown in Figure 4.4. Due to
numerical reasons, the images have been normalized (cf. [21]) by dividing each of them

by the quantity
(

1
5670

∑5670
i=1 ‖Xi‖2

) 1
2 .

C σ = 0.125 σ = 0.25 σ = 0.5 σ = 0.75 σ = 1 σ = 2
0.1 1.0270 1.3514 1.3514 1.8919 2.1081 3.0270

1 1.0270 0.7027 0.7568 1.3514 1.4595 2.2162
10 1.0270 0.7568 0.9189 1.0811 1.1892 1.8378

100 1.0270 0.7568 0.8649 1.4054 1.2432 1.8378
1000 1.0270 0.7568 0.8649 1.4595 1.2432 1.8378

Table 4.2: Misclassification rate in percentage for different model parameters.

In order to specify a good choice for the kernel parameter σ ∈ R++ and the tradeoff
parameter C ∈ R++, we tested different combination of them with a MATLAB solver
over a fixed number of 20000 iterations. Table 4.2 shows the misclassification rate in
percentage for a selection of different model parameters, whereby the combination σ =
0.25 and C = 1 provides with 0.7027 % the lowest misclassification error. This means
that among the 1870 images belonging to the test data set 13 were not correctly classified.

20

By using the variable smoothing algorithm proposed in this paper, we tested different
values of a ∈ R++ for this combination. In Table 4.3 we present the number of iterations
needed in order to guarantee that the misclassification rate reaches and remains below
the optimal level of 0.7027 %. It turns out that for a = 0.03 the algorithm only needs
117 iterations to achieve this precision. Table 4.3 also gives an insight into the numerical
sensitivity of the parameter a when using the variable smoothing approach. For example,
by taking a = 0.003 or a = 0.5, the algorithm needs more than ten times the amount of
iterations in order to reach the same precision.

a 0.003 0.005 0.01 0.03 0.05 0.1 0.3 0.5
iterations 1235 741 379 117 140 300 864 1475

Table 4.3: Number of iterations needed by the variable smoothing algorithm such that the
misclassification rate remains below the misclassification rate of 0.7027 % for σ = 0.25 and C = 1.

Acknowledgements. The authors are thankful to two anonymous reviewers for
hints and remarks which improved the quality of the paper.

References
[1] H.H. Bauschke and P.L. Combettes. Convex Analysis and Monotone Operator The-

ory in Hilbert Spaces. CMS Books in Mathematics, Springer, New York, 2011.
[2] A. Beck and M. Teboulle. A fast iterative shrinkage-tresholding algorithm for linear

inverse problems. SIAM J. Imag. Sci. 2(1), 183–202, 2009.
[3] A. Beck and M. Teboulle. Smoothing and first order methods: a unified framework.

SIAM J. Optim. 22(2), 557–580, 2012.
[4] D. Bertsekas. Constrained optimization and Lagrange Multiplier Methods. Athena

Scientific, Belmont, 1996.
[5] J.M. Borwein and J.D. Vanderwerff. Convex Functions: Constructions, Characteri-

zations and Counterexamples. Cambridge University Press, Cambridge, 2010.
[6] R.I. Boţ. Conjugate Duality in Convex Optimization. Lecture Notes in Economics

and Mathematical Systems, Vol. 637, Springer, Berlin, 2010.
[7] R.I. Boţ, A. Heinrich and G. Wanka. Employing different loss functions for the

classification of images via supervised learning. Cent. Eur. J. Math. 12(2), 381–394,
2014.

[8] R.I. Boţ and C. Hendrich. A double smoothing technique for solving unconstrained
nondifferentiable convex optimization problems. Comput. Optim. Appl. 54(2), 239–
262, 2013.

[9] R.I. Boţ and C. Hendrich. On the acceleration of the double smoothing tech-
nique for unconstrained convex optimization problems. Optimization, 2012.
http://dx.doi.org/10.1080/02331934.2012.745530

[10] R.I. Boţ and C. Hendrich. A Douglas–Rachford type primal-dual method for solving
inclusions with mixtures of composite and parallel-sum type monotone operators.
SIAM J. Optim. 23(4), 2541–2565, 2013.

[11] R.I. Boţ and N. Lorenz. Optimization problems in statistical learning: Duality and
optimality conditions. Eur. J. Oper. Res. 213(2), 395–404, 2011.

21

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122, 2010.

[13] L.M. Briceño-Arias and P.L. Combettes. A monotone + skew splitting model for
composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250, 2011.

[14] R.S. Burachik and V. Jeyakumar. A new geometric condition for Fenchel’s duality
in infinite dimensional spaces. Math. Program. 104(2–3), 229–233, 2005.

[15] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145, 2011.

[16] G. Chantas, N. Galatsanos, A. Likas and M. Saunders. Variational bayesian image
restoration based on a product of t-distributions image prior. IEEE Trans. Image
Process. 17(10), 1795–1805, 2008.

[17] P.L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing.
in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer
Ser. Optim. Appl. 49, H. H. Bauschke et al., eds., Springer, New York, pp. 185–212,
2011.

[18] P.L. Combettes and J.-C. Pesquet. Primal-dual splitting algorithm for solving in-
clusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone
operators. Set-Valued Var. Anal. 20(2), 307–330, 2012.

[19] P.L. Combettes and V.R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Model. Simul. 4(4), 1168–1200, 2005.

[20] O. Devolder, F. Glineur and Y. Nesterov. Double smoothing technique for large-scale
linearly constrained convex optimization. SIAM J. Optim. 22(2), 702–727, 2012.

[21] T.N. Lal, O. Chapelle and B. Schölkopf. Combining a filter method with SVMs.
Studies in Fuzziness and Soft Computing, Springer, 207, pp. 439–445, 2006.

[22] G. Li and K.F. Ng. On extension of Fenchel duality and its application. SIAM J.
Optim. 19(3), 1489–1509, 2008.

[23] J.J. Moreau. Proximité et dualitè dans un espace hilbertien Bull. Soc. Math. Fr.
93, 273–299, 1965.

[24] Y. Nesterov. Excessive gap technique in nonsmooth convex optimization. SIAM J.
Optim., 16(1), 235–249, 2005.

[25] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program. 103(1),
127–152, 2005.

[26] Y. Nesterov. Smoothing technique and its applications in semidefinite optimization.
Math. Program. 110(2), 245–259, 2005.

[27] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, Dordrecht, 2004.

[28] Y. Nesterov. A method for unconstrained convex minimization problem with the
rate of convergence O(1/k2). Doklady AN SSSR (translated as Soviet Math. Docl.),
269, 543–547, 1983.

[29] F. Orabona, A. Argyriou and N. Srebro. PRISMA: PRoximal Iterative SMoothing
Algorithm. arXiv:1206.2372 [math.OC], 2012.

[30] J. Shawe-Taylor and N. Christianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, Cambridge, 2004.

[31] S. Simons. From Hahn–Banach to Monotonicity. Springer, Berlin, 2008.

22

[32] B.C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive
operators. Adv. Comp. Math. 38(3), 667–681, 2013.

23

