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Abstract. We present two modified versions of the primal-dual splitting algorithm relying
on forward-backward splitting proposed in [27] for solving monotone inclusion problems.
Under strong monotonicity assumptions for some of the operators involved we obtain for
the sequences of iterates that approach the solution orders of convergence of O( 1

n) and
O(ωn), for ω ∈ (0, 1), respectively. The investigated primal-dual algorithms are fully
decomposable, in the sense that the operators are processed individually at each iteration.
We also discuss the modified algorithms in the context of convex optimization problems
and present numerical experiments in image processing and pattern recognition in cluster
analysis.
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1 Introduction and preliminaries

The problem of finding the zeros of the sum of two (or more) maximally monotone op-
erators in Hilbert spaces continues to be a very active research field, with applications
in convex optimization, partial differential equations, signal and image processing, etc.
(see [1, 6–9, 13, 14, 27]). To the most prominent methods in this area belong the proximal
point algorithm for finding the zeros of a maximally monotone operator (see [23]) and the
Douglas-Rachford splitting algorithm for finding the zeros of the sum of two maximally
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monotone operators (see [16]). However, also motivated by different applications, the re-
search community was interested in considering more general problems, in which the sum
of finitely many operators appear, some of them being composed with linear continuous
operators [1, 9, 13]. In the last years, even more complex structures were considered, in
which also parallel sums are involved, see [7, 8, 14,27].

The algorithms introduced in the literature for these issues have the remarkable prop-
erty that the operators involved are evaluated separately in each iteration, either by for-
ward steps in the case of the single-valued ones (including here the linear continuous oper-
ators and their adjoints) or by backward steps for the set-valued ones, by using the corre-
sponding resolvents. More than that they share the common feature to be of primal-dual
type, meaning that they solve not only the primal inclusion problem, but also its Attouch-
Théra-type dual. In this context we mention the primal-dual algorithms relying on Tseng’s
forward-backward-forward splitting method (see [9, 14]), on the forward-backward split-
ting method (see [27]) and on the Douglas-Rachford splitting method (see [8]). A relevant
task is to adapt these iterative methods in order be able to investigate their convergence,
namely, to eventually determine convergence rates for the sequences generated by the
schemes in discussion. This could be important when one is interested in obtaining an
optimal solution more rapidly than in their initial formulation, which furnish “only” the
convergence statement. Accelerated versions of the primal-dual algorithm from [14] were
already provided in [7], whereby the reported numerical experiments emphasize the ad-
vantages of the first over the original iterative scheme.

The aim of this paper is to provide modified versions of the algorithm proposed by Vũ
in [27] for which an evaluation of their convergence behaviour is possible. By assuming
that some of the operators involved are strongly monotone, we are able to obtain for the
sequences of iterates orders of convergence of O( 1

n) and O(ωn), for ω ∈ (0, 1), respectively.
For the readers convenience we present first some notations which are used throughout

the paper (see [1, 3, 4, 17, 24, 28]). Let H be a real Hilbert space with inner product 〈·, ·〉
and associated norm ‖ · ‖ =

√
〈·, ·〉. The symbols ⇀ and → denote weak and strong

convergence, respectively. When G is another Hilbert space and K : H → G a linear
continuous operator, then the norm ofK is defined as ‖K‖ = sup{‖Kx‖ : x ∈ H, ‖x‖ ≤ 1},
while K∗ : G → H, defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H×G, denotes the adjoint
operator of K.

For an arbitrary set-valued operator A : H⇒ H we denote by GrA = {(x, u) ∈ H×H :
u ∈ Ax} its graph, by domA = {x ∈ H : Ax 6= ∅} its domain and by A−1 : H ⇒ H its
inverse operator, defined by (u, x) ∈ GrA−1 if and only if (x, u) ∈ GrA. We say that
A is monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A monotone operator
A is said to be maximally monotone, if there exists no proper monotone extension of the
graph of A on H×H. The resolvent of A, JA : H ⇒ H, is defined by JA = (IdH+A)−1,
where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity operator on H. Moreover,
if A is maximally monotone, then JA : H → H is single-valued and maximally monotone
( cf. [1, Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see [1,
Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA

and (see [1, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 IdH = IdH . (1)
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Let γ > 0 be arbitrary. We say thatA is γ-strongly monotone if 〈x−y, u−v〉 ≥ γ‖x−y‖2
for all (x, u), (y, v) ∈ GrA. A single-valued operator A : H → H is said to be γ-cocoercive
if 〈x− y,Ax−Ay〉 ≥ γ‖Ax−Ay‖2 for all (x, y) ∈ H×H. Moreover, A is γ-Lipschitzian if
‖Ax−Ay‖ ≤ γ‖x− y‖ for all (x, y) ∈ H×H. A single-valued linear operator A : H → H
is said to be skew, if 〈x,Ax〉 = 0 for all x ∈ H. Finally, the parallel sum of two operators
A,B : H⇒ H is defined by A�B : H⇒ H, A�B = (A−1 +B−1)−1.

The following problem represents the starting point of our investigations (see [27]).

Problem 1 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H an η-cocoercive operator for η > 0. Let m be a strictly positive
integer and, for any i ∈ {1,...,m}, let Gi be a real Hilbert space, ri ∈ Gi, let Bi : Gi ⇒ Gi
be a maximally monotone operator, let Di : Gi ⇒ Gi be a maximally monotone and νi-
strongly monotone operator for νi > 0 and let Li : H → Gi be a nonzero linear continuous
operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx, (2)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m.
(3)

We say that (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to Problem 1,
if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m. (4)

If x ∈ H is a solution to (2), then there exists (v1,..., vm) ∈ G1 × ... × Gm such that
(x, v1,..., vm) is a primal-dual solution to Problem 1 and, if (v1,..., vm) ∈ G1 × ... × Gm is
a solution to (3), then there exists x ∈ H such that (x, v1,..., vm) is a primal-dual solution
to Problem 1. Moreover, if (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to
Problem 1, then x is a solution to (2) and (v1,..., vm) ∈ G1 × ...× Gm is a solution to (3).

By employing the classical forward-backward algorithm (see [13, 26]) in a renormed
product space, Vũ proposed in [27] an iterative scheme for solving a slightly modified
version of Problem 1 formulated in the presence of some given weights wi ∈ (0, 1], i =
1,...,m, with

∑m
i=1wi = 1 for the terms occurring in the second summand of the primal

inclusion problem. The following result is an adaption of [27, Theorem 3.1] to Problem 1
in the error-free case and when λn = 1 for any n ≥ 0.

Theorem 2 In Problem 1 suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i
(
(Bi�Di)(Li · −ri)

)
+ C

)
.

Let τ and σi, i = 1,...,m, be strictly positive numbers such that

2 ·min{τ−1, σ−11 ,..., σ−1m } ·min{η, ν1,..., νm}

1−

√√√√τ
m∑
i=1

σi‖Li‖2

 > 1.
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Let (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm and for all n ≥ 0 set:

xn+1 = JτA
[
xn − τ

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = 2xn+1 − xn
vi,n+1 = JσiB−1

i
[vi,n + σi(Liyn −D−1i vi,n − ri)], i = 1,...,m.

Then there exists a primal-dual solution (x, v1,..., vm) to Problem 1 such that xn ⇀ x and
(v1,n,..., vm,n) ⇀ (v1,..., vm) as n→ +∞.

Notice that the work in [27] is closely related to [11] and [15], where primal-dual split-
ting methods for nonsmooth convex optimization problems are proposed. More exactly,
the convergence property of [11, Algorithm 1] provided in [11, Theorem 1] follow as spe-
cial instance of the main result in [27]. On the other hand, Condat proposes in [15] an
algorithm which can be seen as an extension of the one in [11] to optimization problems
in the objective of which convex differentiable functions occurr, as well.

The structure of the paper is as follows. In the next section we propose under ap-
propriate strong monotonicity assumptions two modified versions of the above algorithm
which ensure for the sequences of iterates orders of convergence of O( 1

n) and O(ωn), for
ω ∈ (0, 1), respectively. In Section 3 we show how to particularize the general results in
the context of nondifferentiable convex optimization problems, where some of the func-
tions occurring in the objective are strongly convex. In the last section we present some
numerical experiments in image denoising and pattern recognition in cluster analysis and
emphasize also the practical advantages of the modified iterative schemes over the initial
one provided in Theorem 2. Numerical comparisons to other state-of-the-art methods for
solving convex nondifferentiable optimization problems are also given.

2 Two modified primal-dual algorithms

In this section we propose in two different settings modified versions of the algorithm in
Theorem 2 and discuss the orders of convergence of the sequences of iterates generated by
the new schemes.

2.1 The case A + C is strongly monotone

For the beginning, we show that, in case A+ C is strongly monotone, one can guarantee
an order of convergence of O( 1

n) for the sequence (xn)n≥0. To this end, inspired by [29]
and [11], we update in each iteration the parameters τ and σi, i = 1,...,m, and use
a modified formula for the sequence (yn)n≥0. Due to technical reasons, we apply this
method in case D−1i is equal to zero for i = 1,...,m, that is Di(0) = Gi and Di(x) = ∅ for
x 6= 0. Let us notice that, by using the approach proposed in [7, Remark 3.2], one can
extend the statement of Theorem 8 below, which is the main result of this subsection, to
the primal-dual pair of monotone inclusions as stated in Problem 1.

More precisely, the problem we consider throughout this subsection is as follows.

Problem 3 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H a monotone and η-Lipschitzian operator for η > 0. Let m be a
strictly positive integer and, for any i ∈ {1,...,m}, let Gi be a real Hilbert space, ri ∈ Gi,
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let Bi : Gi ⇒ Gi be a maximally monotone operator and let Li : H → Gi be a nonzero
linear continuous operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i (Bi(Lix− ri)) + Cx, (5)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ Bi(Lix− ri), i = 1,...,m.
(6)

As for Problem 1, we say that (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution
to Problem 3, if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ Bi(Lix− ri), i = 1,...,m. (7)

Remark 4 One can notice that, in comparison to Problem 1, we relax in Problem 3 the
assumptions made on the operator C. It is obvious that, if C is a η-cocoercive operator
for η > 0, then C is monotone and 1/η-Lipschitzian. Although in case C is the gradient
of a convex and differentiable function, due to the celebrated Baillon-Haddad Theorem
(see, for instance, [1, Corollary 8.16]), the two classes of operators coincide, in general
the second one is larger. Indeed, nonzero linear, skew and Lipschitzian operators are not
cocoercive. For example, when H and G are real Hilbert spaces and L : H → G is nonzero
linear continuous, then (x, v) 7→ (L∗v,−Lx) is an operator having all these properties.
This operator appears in a natural way when considering primal-dual monotone inclusion
problems as done in [9].

Under the assumption that A + C is γ-strongly monotone for γ > 0 we propose the
following modification of the iterative scheme in Theorem 2.

Algorithm 5
Initialization: Choose τ0 > 0, σi,0 > 0, i = 1,...,m, such that

τ0 < 2γ/η, λ ≥ η + 1, τ0
∑m

i=1 σi,0‖Li‖2 ≤
√

1 + τ0(2γ − ητ0)/λ,

θ0 = 1/
√

1+τ0(2γ−ητ0)/λ and (x0, v1,0,..., vm,0)∈H×G1×...×Gm.
For n ≥ 0 set: xn+1 = J(τn/λ)A

[
xn − (τn/λ)

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = xn+1 + θn(xn+1 − xn)
vi,n+1 = Jσi,nB−1

i
[vi,n + σi,n(Liyn − ri)], i = 1,...,m

τn+1 = θnτn, θn+1 = 1/
√

1 + τn+1(2γ − ητn+1)/λ,
σi,n+1 = σi,n/θn+1, i = 1,...,m.

Remark 6 Notice that in contrast to the algorithm in Theorem 2, we allow here variable
step sizes τn and σi,n, 1 = 1, ...,m, which are updated in each iteration. Moreover, for
every n ≥ 0 the iterate yn is defined by using the sequence θn. Dynamically adjusted
step sizes have been first proposed in [29] and then used in [11] in order to accelerate the
convergence of iterative methods when solving convex optimization problems.
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Remark 7 Notice that the assumption τ0
∑m

i=1 σi,0‖Li‖2 ≤
√

1 + τ0(2γ − ητ0)/λ in Al-
gorithm 5 is equivalent to τ1

∑m
i=1 σi,0‖Li‖2 ≤ 1, being fulfilled if τ0 > 0 is chosen such

that

τ0 ≤
γ/λ+

√
γ2/λ2 + (

∑m
i=1 σi,0‖Li‖2)2 + η/λ

(
∑m

i=1 σi,0‖Li‖2)2 + η/λ
.

Theorem 8 Suppose that A+C is γ-strongly monotone for γ > 0 and let (x, v1,..., vm) be
a primal-dual solution to Problem 3. Then the sequences generated by Algorithm 5 fulfill
for any n ≥ 0

λ‖xn+1 − x‖2

τ2n+1

+

(
1− τ1

m∑
i=1

σi,0‖Li‖2
)

m∑
i=1

‖vi,n − vi‖2

τ1σi,0
≤

λ‖x1 − x‖2

τ21
+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20
+

2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Moreover, lim
n→+∞

nτn = λ
γ , hence one obtains for (xn)n≥0 an order of convergence of O( 1

n).

Proof. The idea of the proof relies on showing that the following Fejér-type inequality
is true for any n ≥ 0

λ

τ2n+2

‖xn+2 − x‖2 +
m∑
i=1

‖vi,n+1 − vi‖2

τ1σi,0
+
‖xn+2 − xn+1‖2

τ2n+1

−

2

τn+1

m∑
i=1

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 ≤ (8)

λ

τ2n+1

‖xn+1 − x‖2 +
m∑
i=1

‖vi,n − vi‖2

τ1σi,0
+
‖xn+1 − xn‖2

τ2n
−

2

τn

m∑
i=1

〈Li(xn+1 − xn),−vi,n + vi〉.

To this end we use first that in the light of the definition of the resolvents it holds for
any n ≥ 0

λ

τn+1
(xn+1 − xn+2)−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 ∈ (A+ C)xn+2. (9)

Since A+ C is γ-strongly monotone, (7) and (9) yield for any n ≥ 0

γ‖xn+2 − x‖2 ≤
〈
xn+2 − x,

λ

τn+1
(xn+1 − xn+2)

〉
+〈

xn+2 − x,−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 −

(
z −

m∑
i=1

L∗i vi

)〉
= (10)

λ

τn+1
〈xn+2 − x, xn+1 − xn+2〉+ 〈xn+2 − x,Cxn+2 − Cxn+1〉+

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉 .

6



Further, we have

〈xn+2 − x, xn+1 − xn+2〉 =
‖xn+1 − x‖2

2
− ‖xn+2 − x‖2

2
− ‖xn+1 − xn+2‖2

2
(11)

and, since C is η-Lipschitzian,

〈xn+2 − x,Cxn+2 − Cxn+1〉 ≤ ‖xn+2 − x‖ · ‖Cxn+2 − Cxn+1‖

≤ ητn+1

2
‖xn+2 − x‖2 +

η

2τn+1
‖xn+2 − xn+1‖2. (12)

Hence, it follows from (10)–(12) that for any n ≥ 0, it holds(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 ≤

λ

τn+1
‖xn+1 − x‖2 −

λ− η
τn+1

‖xn+2 − xn+1‖2 + 2
m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.

Taking into account that λ ≥ η + 1, we obtain for any n ≥ 0 that(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 ≤

λ

τn+1
‖xn+1 − x‖2 −

1

τn+1
‖xn+2 − xn+1‖2 + 2

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉. (13)

On the other hand, for every i = 1,...,m and any n ≥ 0, from

1

σi,n
(vi,n − vi,n+1) + Liyn − ri ∈ B−1i vi,n+1, (14)

the monotonicity of B−1i and (7), we obtain

0 ≤
〈

1

σi,n
(vi,n − vi,n+1) + Liyn − ri − (Lix− ri), vi,n+1 − vi

〉
=

1

σi,n
〈vi,n − vi,n+1, vi,n+1 − vi〉+ 〈Li(yn − x), vi,n+1 − vi〉

=
1

2σi,n
‖vi,n − vi‖2 −

1

2σi,n
‖vi,n − vi,n+1‖2 −

1

2σi,n
‖vi,n+1 − vi‖2

+ 〈Li(yn − x), vi,n+1 − vi〉,

hence

‖vi,n+1 − vi‖2

σi,n
≤ ‖vi,n − vi‖

2

σi,n
− ‖vi,n − vi,n+1‖2

σi,n
+ 2〈Li(yn − x), vi,n+1 − vi〉. (15)

Summing up the inequalities in (13) and (15) we obtain for any n ≥ 0(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

σi,n
≤

λ

τn+1
‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

σi,n
− ‖xn+2 − xn+1‖2

τn+1
−

m∑
i=1

‖vi,n − vi,n+1‖2

σi,n
(16)

+2
m∑
i=1

〈Li(xn+2 − yn),−vi,n+1 + vi〉.

7



Further, since yn = xn+1 + θn(xn+1−xn), for every i = 1,...,m and any n ≥ 0, it holds

〈Li(xn+2 − yn),−vi,n+1 + vi〉 = 〈Li
(
xn+2 − xn+1 − θn(xn+1 − xn)

)
,−vi,n+1 + vi〉 =

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 − θn〈Li(xn+1 − xn),−vi,n + vi〉+

θn〈Li(xn+1 − xn),−vi,n + vi,n+1〉 ≤
〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 − θn〈Li(xn+1 − xn),−vi,n + vi〉+

θ2n‖Li‖2σi,n
2

‖xn+1 − xn‖2 +
‖vi,n − vi,n+1‖2

2σi,n
.

By combining the last inequality with (16), we obtain for any n ≥ 0(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

σi,n
+
‖xn+2 − xn+1‖2

τn+1
−

2
m∑
i=1

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 ≤ (17)

λ

τn+1
‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

σi,n
+

(
m∑
i=1

‖Li‖2σi,n

)
θ2n‖xn+1 − xn‖2 −

2
m∑
i=1

θn〈Li(xn+1 − xn),−vi,n + vi〉.

After dividing (17) by τn+1 and noticing that for any n ≥ 0

λ

τ2n+1

+
2γ

τn+1
− η =

λ

τ2n+2

,

τn+1σi,n = τnσi,n−1 = ... = τ1σi,0

and (∑m
i=1 ‖Li‖2σi,n

)
θ2n

τn+1
=
τn+1

∑m
i=1 ‖Li‖2σi,n
τ2n

=
τ1
∑m

i=1 ‖Li‖2σi,0
τ2n

≤ 1

τ2n
,

it follows that the Fejér-type inequality (8) is true.
Let N ∈ N, N ≥ 2. Summing up the inequality in (8) from n = 0 to N − 1, it yields

λ

τ2N+1

‖xN+1 − x‖2 +

m∑
i=1

‖vi,N − vi‖2

τ1σi,0
+
‖xN+1 − xN‖2

τ2N
≤

λ

τ21
‖x1 − x‖2 +

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20
+ (18)

2

m∑
i=1

(
1

τN
〈Li(xN+1 − xN ),−vi,N + vi〉 −

1

τ0
〈Li(x1 − x0),−vi,0 + vi〉

)
.

Further, for every i = 1,...,m we use the inequality

2

τN
〈Li(xN+1 − xN ),−vi,N + vi〉 ≤

σi,0‖Li‖2

τ2N (
∑m

i=1 σi,0‖Li‖2)
‖xN+1 − xN‖2 +

∑m
i=1 σi,0‖Li‖2

σi,0
‖vi,N − vi‖2
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and obtain from (18) that

λ‖xN+1 − x‖2

τ2N+1

+
m∑
i=1

‖vi,N − vi‖2

τ1σi,0
≤ λ‖x1 − x‖2

τ21
+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20

+
2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉+
m∑
i=1

∑m
j=1 σj,0‖Lj‖2

σi,0
‖vi,N − vi‖2,

which rapidly yields the inequality in the statement of the theorem.
We close the proof by showing that lim

n→+∞
nτn = λ/γ. Notice that for any n ≥ 0,

τn+1 =
τn√

1 + τn
λ (2γ − ητn)

. (19)

Since 0 < τ0 < 2γ/η, it follows by induction that 0 < τn+1 < τn < τ0 < 2γ/η for any
n ≥ 1, hence the sequence (τn)n≥0 converges. In the light of (19) one easily obtains that

lim
n→+∞

τn = 0 and, further, that lim
n→+∞

τn
τn+1

= 1. As ( 1
τn

)n≥0 is a strictly increasing and

unbounded sequence, by applying the Stolz-Cesàro Theorem, it yields

lim
n→+∞

nτn = lim
n→+∞

n
1
τn

= lim
n→+∞

n+ 1− n
1

τn+1
− 1

τn

= lim
n→+∞

τnτn+1

τn − τn+1

= lim
n→+∞

τnτn+1(τn + τn+1)

τ2n − τ2n+1

= lim
n→+∞

τnτn+1(τn + τn+1)

τ2n+1
τn
λ (2γ − ητn)

= lim
n→+∞

τn + τn+1

τn+1(
2γ
λ −

η
λτn)

= lim
n→+∞

τn
τn+1

+ 1

2γ
λ −

η
λτn

=
λ

γ
.

�

Remark 9 Let us mention that, if A + C is γ-strongly monotone with γ > 0, then the
operator A+

∑m
i=1 L

∗
i (Bi(Li · −ri)) +C is strongly monotone, as well, thus the monotone

inclusion problem (5) has at most one solution. Hence, if (x, v1,..., vm) is a primal-dual
solution to Problem 3, then x is the unique solution to (5). Notice that the problem (6)
may not have an unique solution.

2.2 The case A + C and B−1i + D−1i , i = 1,...,m, are strongly monotone

In this subsection we propose a modified version of the algorithm in Theorem 2 which
guarantees when A + C and B−1i + D−1i , i = 1,...,m, are strongly monotone orders of
convergence of O(ωn), for ω ∈ (0, 1), for the sequences (xn)n≥0 and (vi,n)n≥0, i = 1,...,m.
The algorithm aims to solve the primal-dual pair of monotone inclusions stated in Problem
1 under relaxed assumptions for the operators C and D−1i , i = 1,...,m. A same comment
as in Remark 15 can be made also in this context.

Problem 10 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H a monotone and η-Lipschitzian operator for η > 0. Let m be a
strictly positive integer and, for any i ∈ {1,...,m}, let Gi be a real Hilbert space, ri ∈ Gi,
let Bi : Gi ⇒ Gi be a maximally monotone operator, let Di : Gi ⇒ Gi be a monotone
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operator such that D−1i is νi-Lipschitzian for νi > 0 and let Li : H → Gi be a nonzero
linear continuous operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx, (20)

together with the dual inclusion

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1,...,m.
(21)

Under the assumption that A + C is γ-strongly monotone for γ > 0 and B−1i + D−1i
is δi-strongly monotone with δi > 0, i = 1,....m, we propose the following modification of
the iterative scheme in Theorem 2.

Algorithm 11
Initialization: Choose µ > 0 such that

µ ≤ min
{
γ2/η2, δ21/ν

2
1 ,..., δ

2
m/ν

2
m,
√
γ/ (

∑m
i=1 ‖Li‖2/δi)

}
,

τ = µ/(2γ), σi = µ/(2δi), i = 1, ..,m,
θ ∈ [2/(2 + µ), 1] and (x0, v1,0,..., vm,0) ∈ H× G1 ×...× Gm.

For n ≥ 0 set: xn+1 = JτA
[
xn − τ

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = xn+1 + θ(xn+1 − xn)

vi,n+1 = JσiB−1
i

[vi,n + σi(Liyn −D−1i vi,n − ri)], i = 1,...,m.

Remark 12 Different to Algorithm 5, the step sizes are now constant in each iteration, as
it is also the case in Theorem 2. The major difference to the iterative scheme in Theorem
2 is given by the role played by the constant µ, not only in the definition of the step sizes,
but also in the way the sequence (yn)n≥0 is constructed (through the choice of θ). Notice
that the situation when θ = 1 provides the same definition of the latter as in the algorithm
stated in Theorem 2.

Theorem 13 Suppose that A + C is γ-strongly monotone for γ > 0, B−1i + D−1i is δi-
strongly monotone for δi > 0, i = 1,...,m, and let (x, v1,..., vm) be a primal-dual solution
to Problem 10. Then the sequences generated by Algorithm 11 fulfill for any n ≥ 0

γ‖xn+1 − x‖2 + (1− ω)
m∑
i=1

δi‖vi,n − vi‖2 ≤

ωn

(
γ‖x1 − x‖2 +

m∑
i=1

δi‖vi,0 − vi‖2 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
,

where 0 < ω = 2(1+θ)
4+µ < 1.

Proof. For any n ≥ 0 we have

1

τ
(xn+1 − xn+2)−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 ∈ (A+ C)xn+2, (22)

10



thus, since A+ C is γ-strongly monotone, (21) yields

γ‖xn+2 − x‖2 ≤
〈
xn+2 − x,

1

τ
(xn+1 − xn+2)

〉
+〈

xn+2 − x,−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 −

(
z −

m∑
i=1

L∗i vi

)〉
= (23)

1

τ
〈xn+2 − x, xn+1 − xn+2〉+ 〈xn+2 − x,Cxn+2 − Cxn+1〉+

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉 .

Further, by using (11) and

〈xn+2 − x,Cxn+2 − Cxn+1〉 ≤
γ

2
‖xn+2 − x‖2 +

η2

2γ
‖xn+2 − xn+1‖2,

we get from (23) that for any n ≥ 0(
1

2τ
+
γ

2

)
‖xn+2 − x‖2 ≤

1

2τ
‖xn+1 − x‖2 −

(
1

2τ
− η2

2γ

)
‖xn+2 − xn+1‖2 +

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.

After multiplying this inequality with µ and taking into account that

µ

2τ
= γ, µ

(
1

2τ
+
γ

2

)
= γ

(
1 +

µ

2

)
and µ

(
1

2τ
− η2

2γ

)
= γ − η2

2γ
µ ≥ γ

2
,

we obtain for any n ≥ 0

γ
(

1 +
µ

2

)
‖xn+2 − x‖2 ≤ (24)

γ‖xn+1 − x‖2 −
γ

2
‖xn+2 − xn+1‖2 + µ

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.

On the other hand, for every i = 1,...,m and any n ≥ 0, from

1

σi
(vi,n − vi,n+1) + Liyn −D−1i vi,n − ri +D−1i vi,n+1 ∈ (B−1i +D−1i )vi,n+1, (25)

the δi-strong monotonicity of B−1i +D−1i and (21), we obtain

δi‖vi,n+1 − vi‖2 ≤
〈

1

σi
(vi,n − vi,n+1), vi,n+1 − vi

〉
+

〈
Liyn − ri −D−1i vi,n +D−1i vi,n+1 − (Lix− ri), vi,n+1 − vi

〉
.(26)

Further, for every i = 1,...,m and any n ≥ 0, we have

1

σi
〈vi,n − vi,n+1, vi,n+1 − vi〉 =

1

2σi
‖vi,n − vi‖2 −

1

2σi
‖vi,n − vi,n+1‖2 −

1

2σi
‖vi,n+1 − vi‖2

11



and, since D−1i is a νi-Lipschitzian operator,

〈D−1i vi,n+1 −D−1i vi,n, vi,n+1 − vi〉 ≤
δi
2
‖vi,n+1 − vi‖2 +

ν2i
2δi
‖vi,n+1 − vi,n‖2. (27)

Consequently, from (26) and(27) we obtain for every i = 1,...,m and any n ≥ 0:(
1

2σi
+
δi
2

)
‖vi,n+1 − vi‖2 ≤

1

2σi
‖vi,n − vi‖2 −

(
1

2σi
− ν2i

2δi

)
‖vi,n+1 − vi,n‖2 + 〈Li(x− yn), vi − vi,n+1〉,

which, after multiplying it by µ (here is the initial choice of µ determinant), yields

δi

(
1 +

µ

2

)
‖vi,n+1−vi‖2 ≤ δi‖vi,n−vi‖2−

δi
2
‖vi,n+1−vi,n‖2+µ〈Li(x−yn), vi−vi,n+1〉. (28)

We denote

an := γ‖xn+1 − x‖2 +
m∑
i=1

δi‖vi,n − vi‖2 ∀n ≥ 0.

Summing up the inequalities in (24) and (28), we obtain for any n ≥ 0(
1 +

µ

2

)
an+1 ≤ an (29)

−γ
2
‖xn+2 − xn+1‖2 −

m∑
i=1

δi
2
‖vi,n − vi,n+1‖2 + µ

m∑
i=1

〈Li(xn+2 − yn), vi − vi,n+1〉.

Further, since yn = xn+1 + θ(xn+1 − xn) and ω ≤ θ, for every i = 1,...,m and any n ≥ 0,
it holds

〈Li(xn+2 − yn), vi − vi,n+1〉 = 〈Li (xn+2 − xn+1 − θ(xn+1 − xn)) , vi − vi,n+1〉 =

〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉+

ω〈Li(xn+1 − xn), vi,n+1 − vi,n〉+ (θ − ω)〈Li(xn+1 − xn), vi,n+1 − vi〉 ≤
〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉+

ω‖Li‖
(
µω‖Li‖

‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi,n‖2

2µω‖Li‖

)
+

(θ − ω)‖Li‖
(
µω‖Li‖

‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi‖2

2µω‖Li‖

)
=

〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉+

θµω‖Li‖2
‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi,n‖2

2µ
+ (θ − ω)δi

‖vi,n+1 − vi‖2

2µω
.

Taking into consideration that

µ2θω

2

m∑
i=1

‖Li‖2

δi
≤ γθ

2
ω ≤ γ

2
ω and 1 +

µ

2
=

1

ω
+
θ − ω
ω

,
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from (29), we obtain for any n ≥ 0

1

ω
an+1 +

γ

2
‖xn+2 − xn+1‖2 ≤

an +
γ

2
ω‖xn+1 − xn‖2 −

θ − ω
ω

(
an+1 −

m∑
i=1

δi
2
‖vi,n+1 − vi‖2

)
+

µ
m∑
i=1

(
〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉

)
.

As ω ≤ θ and an+1 −
∑m

i=1
δi
2 ‖vi,n+1 − vi‖2 ≥ 0, we further get after multiplying the last

inequality with ω−n the following Fejér-type inequality that holds for any n ≥ 0

ω−(n+1)an+1 +
γ

2
ω−n‖xn+2 − xn+1‖2 + µω−n

m∑
i=1

〈Li(xn+2 − xn+1), vi,n+1 − vi〉 ≤

ω−nan +
γ

2
ω−(n−1)‖xn+1 − xn‖2 + µω−(n−1)

m∑
i=1

〈Li(xn+1 − xn), vi,n − vi〉. (30)

Let N ∈ N, N ≥ 2. Summing up the inequality in (30) from n = 0 to N − 1, it yields

ω−NaN +
γ

2
ω−N+1‖xN − xN+1‖2 + µω−N+1

m∑
i=1

〈Li(xN+1 − xN ), vi,N − vi〉 ≤

a0 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Using that

〈Li(xN+1 − xN ), vi,N − vi〉 ≥ −
µ‖Li‖2

4δi
‖xN+1 − xN‖2 −

δi
µ
‖vi,N − vi‖2, i = 1,...,m,

this further yields

ω−NaN + ω−N+1

(
γ

2
− µ2

4

m∑
i=1

‖Li‖2

δi

)
‖xN − xN+1‖2 − ω−N+1

m∑
i=1

δi‖vi,N − vi‖2 ≤

a0 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉. (31)

Taking into account the way µ has been chosen, we have

γ

2
− µ2

4

m∑
i=1

‖Li‖2

δi
≥ γ

2
− γ

4
> 0,

hence, after multiplying (31) with ω−N , it yields

aN − ω
m∑
i=1

δi‖vi,N − vi‖2 ≤ ωN
(
a0 +

γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
.

The conclusion follows by taking into account the definition of the sequence (an)n≥0. �
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Remark 14 If A + C is γ-strongly monotone for γ > 0 and B−1i + D−1i is δi-strongly
monotone for δi > 0, i = 1,...,m, then there exists at most one primal-dual solution to
Problem 10. Hence, if (x, v1,..., vm) is a primal-dual solution to Problem 10, then x is the
unique solution to the primal inclusion (20) and (v1,..., vm) is the unique solution to the
dual inclusion (21).

Remark 15 The modified versions Algortihm 5 and Algorithm 11 can handle Problem 1
under more general hypotheses than the original method given in [27]. Indeed, convergence
was shown under more general hypotheses on the operator C for the first (see also Remark
4) and on the operators Di, i = 1, ...,m for the latter. More than that, we can provide
in both cases a rate of convergence for the sequence of the primal iterates and in case
of Algorithm 11 one for the sequence of dual iterates, as well, in particular also strong
convergence.

Remark 16 As mentioned in the introduction, in [7] accelerated versions of the algo-
rithm from [14] have been proposed. The algorithms in [7] and the ones proposed in this
manuscript are designed to solve the same type of problems and under the same hypothe-
ses concerning the operators involved (compare [7, Theorem 3.3] with Theorem 8 above
and [7, Theorem 3.4] with Theorem 13, respectively). The rates of convergence obtained
in [7] and in our paper are the same.

On the other hand, our schemes differ from the ones in [7] in some fundamental aspects.
Indeed, we propose here accelerated versions of the algorithm given in [27], which relies
on a forward-backward scheme, while in [7] the accelerated versions are with respect to
a forward-backward-forward scheme. In contrast to the forward-backward-forward algo-
rithm, which requires additional sequences to be computed, the forward-backward scheme
needs fewer steps, thus presents from theoretical point of view an important advantage.
This applies also for the accelerated versions of these algorithms. The mentioned advan-
tage is underlined also by the numerical results presented in the last section of our paper.
Moreover, one can notice that in Algorithm 5 at every iteration when evaluating the op-
erators Bi different step sizes (in form of the parameters σi,n) for i = 1, ...,m have been
considered, which is not the case with the iterative scheme in [7, Theorem 3.3] where for
the evaluation of the same operators the same step size has been used. Individual step
sizes possess the advantage that in this way the operators Bi, i = 1, ...,m can be more
involved in the algorithm and in the improvement of its convergence properties. A similar
remark can be made also for the iterative scheme in [7, Theorem 3.4] and Algorithm 11.

3 Convex optimization problems

The aim of this section is to show that the two algorithms proposed in this paper and
investigated from the point of view of their convergence properties can be employed when
solving a primal-dual pair of convex optimization problems.

For a function f : H → R, where R := R∪{±∞} is the extended real line, we denote by
dom f = {x ∈ H : f(x) < +∞} its effective domain and say that f is proper if dom f 6= ∅
and f(x) 6= −∞ for all x ∈ H. We denote by Γ(H) the family of proper convex and lower
semi-continuous extended real-valued functions defined on H. Let f∗ : H → R, f∗(u) =
supx∈H{〈u, x〉− f(x)} for all u ∈ H, be the conjugate function of f . The subdifferential of
f at x ∈ H, with f(x) ∈ R, is the set ∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y− x〉 ∀y ∈ H}.
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We take by convention ∂f(x) := ∅, if f(x) ∈ {±∞}. Notice that if f ∈ Γ(H), then ∂f is a
maximally monotone operator (cf. [22]) and it holds (∂f)−1 = ∂f∗. For f, g : H → R two
proper functions, we consider their infimal convolution, which is the function f�g : H → R,
defined by (f�g)(x) = infy∈H{f(y) + g(x− y)}, for all x ∈ H.

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function
which takes the value 0 on S and +∞ otherwise. The subdifferential of the indicator
function is the normal cone of S, that is NS(x) = {u ∈ H : 〈u, y − x〉 ≤ 0 ∀y ∈ S}, if
x ∈ S and NS(x) = ∅ for x /∈ S.

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) +

1

2γ
‖y − x‖2

}
. (32)

Notice that Jγ∂f = (IdH+γ∂f)−1 = proxγf , thus proxγf : H → H is a single-valued
operator fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (33)

Let us also recall that the function f : H → R is said to be γ-strongly convex for γ > 0,
if f − γ

2‖ · ‖
2 is a convex function. Let us mention that this property implies γ-strong

monotonicity of ∂f (see [1, Example 22.3]).
Finally, we notice that for f = δS , where S ⊆ H is a nonempty convex and closed set,

it holds
JγNS

= JNS
= J∂δS = (IdH+NS)−1 = proxδS = PS , (34)

where PS : H → C denotes the projection operator on S (see [1, Example 23.3 and Example
23.4]).

In order to investigate the applicability of the algorithm introduced in Subsection 2.1
we consider the following primal-dual pair of convex optimization problems.

Problem 17 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a convex and
differentiable function with a η-Lipschitzian gradient for η > 0. Let m be a strictly positive
integer and, for any i ∈ {1,...,m}, let Gi be a real Hilbert space, ri ∈ Gi, gi ∈ Γ(Gi) and let
Li : H → Gi be a nonzero linear continuous operator. Consider the convex optimization
problem

inf
x∈H

{
f(x) +

m∑
i=1

gi(Lix− ri) + h(x)− 〈x, z〉

}
(35)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + 〈vi, ri〉

)}
. (36)

Considering maximal monotone operators

A = ∂f,C = ∇h and Bi = ∂gi, i = 1,...,m,
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the monotone inclusion problem (5) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑
i=1

L∗i (∂gi(Lix− ri)) +∇h(x), (37)

while the dual inclusion problem (6) reads

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ ∂gi(Lix− ri), i = 1,...,m.
(38)

If (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (37)-(38), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ ∂gi(Lix− ri), i = 1,...,m, (39)

then x is an optimal solution of the problem (35), (v1,..., vm) is an optimal solution of
(36) and the optimal objective values of the two problems coincide. Notice that (39) is
nothing else than the system of optimality conditions for the primal-dual pair of convex
optimization problems (35)-(36).

In case a qualification condition is fulfilled, these optimality conditions are also neces-
sary. For the readers convenience, let us present some qualification conditions which are
suitable in this context. One of the weakest qualification conditions of interiority-type
reads (see, for instance, [14, Proposition 4.3, Remark 4.4])

(r1,..., rm) ∈ sqri

(
m∏
i=1

dom gi − {(L1x,..., Lmx) : x ∈ dom f}

)
. (40)

Here, for H a real Hilbert space and S ⊆ H a convex set, we denote by

sqriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have intS ⊆ sqriS (in general
this inclusion may be strict). If H is finite-dimensional, then sqriS coincides with riS,
the relative interior of S, which is the interior of S with respect to its affine hull. The
condition (40) is fulfilled if (i) dom gi = Gi, i = 1,...,m or (ii) H and Gi are finite-
dimensional and there exists x ∈ ri dom f such that Lix − ri ∈ ri dom gi, i = 1,...,m
(see [14, Proposition 4.3]). Another useful and easily verifiable qualification condition
guaranteeing the optimality conditions (39) has the following formulation: there exists
x′ ∈ dom f∩

⋂m
i=1 L

−1
i (ri+dom gi) such that gi is continuous at Lix

′−ri, i = 1,...,m (see [4,
Remark 2.5] and [6]). For other qualification conditions we refer the reader to [1,3–5,28].

The following two statements are particular instances of Algorithm 5 and Theorem 8,
respectively.

Algorithm 18
Initialization: Choose τ0 > 0, σi,0 > 0, i = 1,...,m, such that

τ0 < 2γ/η, λ ≥ η + 1, τ0
∑m

i=1 σi,0‖Li‖2 ≤
√

1 + τ0(2γ − ητ0)/λ
θ0 = 1/

√
1+τ0(2γ−ητ0)/λ and (x0, v1,0,..., vm,0)∈H×G1×...×Gm.

For n ≥ 0 set: xn+1 = prox(τn/λ)f

[
xn − (τn/λ)

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = xn+1 + θn(xn+1 − xn)
vi,n+1 = proxσi,ng∗i [vi,n + σi,n(Liyn − ri)], i = 1,...,m

τn+1 = θnτn, θn+1 = 1/
√

1 + τn+1(2γ − ητn+1)/λ
σi,n+1 = σi,n/θn+1, i = 1,...,m.
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Theorem 19 Suppose that f + h is γ-strongly convex for γ > 0 and the qualification
condition (40) holds. Then there exists a unique optimal solution x to (35), an optimal
solution (v1,..., vm) to (36) fulfilling the optimality conditions (39) and such that the op-
timal objective values of the problems (35) and (36) coincide. The sequences generated by
Algorithm 18 fulfill for any n ≥ 0

λ‖xn+1 − x‖2

τ2n+1

+

(
1− τ1

m∑
i=1

σi,0‖Li‖2
)

m∑
i=1

‖vi,n − vi‖2

τ1σi,0
≤

λ‖x1 − x‖2

τ21
+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20
+

2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Moreover, lim
n→+∞

nτn = λ
γ , hence one obtains for (xn)n≥0 an order of convergence of O( 1

n).

Remark 20 The uniqueness of the solution of (35) in the above theorem follows from [1,
Corollary 11.16].

Remark 21 In case h(x) = 0 for all x ∈ H, one has to choose in Algorithm 18 as initial
points τ0 > 0, σi,0 > 0, i = 1, ..,m, with τ0

∑m
i=1 σi,0‖Li‖2 ≤

√
1 + 2τ0γ/λ and λ ≥ 1

and to update the sequence (θn)n≥0 via θn = 1/
√

1 + 2τnγ/λ for any n ≥ 0, in order to
obtain a suitable iterative scheme for solving the pair of primal-dual optimization problems
(35)-(36) with the same convergence behavior as of Algorithm 18. In this situation, when
chosing λ = 1, m = 1, z = 0 and ri = 0, one obtains an algorithm which is equivalent to
the one presented by Chambolle and Pock in [11, Algorithm 2].

We turn now our attention to the algorithm introduced in Subsection 2.2 and consider
to this end the following primal-dual pair of convex optimization problems.

Problem 22 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a convex and
differentiable function with a η-Lipschitzian gradient for η > 0. Let m be a strictly positive
integer and for any i ∈ {1,...,m} let Gi be a real Hilbert space, ri ∈ Gi, gi, li ∈ Γ(Gi) such
that li is ν−1i -strongly convex for νi > 0 and Li : H → Gi a nonzero linear continuous
operator. Consider the convex optimization problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉

}
(41)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)}
. (42)

Considering the maximal monotone operators

A = ∂f,C = ∇h,Bi = ∂gi and Di = ∂li, i = 1,...,m,

according to [1, Proposition 17.10, Theorem 18.15], D−1i = ∇l∗i is a monotone and νi-
Lipschitzian operator for i = 1,...,m. The monotone inclusion problem (20) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑
i=1

L∗i ((∂gi�∂li)(Lix− ri)) +∇h(x), (43)
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while the dual inclusion problem (21) reads

find v1 ∈ G1,..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m.
(44)

If (x, v1,..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (43)-(44), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1,...,m, (45)

then x is an optimal solution of the problem (41), (v1,..., vm) is an optimal solution of
(42) and the optimal objective values of the two problems coincide. Notice that (45) is
nothing else than the system of optimality condition for the primal-dual pair of convex
optimization problems (41)-(42).

The assumptions made on li guarantees that gi�li ∈ Γ(Gi) (see [1, Corollary 11.16,
Proposition 12.14]) and, since dom(gi�li) = dom gi + dom li, i = 1,...,m, one can can
consider the following qualification condition of interiority-type in order to guarantee (45)

(r1,..., rm) ∈ sqri

(
m∏
i=1

(dom gi + dom li)− {(L1x,..., Lmx) : x ∈ dom f}

)
. (46)

The following two statements are particular instances of Algorithm 11 and Theorem
13, respectively.

Algorithm 23
Initialization: Choose µ > 0 such that

µ ≤ min
{
γ2/η2, δ21/ν

2
1 ,..., δ

2
m/ν

2
m,
√
γ/ (

∑m
i=1 ‖Li‖2/δi)

}
,

τ = µ/(2γ), σi = µ/(2δi), i = 1, ..,m,
θ ∈ [2/(2 + µ), 1] and (x0, v1,0,..., vm,0) ∈ H × G1 × ...× Gm.

For n ≥ 0 set: xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = xn+1 + θ(xn+1 − xn)
vi,n+1 = proxσig∗i [vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1,...,m.

Theorem 24 Suppose that f + h is γ-strongly convex for γ > 0, g∗i + l∗i is δi-strongly
convex for δi > 0, i = 1,...,m, and the qualification condition (46) holds. Then there
exists a unique optimal solution x to (41), a unique optimal solution (v1,..., vm) to (42)
fulfilling the optimality conditions (45) and such that the optimal objective values of the
problems (41) and (42) coincide. The sequences generated by Algorithm 23 fulfill for any
n ≥ 0

γ‖xn+1 − x‖2 + (1− ω)
m∑
i=1

δi‖vi,n − vi‖2 ≤

ωn

(
γ‖x1 − x‖2 +

m∑
i=1

δi‖vi,0 − vi‖2 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
,

where 0 < ω = 2(1+θ)
4+µ < 1.
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Remark 25 Let us mention that g∗i +l∗i is δi-strongly convex if, for example g∗i (or l∗i ) is δi-
strongly convex, i = 1, ...,m. Another situation which guarantees that g∗i +l∗i is δi-strongly
convex is the case when g∗i is αi-strongly convex, l∗i is βi-strongly convex, where αi, βi > 0
are such that αi + βi ≥ δi, i = 1, ...,m. Finally, according to [1, Theorem 18.15], g∗i is
αi-strongly convex if and only if gi is Fréchet-differentiable and ∇gi is α−1i –Lipschitzian
for i = 1, ...,m.

4 Numerical experiments

In this section we illustrate the applicability of the theoretical results in the context of two
numerical experiments in image processing and pattern recognition in cluster analysis.

4.1 Image processing

In this subsection, we compare the numerical performances of Algorithm 18 with the
ones of other iterative schemes recently introduced in the literature for solving an image
denoising problem. To this end, we treat the nonsmooth regularized convex optimization
problem

inf
x∈Rk

{
1

2
‖x− b‖2 + αTV (x)

}
, (47)

where TV : Rk → R denotes a discrete total variation functional, α > 0 is a regularization
parameter and b ∈ Rk is the observed noisy image. Notice that we consider images of size
k = M ×N as vectors x ∈ Rk, where each pixel denoted by xi,j , 1 ≤ i ≤ M , 1 ≤ j ≤ N ,
ranges in the closed interval from 0 (pure black) to 1 (pure white).

Two popular choices for the discrete total variation functional are the isotropic total
variation TViso : Rk → R,

TViso(x) =

M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | ,

and the anisotropic total variation TVaniso : Rk → R,

TVaniso(x) =

M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

+
M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | ,

where in both cases reflexive (Neumann) boundary conditions are assumed. Obviously, in
both situations the qualification condition stated in Theorem 19 is fulfilled.

Denote Y = Rk×Rk and define the linear operator L : Rk → Y, xi,j 7→ (L1xi,j , L2xi,j),
where

L1xi,j =

{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =

{
xi,j+1 − xi,j , if j < N
0, if j = N

.
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, α = 0.035 (d) Denoised image, α = 0.07

Figure 1: The noisy im-
ages in (a) and (b) were
obtained after adding white
Gaussian noise with stan-
dard deviation σ = 0.06
and σ = 0.12, respec-
tively, to the original 256×
256 lichtenstein test image.
The outputs of Algorithm
18 after 100 iterations when
solving (47) with isotropic
total variation are shown in
(c) and (d), respectively.

The operator L represents a discretization of the gradient in horizontal and vertical direc-
tion. One can easily check that ‖L‖2 ≤ 8 while for the expression of its adjoint L∗ : Y → Rk
we refer the reader to [10].

When considering the isotropic total variation, the problem (47) can be formulated as

inf
x∈Rk

{h(x) + g(Lx)} , (48)

where h : Rk → R, h(x) = 1
2‖x − b‖

2 is 1-strongly convex with 1-Lipschitzian gradient,
and g : Y → R is defined as g(u, v) = α‖(u, v)‖×, where ‖(·, ·)‖× : Y → R, ‖(u, v)‖× =∑M

i=1

∑N
j=1

√
u2i,j + v2i,j , is a norm on the Hilbert space Y. One can show (cf. [7]) that

g∗(p, q) = δS(p, q) for every (p, q) ∈ Y, where

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2i,j + q2i,j ≤ α

 .

Moreover, by taking (p, q) ∈ Y and σ > 0, we have

proxσg∗(p, q) = PS (p, q) ,

the projection operator PS : Y → S being defined via

(pi,j , qi,j) 7→ α
(pi,j , qi,j)

max
{
α,
√
p2i,j + q2i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.
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ε = 10−5
isotropic TV anisotropic TV

σ = 0.06 σ = 0.12 σ = 0.06 σ = 0.12

FB 10.55s (548) 25.78s (1335) 7.83s (517) 12.36s (829)
Algorithm 18 3.12s (177) 4.82s (275) 2.66s (202) 3.87s (290)
FBF 19.71s (698) 48.84s (1676) 15.39s (651) 24.60s (1040)
FBF Acc 3.51s (134) 5.94s (208) 3.51s (146) 4.82s (202)
AMA 19.34s (969) 45.94s (2313) 13.58s (901) 22.14s (1448)
AMA Acc 3.38s (132) 5.31s (205) 3.42s (154) 4.80s (230)
Nesterov (dual) 4.48s (146) 6.94s (230) 3.61s (172) 5.42s (249)
FISTA (dual) 3.26s (148) 5.02s (229) 3.14s (173) 4.52s (256)

Table 1: Performance evaluation for the images in Figure 1. The entries refer, respectively,
to the CPU times in seconds and the number of iterations in order to attain a root-mean-
square error for the primal iterates below the tolerance level of ε = 10−5.

On the other hand, when considering the anisotropic total variation, the problem (47)
can be formulated as

inf
x∈Rk

{h(x) + g̃(Lx)} , (49)

where the function h is taken as above and g̃ : Y → R is defined as g̃(u, v) = α‖(u, v)‖1.
For every (p, q) ∈ Y we have g̃∗(p, q) = δ[−α,α]k×[−α,α]k(p, q) and therefore

proxσg̃∗1 (p, q) = P[−α,α]k×[−α,α]k(p, q).

We consider the lichtenstein test image of size 256 times 256 and obtain the corrupted
images shown in Figure 1 by adding white Gaussian noise with standard deviation σ = 0.06
and σ = 0.12, respectively. We then solve (47) by making use of Algorithm 18 and by
taking into account both instances of the discrete total variation functional. For the picture
with noise level σ = 0.06, we choose the regularization parameter α = 0.035, while, in the
case when σ = 0.12, we opted for α = 0.07. As initial choices for the parameters occuring
in Algorithm 18, we let γ = 0.35, η = 1, λ = η + 1, τ0 = 0.62γ

η , and σ0 = 1
‖L‖2θ0τ0 . The

reconstructed images after 100 iterations for isotropic total variation are shown in Figure
1.

We compare Algorithm 18 from the point of view of the CPU time in seconds which is
required in order to attain a root-mean-square error (RMSE) below the tolerance ε = 10−5

with respect to the primal iterates. Therefore, Table 1 shows the achieved results where
the comparison is made with the foward-backward method (FB) by Vũ in [27], the foward-
backward-forward method (FBF) due to Combettes and Pesquet in [14] and its acceleration
(FBF Acc) proposed in [7], the alternating minimization algorithm (AMA) from [25] and
its Nesterov type (cf. [20]) acceleration (AMA Acc), as well as the FISTA (cf. [2]) and
Nesterov method (cf. [21]), both operating on the dual problem.

As supported by Table 1, Algorithm 18 competes well against all these methods and
provides an accelerated behavior when compared with the forward-backward method by
Vũ in Theorem 2. In both of these algorithms, we made use of the ability to process the
continuously differentiable function x 7→ 1

2‖x−b‖
2 via a forward evaluation of its gradient.
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Figure 2: Clustering two interlocking half
moons. The colors (resp. the shapes) show
the correct affiliations.

4.2 Clustering

In cluster analysis one aims for grouping a set of points such that points within the same
group are more similar to each other (usually measured via distance functions) than to
points in other groups. Clustering can be formulated as a convex optimization problem
(see, for instance, [12,18,19]). In this example, we consider the minimization problem

inf
xi∈Rn, i=1,...,m

1

2

m∑
i=1

‖xi − ui‖2 + γ
∑
i<j

ωij‖xi − xj‖p

 , (50)

where γ ∈ R+ is a tuning parameter, p ∈ {1, 2} and ωij ∈ R+ represent weights on the
terms ‖xi − xj‖p, for i, j = 1, . . . ,m, i < j. For each given point ui ∈ Rn, i = 1, . . . ,m,
the variable xi ∈ Rn represents the associated cluster center. Since the objective function
is strongly convex, there exists a unique solution to (50).

The tuning parameter γ ∈ R+ plays a central role within the clustering problem.
Taking γ = 0, each cluster center xi will coincide with the associated point ui. As γ
increases, the cluster centers will start to coalesce, where two points ui, uj are said to
belong to the same cluster when xi = xj . One finally obtains a single cluster containing
all points when γ becomes sufficiently large.

Moreover, the choice of the weights is important as well, since cluster centers may
coalesce immediately as γ passes certain critical values. In terms of our weight selection,
we use a K-nearest neighbors strategy, as proposed in [12]. Therefore, whenever i, j =
1, ...,m, i < j, we set the weight to ωij = ιKij exp(−φ‖xi − xj‖22), where

ιKij =

{
1, if j is among i’s K-nearest neighbors or vice versa,
0, otherwise.

We consider the values K = 10 and φ = 0.5, which are the best ones reported in [12] on a
similar dataset.

Let k be the number of nonzero weights ωij . Then, one can introduce a linear operator
A : Rmn → Rkn, such that problem (50) can be equivalently written as

inf
x∈Rmn

{h(x) + g(Ax)} , (51)

the function h being 1-strongly convex and differentiable with 1-Lipschitzian gradient.
Also, by taking p ∈ {1, 2}, the proximal points with respect to g∗ admit explicit represen-
tations.
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p = 2, γ = 5.2 p = 1, γ = 4

ε = 10−4 ε = 10−8 ε = 10−4 ε = 10−8

FB 2.48s (1353) 5.72s (3090) 2.01s (1092) 4.05s (2226)
Algorithm 18 2.04s (1102) 4.11s (2205) 1.74s (950) 3.84s (2005)
FBF 7.67s (2123) 17.58s (4879) 6.33s (1781) 13.22s (3716)
FBF Acc 5.05s (1384) 10.27s (2801) 4.83s (1334) 9.98s (2765)
AMA 13.53s (7209) 31.09s (16630) 11.31s (6185) 23.85s (13056)
AMA Acc 3.10s (1639) 15.91s (8163) 2.51s (1392) 12.95s (7148)
Nesterov (dual) 7.85s (3811) 42.69s (21805) 7.46s (3936) > 190s (> 100000)
FISTA (dual) 7.55s (4055) 51.01s (27356) 6.55s (3550) 47.81s (26069)

Table 2: Performance evaluation for the clustering problem. The entries refer to the CPU
times in seconds and the number of iterations, respectively, needed in order to attain a
root mean squared error for the iterates below the tolerance ε.

For our numerical tests we consider the standard dataset consisting of two interlocking
half moons in R2, each of them being composed of 100 points (see Figure 2). The stopping
criterion asks the root-mean-square error (RMSE) to be less than or equal to a given
bound ε which is either ε = 10−4 or ε = 10−8. As tuning parameters we use γ = 4 for
p = 1 and γ = 5.2 for p = 2 since both choices lead to a correct separation of the input
data into the two half moons.

By taking into consideration the results given in Table 2, it shows that Algorithm 18
performs slightly better than the forward-backward (FB) method proposed in [27]. One
can also see that the acceleration of the forward-backward-forward (FBF) has a positive
effect on both CPU times and required iterations compared with the regular method. The
alternating minimization algorithm (AMA, cf. [25]) converges slow in this example. Its
Nesterov-type acceleration (cf. [20]), however, performs better. The two accelerated first-
order methods FISTA (cf. [2]) and the one relying in Nesterov’s scheme (cf. [21]), which
are both employed on the dual problem, perform surprisingly bad in this case.

Acknowledgements. The authors are grateful to anonymous reviewers for remarks
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[5] R.I. Boţ, E.R. Csetnek, Regularity conditions via generalized interiority notions in
convex optimization: new achievements and their relation to some classical state-
ments, Optimization 61(1), 35–65, 2012
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