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1 Introduction

In this article, we address the algorithmic solution of variational inequalities stated as monotone

inclusions expressed by the sum of a set-valued maximally monotone operator with a single-valued

maximally monotone one and the normal cone to the nonempty set of zeros of another set-valued

maximally monotone operator. In the case that the operators involved are subdifferentials, this

problem particularizes to a convex bilevel optimization problem, where the feasible set of the upper-

level problem is the set of solutions of the lower-level problem, and both are convex.

Our algorithmic scheme is based on the multiscale dynamical system considered in [1], which led

to several algorithms for treating problems of different generality [2,3,4,5,6,7]. All these approaches

have in common that they use backward (proximal) and forward (gradient) steps to evaluate the

involved operators depending on their regularity, and the stepsizes of the upper- and lower-level

problems are different to force constraint satisfaction. Typically, one can show weak ergodic conver-

gence of the iterates to a solution of the problem and norm convergene under stronger monotonicity

assumptions.

The investigations in the present article complement the ones made in [6], where, for the first

time, the constraint set of the variational inequality was allowed to be given by a general monotone

operator instead of a subdifferential. For this, the authors gave a new hypothesis in terms of the

Fitzpatrick function associated to the operator. However, the operator was assumed to be single-

valued and was evaluated in the iterative scheme via a forward step, whereas we only assume

maximal monotonicity and address it accordingly by means of its resolvent.

Depending on the nature of the single-valued operator in the variational inequality under inves-

tigation, we propose two numerical schemes for both of which we undertake a convergence analysis.

By assuming cocoercivity for this operator, we show an approach with one forward evaluation per

iteration, on the other hand, if it is (only) monotone and Lipschitz continuous, it is evaluated

twice. The latter scheme and the convergence statements provided in this context constitute a
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starting point for solving complexly structured variational inequalities, involving mixtures of sums

of maximally monotone operators.

We close the paper by discussing the fulfillment of the assumption expressed via the Fitzpatrick

function associated with some particular instances of the operator defining the constraint set.

2 Notation and Preliminary Results

For the reader’s convenience we present first some notations which are used throughout the paper

(see [8,9,10,11,12,13]). By N = {1, 2, . . .} we denote the set of positive integer numbers. Let H be

a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖·‖ =
√
〈·, ·〉. The symbols ⇀

and → denote weak and strong convergence, respectively. When G is another Hilbert space and

K : H → G is a continuous linear operator, then we define by ‖K‖ := sup {‖Kx‖ |x ∈ H, ‖x‖ ≤ 1}

its norm, while K∗ : G → H, defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H × G, denotes its

adjoint operator.

For a function f : H → R we denote by dom f := {x ∈ H | f(x) < +∞} its effective domain and

say that f is proper iff dom f 6= ∅ and f(x) 6= −∞ for all x ∈ H. The conjugate function of f will

be denoted by f∗ : H → R, f∗(u) := sup {〈u, x〉 − f(x) |x ∈ H} for all u ∈ H. The subdifferential

of f at x ∈ H, with f(x) ∈ R, is the set ∂f(x) := {v ∈ H | f(y) ≥ f(x) + 〈v, y − x〉 for all y ∈ H}.

We take by convention ∂f(x) := ∅ if f(x) ∈ {±∞}. We also denote by arg min f the set of global

minima of the function f and set min f := inf{f(x)|x ∈ arg min f}. The infimal convolution of two

functions f, g : H → R is defined as

(f � g)(x) := inf {f(y) + g(x− y) | y ∈ H} ,

and we have (f � g)∗ = f∗ + g∗ (see, e.g., [8, Proposition 13.21]).

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function which

takes the value 0 on S and +∞ elsewhere. The subdifferential of the indicator function is the normal

cone of S, that is, NS(x) = {u ∈ H | 〈u, y − x〉 ≤ 0 for all y ∈ S} if x ∈ S and NS(x) = ∅ for x /∈ S.
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Notice that for x ∈ S, u ∈ NS(x) if and only if σS(u) = 〈u, x〉, where σS is the support function of

S, defined by σS(u) := sup {〈u, y〉 | y ∈ S}.

For a set-valued operator M : H ⇒ H we denote by GraphM := {(x, u) ∈ H × H|u ∈

Mx} its graph, by DomM := {x ∈ H |Mx 6= ∅} its domain, by RanM :=
⋃
{Mx |x ∈ H} its

range and by M−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ GraphM−1 if and only if

(x, u) ∈ GraphM . The parallel sum of two set-valued operators M1,M2 : H ⇒ H is denoted by

M1 �M2 :=
(
M−1

1 +M−1
2
)−1 .

We also use the notation zerM := {x ∈ H | 0 ∈Mx} for the set of zeros of the operator M . We

say that M is monotone iff 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ GraphM . A monotone operator

M is said to be maximally monotone iff there exists no proper monotone extension of the graph of

M on H × H. Let us mention that in the case M is maximally monotone, one has the following

characterization for the set of its zeros.

z ∈ zerM if and only if 〈w, u− z〉 ≥ 0 for all (u,w) ∈ GraphM. (1)

The operator M is said to be strongly monotone with parameter γ > 0 or γ-strongly monotone iff

〈x− y, u− v〉 ≥ γ ‖x− y‖2 for all (x, u), (y, v) ∈ GraphM . Notice that ifM is maximally monotone

and strongly monotone (with a given parameter), then zerM is a singleton, thus nonempty (see [8,

Corollary 23.37]).

The resolvent of M , JM : H ⇒ H, is defined by JM := (Id +M)−1, where Id : H → H,

Id(x) = x for all x ∈ H, denotes the identity operator on H. If M is maximally monotone, then

JM : H → H is single-valued and maximally monotone (cf. [8, Proposition 23.7 and Corollary

23.10]). For an arbitrary γ > 0 we have (see [8, Proposition 23.18])

JγM + γJγ−1M−1 ◦ γ−1Id = Id. (2)

For the convergence statements that we provide in this paper we will assume that some hypothe-

ses, one of them expressed in terms of the Fitzpatrick function associated to a certain maximally

monotone operator, are fulfilled. In the following we will recall some properties of this function,

which brought new and deep insights into the field of maximally monotone operators in the last
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decade (see [8,14,15,9,10,16,17,18,12] and the references therein). The Fitzpatrick function asso-

ciated to a monotone operator M , defined as

ϕM : H×H → R, ϕM (x, u) := sup {〈x, v〉+ 〈y, u〉 − 〈y, v〉 | (y, v) ∈ GraphM} ,

is a convex and lower semicontinuous function. In case M is maximally monotone, ϕM is proper

and it fulfills

ϕM (x, u) ≥ 〈x, u〉 for all (x, u) ∈ H ×H,

with equality if and only if (x, u) ∈ GraphM . Notice that if f : H → R is a proper, convex and

lower semicontinuous function, then ∂f is a maximally monotone operator (cf. [19]) and it holds

(∂f)−1 = ∂f∗. Furthermore, the following inequality is true (see [14])

ϕ∂f (x, u) ≤ f(x) + f∗(u) for all (x, u) ∈ H ×H. (3)

We refer the reader to [14] for formulas of the corresponding Fitzpatrick functions computed for

particular classes of monotone operators.

Let γ > 0 be arbitrary. A single-valued operator M : H → H is said to be γ-cocoercive

iff 〈x− y,Mx−My〉 ≥ γ ‖Mx−My‖2 for all (x, y) ∈ H × H, and γ-Lipschitz continuous iff

‖Mx−My‖ ≤ γ ‖x− y‖ for all (x, y) ∈ H×H. A single-valued linear operator M : H → H is said

to be skew iff 〈x,Mx〉 = 0 for all x ∈ H.

We close the section by presenting some convergence results which will be used when carrying out

a convergence analysis for the iterative schemes provided in the paper. Let (xn)n∈N be a sequence

in H and (λk)k∈N be a sequence of positive numbers such that
∑
k∈N λk = +∞. Let (zn)n∈N be the

sequence of weighted averages defined as (see [3])

zn := 1
τn

n∑
k=1

λkxk, where τn :=
n∑
k=1

λk for all n ∈ N. (4)

Lemma 2.1 (Opial–Passty) Let F be a nonempty subset of H and (xn)n≥0 be a sequence in H

such that the limit limn→+∞ ‖xn − x‖ exists for every x ∈ F .

(i) If every weak cluster point of (xn)n≥0 lies in F , then (xn)n≥0 converges weakly to an element

in F as n→ +∞.
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(ii) If every weak cluster point of (zn)n∈N lies in F , then (zn)n∈N converges weakly to an element

in F as n→ +∞.

The following result is taken from [3, Lemma 2].

Lemma 2.2 Let (an)n≥0, (bn)n≥0 and (εn)n≥0 be real sequences. Assume that (an)n≥0 is bounded

from below, (bn)n≥0 is nonnegative, (εn)n≥0 ∈ `1 and an+1 − an + bn ≤ εn for any n ≥ 0. Then

(an)n≥0 is convergent and (bn)n≥0 ∈ `1.

3 A Backward Penalty Scheme with One Forward Step

The problem we deal with in this section has the following formulation.

Problem 3.1 Let H be a real Hilbert space, A,B : H ⇒ H be maximally monotone operators,

D : H → H be an η-cocoercive operator with η > 0 and suppose that C := zerB 6= ∅. The monotone

inclusion problem to solve is

0 ∈ Ax+Dx+NC(x). (5)

We propose for solving Problem 3.1 the following iteration scheme which has the particularity

that it evaluates an appropriate penalization of the operator B via a backward step.

Algorithm 3.1 Choose x0 ∈ H and set for any n ≥ 1:

yn−1 := xn−1 − λnDxn−1,

wn := JλnAyn−1,

xn := JλnβnBwn,

where (λn)n∈N and (βn)n∈N are sequences of positive real numbers.

Remark 3.1 (a) The algorithmic treatment of Problem 3.1 is related to the solving of convex

optimization problems of the form

min
x∈arg minΨ

Φ(x) + Γ (x),
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where Φ, Ψ : H → R are proper, convex and lower semicontinuous functions with arg minΨ 6= ∅,

and Γ : H → R is a convex and differentiable function with Lipschitz continuous gradient. Different

to the most common splitting algorithms, which rely on the calculation of the projection on the

set arg minΨ , the iterative scheme described in Algorithm 3.1 assumes an explicit evaluation of the

function Ψ in terms of its proximal operator.

(b) If Dx = 0 for all x ∈ H and B = ∂Ψ , where Ψ : H → R is a proper, convex and lower

semicontinuous function with minΨ = 0, then the iterative scheme in Algorithm 3.1 reduces to the

algorithm proposed and investigated in [2] for solving the monotone inclusion problem

0 ∈ Ax+Narg minΨ (x). (6)

(c) Another penalty scheme for solving the monotone inclusion problem (5), in the case B is a

cocoercive operator, which evaluates both B and D via forward steps and A via a backward step

has been introduced and investigated from the point of view of its convergence properties in [6].

The mentioned algorithm is an extension of a numerical method proposed in [3] in the context of

solving (6) when Ψ is, in addition, differentiable with Lipschitz continuous gradient.

The following lemma will be crucial for proving the convergence of Algorithm 3.1.

Lemma 3.1 For u ∈ C ∩ domA take w ∈ (A+D +NC)(u) such that w = v + Du + p for some

v ∈ Au and p ∈ NC(u). For each n ∈ N, the following inequality holds:

‖xn − u‖2 − ‖xn−1 − u‖2 + λn(2η − λn) ‖Dxn−1 −Du‖2 +

1
2 ‖xn − wn‖

2 + 1
2 ‖xn − wn − λn(Du+ v)‖2 + ‖xn−1 − wn − λn(Dxn−1 −Du)‖2 ≤

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λn 〈w, u− xn〉+ 2λ2

n ‖Du+ v‖2
.

Proof. Let be n ≥ 1 fixed. We have λnv ∈ λnAu and yn−1−wn ∈ λnAwn, so, by the monotonicity

of A,

〈yn−1 − wn − λnv, wn − u〉 ≥ 0, (7)

which is equivalent to

2λn 〈v, wn − u〉 ≤ 2 〈yn−1 − wn, wn − u〉 = ‖yn−1 − u‖2 − ‖yn−1 − wn‖2 − ‖u− wn‖2
. (8)
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Furthermore, we have wn−xn ∈ λnβnBxn, so, by definition of the Fitzpatrick function and noticing

that σC
(
u, p

βn

)
=
〈
p
βn
, u
〉
,

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
≥ 2λnβn

(
ϕB

(
u,

p

βn

)
− σC

(
p

βn

))
≥ 2 〈u,wn − xn〉+ 2λn 〈p, xn〉 − 2 〈xn, wn − xn〉 − 2λn 〈p, u〉

= 2 〈u− xn, wn − xn〉+ 2λn 〈p, xn − u〉

= ‖u− xn‖2 + ‖xn − wn‖2 − ‖u− wn‖2 + 2λn 〈p, xn − u〉 . (9)

Adding (8) and (9), we obtain (recall that w = v +Du+ p)

‖xn − u‖2 − ‖xn−1 − u‖2 − 2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
− 2λn 〈w, u− xn〉

≤ ‖u− yn−1‖2 − ‖xn−1 − u‖2 − ‖yn−1 − wn‖2 − ‖xn − wn‖2 + 2λn 〈v, xn − wn〉

+ 2λn 〈Du, xn − u〉

= ‖u− xn−1 + λnDxn−1‖2 − ‖u− xn−1‖2 − ‖xn−1 − wn − λnDxn−1‖2 − ‖xn − wn‖2

+ 2λn 〈v, xn − wn〉+ 2λn 〈Du, xn − u〉

= 2λn 〈Dxn−1, u− xn−1〉 − ‖xn−1 − wn‖2 + 2λn 〈Dxn−1, xn−1 − wn〉 − ‖xn − wn‖2

+ 2λn 〈v, xn − wn〉+ 2λn 〈Du, xn − u〉

= 2λn 〈Dxn−1, u− wn〉 − ‖xn−1 − wn‖2 − ‖xn − wn‖2

+ 2λn 〈v, xn − wn〉+ 2λn 〈Du, xn − u〉

= 2λn 〈Dxn−1 −Du, u− xn−1〉+ 2λn 〈Dxn−1, xn−1 − wn〉 − ‖xn−1 − wn‖2

−‖xn − wn‖2 + 2λn 〈v, xn − wn〉+ 2λn 〈Du, xn − xn−1〉

≤ −2ηλn ‖Dxn−1 −Du‖2 + 2λn 〈Dxn−1 −Du, xn−1 − wn〉 − ‖xn−1 − wn‖2

−‖xn − wn‖2 + 2λn 〈Du+ v, xn − wn〉

= −‖xn−1 − wn − λn(Dxn−1 −Du)‖2 − λn(2η − λn) ‖Dxn−1 −Du‖2

− 1
2 ‖xn − wn − λn(Du+ v)‖2 − 1

2 ‖xn − wn‖
2 + 2λ2

n ‖Du+ v‖2
.

From here the conclusion is straightforward. �
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For the convergence statement of Algorithm 3.1, the following hypotheses are needed:

(i) A+NC is maximally monotone and zer (A+D +NC) 6= ∅;

(ii) For every p ∈ RanNC ,
∑
n∈N

λnβn

(
sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
< +∞;

(iii) (λn)n∈N ∈ `2 \ `1.

 (Hfitz)

Remark 3.2 Some comments with respect to the hypotheses (Hfitz) are in order.

(a) The hypotheses (Hfitz) have already been used in [6] when showing the convergence of the

iterative scheme proposed for solving (5) when B is a cocoercive operator. Still there it was pointed

out that, since D is cocoercive and domD = H, A+D+NC is maximally monotone, while, in the

light of the properties of the Fitzpatrick function, for every p ∈ RanNC and any n ∈ N one has

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

)
≥ 0.

(b) The convergence of the penalty iterative scheme proposed in [2] for solving the monotone

inclusion problem (6), where Ψ : H → R is a proper, convex and lower semicontinuous function

with minΨ = 0, have been shown under the following hypotheses:

(i) A+NC is maximally monotone and zer (A+D +NC) 6= ∅;

(ii) For every p ∈ RanNC ,
∑
n∈N

λnβn

(
Ψ∗
(
p

βn

)
− σC

(
p

βn

))
< +∞;

(iii) (λn)n∈N ∈ `2 \ `1.

 (H)

According to (3) it holds

∑
n∈N

λnβn

(
sup
ũ∈C

ϕ∂Ψ

(
ũ,

p

βn

)
− σC

(
p

βn

))
≤
∑
n∈N

λnβn

(
Ψ∗
(
p

βn

)
− σC

(
p

βn

))
,

thus condition (ii) in (H) implies condition (ii) in (Hfitz) applied to B = ∂Ψ . This shows that

the hypothesis formulated by means of the Fitzpatrick function extends the one from [2] to the

more general setting considered in Problem 3.1. In the last section of this paper we will discuss the

fulfillment of the hypotheses (H) and (Hfitz) for specific instances of the operator B.

Theorem 3.1 Let (xn)n≥0 and (wn)n∈N be the sequences generated by Algorithm 3.1 and (zn)n∈N

be the sequence defined in (4). If (Hfitz) is fulfilled, then (zn)n∈N converges weakly to an element

in zer (A+D +NC) as n→ +∞.
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Proof. As limn→+∞ λn = 0, there exists n0 ∈ N such that 2η − λn ≥ 0 for all n ≥ n0. Thus, for

(u,w) ∈ Graph (A+D +NC) such that w = v+ p+Du, where v ∈ Au and p ∈ NC(u), by Lemma

3.1 it holds for any n ≥ n0

‖xn − u‖2 − ‖xn−1 − u‖2 ≤

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λn 〈w, u− xn〉+ 2λ2

n ‖Du+ v‖2
. (10)

By Lemma 2.1, it is sufficient to prove that the following two statements hold:

1. for every u ∈ zer (A+D +NC) the sequence
(
‖xn − u‖n≥0

)
is convergent;

2. every weak cluster point of (zn)n∈N lies in zer (A+D +NC).

1. Take an arbitrary u in zer (A+D +NC). By taking w = 0 in (10), we get

‖xn − u‖2 − ‖xn−1 − u‖2 ≤ 2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λ2

n ‖Du+ v‖2
.

and the conclusion follows from Lemma 2.2.

2. Let z be a weak cluster point of (zn)n∈N. As A+D+NC is maximally monotone, in order to

show that z ∈ zer (A+D +NC) we will use the characterization given in (1). To this end we take

(u,w) ∈ Graph (A+D +NC) such that w = v+ p+Du, where v ∈ Au and p ∈ NC(u). Let N ∈ N

with N ≥ n0 + 2. Summing up for n = n0 + 1, . . . , N the inequalities in (10), we get

‖xN − u‖2 − ‖xn0 − u‖
2 ≤ L+ 2

〈
w,

N∑
n=1

λnu−
N∑
n=1

λnxn

〉
,

where

L =2
∞∑

n=n0+1
λnβn

(
sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2

∞∑
n=n0+1

λ2
n ‖Du+ v‖2

+ 2
n0∑
n=1

λn 〈w, xn − u〉

is finite and independent of N . Discarding the nonnegative term ‖xN − u‖2 and dividing by 2τN =

2
∑N
n=1 λn, we obtain

−‖xn0 − u‖
2

2τN
≤ L

2τN
+ 〈w, u− zN 〉 .
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By passing to the limit N → +∞ and using that limN→+∞ τN = +∞, we get

lim inf
N→+∞

〈w, u− zN 〉 ≥ 0.

Since z is a weak cluster point of (zn)n∈N, we obtain that 〈w, u− z〉 ≥ 0. Finally, as this inequality

holds for arbitrary (u,w) ∈ Graph (A+D +NC), the desired conclusion follows. �

In the following we show that strong monotonicity of the operator A ensures strong convergence

of the sequence (xn)n≥0.

Theorem 3.2 Let (xn)n≥0 and (wn)n∈N be the sequences generated by Algorithm 3.1. If (Hfitz) is

fulfilled and the operator A is γ-strongly monotone with γ > 0, then (xn)n≥0 converges strongly to

the unique element in zer(A+D +NC) as n→ +∞.

Proof. Let u ∈ zer(A+D +NC) and w = 0 = v + p+Du, where v ∈ Au and p ∈ NC(u). Since

A is γ-strongly monotone, inequality (7) becomes for any n ∈ N

〈yn−1 − wn − λnv, wn − u〉 ≥ λnγ‖wn − u‖2. (11)

Arguing as in the proof of Lemma 3.1 (for w = 0) we obtain for any n ∈ N

λnγ‖wn − u‖2 + ‖xn − u‖2 − ‖xn−1 − u‖2 + λn(2η − λn) ‖Dxn−1 −Du‖2 +

1
2 ‖xn − wn‖

2 + 1
2 ‖xn − wn − λn(Du+ v)‖2 + ‖xn−1 − wn − λn(Dxn−1 −Du)‖2 ≤

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λ2

n ‖Du+ v‖2
.

As limn→+∞ λn = 0, there exists n0 ∈ N such that for all n ≥ n0

λnγ‖wn − u‖2 + 1
2 ‖xn − wn‖

2 + ‖xn − u‖2 − ‖xn−1 − u‖2 ≤

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λ2

n ‖Du+ v‖2

and, so,

γ
∑
n≥n0

λn‖wn − u‖2 + 1
2
∑
n≥n0

‖xn − wn‖2 ≤

‖xn0 − u‖
2 + 2

∑
n≥n0

λnβn

(
sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2 ‖Du+ v‖2 ∑

n≥n0

λ2
n < +∞.
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From here it follows that
∑
n≥n0

λn(‖xn − u‖ − ‖xn − wn‖)2 ≤
∑
n≥n0

λn‖wn − u‖2 < +∞ and∑
n≥n0

‖xn − wn‖2
< +∞. Since (‖xn − u‖ − ‖xn − wn‖)n∈N is convergent (see the proof of The-

orem 3.1) and
∑
n∈N λn = +∞, it follows that limn→+∞(‖xn − u‖ − ‖xn − wn‖) = 0 and, so,

limn→+∞ ‖xn − u‖ = 0. �

4 A Backward Penalty Scheme with Two Forward Steps

The problem we deal with in this section has the following formulation.

Problem 4.1 Let H be a real Hilbert space, A,B : H ⇒ H be maximally monotone operators,

D : H → H be an η−1-Lipschitz continuous and monotone operator with η > 0 and suppose that

C := zerB 6= ∅. The monotone inclusion problem to solve is

0 ∈ Ax+Dx+NC(x).

Problem 4.1 is a generalization of Problem 3.1, since every η-cocoercive operator is obviously

monotone and η−1-Lipschitz continuous. If D = ∇f for some convex and differentiable function

f : H → R with η−1-Lipschitzian gradient, then D is automatically η-cocoercive by the Baillon–

Haddad theorem [20]. The investigations we make in Section 5 provide a strong motivation for

treating monotone inclusion problems in the settings of Problem 4.1.

Algorithm 4.1 Choose x1 ∈ H and set for any n ≥ 1

yn := xn − λnDxn,

pn := JλnAyn,

qn := pn − λnDpn,

xn+1 := JλnβnB(xn − yn + qn),

where (λn)n∈N and (βn)n∈N are sequences of postive real numbers.
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Lemma 4.1 For u ∈ C ∩ domA take w ∈ (A+D +NC)(u) such that w = v + Du + p for some

v ∈ Au and p ∈ NC(u). For each n ∈ N, the following inequality holds:

‖xn+1 − u‖2 − ‖xn − u‖2 +
(

1− 4λ2
n

η2

)
‖xn − pn‖2 +

1
2 ‖xn+1 − pn‖2 + 1

2 ‖xn+1 − pn + 2λn(Dpn −Dxn + p)‖2 ≤

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λn 〈w, u− pn〉+ 4λ2

n ‖p‖
2
.

Proof. Let be n ≥ 1 fixed. We have λnv ∈ λnAu and yn − pn ∈ λnApn, so, by monotonicity of

λnA,

〈yn − pn − λnv, pn − u〉 ≥ 0,

which is equivalent to

2λn 〈v, pn − u〉 ≤ 2 〈yn − pn, pn − u〉 = ‖yn − u‖2 − ‖yn − pn‖2 − ‖pn − u‖2
. (12)

Furthermore, we have xn − yn + qn − xn+1 ∈ λnβnBxn+1, so, by definition of the Fitzpatrick

function,

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
≥ 2 〈u, xn − yn + qn − xn+1〉+ 2λn 〈p, xn+1〉 − 2 〈xn+1, xn − yn + qn − xn+1〉

− 2λn 〈p, u〉

= 2λn 〈p, xn+1 − u〉+ 2 〈u− xn+1, xn − yn + qn − xn+1〉

= 2λn 〈p, xn+1 − u〉 − ‖u− xn‖2 + ‖u− yn‖2 − ‖u− qn‖2 + ‖u− xn+1‖2

+ ‖xn − xn+1‖2 − ‖xn+1 − yn‖2 + ‖xn+1 − qn‖2
. (13)

Adding (12) and (13), we obtain

‖xn+1 − u‖2 − ‖xn − u‖2 − 2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
− 2λn 〈w, u− pn〉

≤ 2λn 〈p, pn − xn+1〉+ 2λn 〈Du, pn − u〉 − ‖yn − pn‖2 − ‖u− pn‖2 + ‖u− qn‖2

−‖xn+1 − xn‖2 + ‖xn+1 − yn‖2 − ‖xn+1 − qn‖2

= 2λn 〈p, pn − xn+1〉+ 2λn 〈Du, pn − u〉 − ‖xn − λnDxn − pn‖2 − ‖u− pn‖2
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+ ‖u− pn + λnDpn‖2 − ‖xn+1 − xn‖2 + ‖xn+1 − xn + λnDxn‖2

−‖xn+1 − pn + λnDpn‖2

= 2λn 〈p, pn − xn+1〉+ 2λn 〈Du, pn − u〉 − ‖xn − pn‖2 + 2λn 〈Dxn, xn − pn〉

−λ2
n ‖Dxn‖

2 + λ2
n ‖Dpn‖

2 + 2λn 〈Dpn, u− pn〉+ λ2
n ‖Dxn‖

2 + 2λn 〈Dxn, xn+1 − xn〉

− ‖xn+1 − pn‖2 − 2λn 〈xn+1 − pn, Dpn〉 − λ2
n ‖Dpn‖

2

= 2λn 〈p, pn − xn+1〉+ 2λn 〈Du, pn − u〉 − ‖xn − pn‖2 + 2λn 〈Dpn, u− xn+1〉

+ 2λn 〈Dxn, xn+1 − pn〉 − ‖xn+1 − pn‖2

= 2λn 〈Du−Dpn, pn − u〉+ 2λn 〈Dpn −Dxn + p, pn − xn+1〉

− ‖xn+1 − pn‖2 − ‖xn − pn‖2

≤ −‖xn+1 − pn‖2 − ‖xn − pn‖2 + 2λn 〈Dpn −Dxn + p, pn − xn+1〉

= −‖xn − pn‖2 − 1
2 ‖xn+1 − pn‖2 − 1

2 ‖xn+1 − pn + 2λn(Dpn −Dxn + p)‖2

+ 2λ2
n ‖Dpn −Dxn + p‖2

≤ −
(

1− 4λ2
n

η2

)
‖xn − pn‖2 − 1

2 ‖xn+1 − pn‖2

− 1
2 ‖xn+1 − pn + 2λn(Dpn −Dxn + p)‖2 + 4λ2

n ‖p‖
2
,

which leads to the desired conclusion. �

For the convergence statement, the same additional hypotheses (Hfitz) are needed as for Algo-

rithm 3.1.

Theorem 4.1 Let (xn)n∈N, (pn)n∈N, (yn)n∈N and (qn)n∈N be the sequences generated by Algorithm

4.1 and (zn)n∈N be the sequence defined in (4). If (Hfitz) is fulfilled, then (zn)n∈N converges weakly

to an element in zer (A+D +NC) as n→∞.

Proof. As limn→+∞ λn = 0, there exists n0 ∈ N such that 1 − 4λ2
n

η2 ≥ 0 for all n ≥ n0. Thus, for

(u,w) ∈ Graph (A+D +NC) such that w = v+ p+Du, where v ∈ Au and p ∈ NC(u), by Lemma
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4.1 it holds for any n ≥ n0

‖xn+1 − u‖2 − ‖xn − u‖2 ≤

2λnβn
(

sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
+ 2λn 〈w, u− pn〉+ 4λ2

n ‖p‖
2
. (14)

Analogously to the proof of Theorem 3.1, one obtains from here that:

1. for every u ∈ zer (A+D +NC) the sequence
(
‖xn − u‖n∈N

)
is convergent;

2. every weak cluster point of (zn)n∈N lies in zer (A+D +NC).

The conclusion follows by using again Lemma 2.1. �

Arguing in the same way as in Theorem 3.2, one can show that the strong monotonicity of A

guarantees strong convergence of the sequence (xn)n∈N.

Theorem 4.2 Let (xn)n∈N, (pn)n∈N, (yn)n∈N and (qn)n∈N be the sequences generated by Algorithm

4.1. If (Hfitz) is fulfilled and the operator A is γ-strongly monotone with γ > 0, then (xn)n∈N

converges strongly to the unique element in zer(A+D +NC) as n→ +∞.

5 A Primal-Dual Algorithm Based on a Backward Penalty Scheme

In this section, we will derive a primal-dual algorithm for solving complexly structured monotone

inclusion problems based on the backward penalty iterative scheme provided in Algorithm 4.1. The

problem under investigation is the following one.

Problem 5.1 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator and

D : H → H a monotone and η−1-Lipschitz continuous operator for some η > 0. Furthermore,

let m ≥ 1 and for any i ∈ {1, . . . ,m}, let Gi be real Hilbert spaces, Ai : Gi ⇒ Gi maximally

monotone operators, Di : Gi ⇒ Gi be maximally monotone operators such that D−1
i are ν−1

i -

Lipschitz continuous for some νi > 0 and Li : H → Gi nonzero linear continuous operators.

Consider also B : H ⇒ H a maximally monotone operator and suppose that C := zerB 6= ∅. The

monotone inclusion problem to solve is to find x ∈ H with

0 ∈ Ax+
m∑
i=1

L∗i (Ai�Di)(Lix) +Dx+NC(x), (15)
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together with its dual monotone inclusion problem in the sense of Attouch–Théra [21] of finding

vi ∈ Gi, i = 1, . . . ,m, satisfying

∃x ∈ H : vi ∈ (Ai�Di)(Lix) and 0 ∈ Ax+
m∑
i=1

L∗i vi +Dx+NC(x). (16)

We introduce the real Hilbert space H := H× G1 × . . .× Gm, the operators

A :H⇒H, A(x, v1, . . . , vm) = Ax×A−1
1 v1 × . . .×A−1

m vm,

D :H→H, D(x, v1, . . . , vm) =
(

m∑
i=1

L∗i vi +Dx,D−1
1 v1 − L1x, . . . ,D

−1
m vm − Lmx

)
,

B :H⇒H, B(x, v1, . . . , vm) = Bx× {0} × . . .× {0} , (17)

and the set

C := {x ∈H |Bx = 0} = zerB × G1 × . . .× Gm.

In this setting, we have for x = (x, v1, . . . , vm) ∈ H

0 ∈ (A + D +NC)x ⇐⇒



0 ∈ Ax+
∑m
i=1 L

∗
i vi +Dx+NC(x)

0 ∈ A−1
1 v1 +D−1

1 v1 − L1x

...

0 ∈ A−1
m vm +D−1

m vm − Lmx


⇐⇒


0 ∈ Ax+

∑m
i=1 L

∗
i vi +Dx+NC(x)

vi ∈ (Ai�Di)(Lix), i = 1, . . . ,m


=⇒ x satisfies (15) and (v1, . . . , vm) satisfies (16). (18)

The resolvent of B is given by

JγB(x, v1, . . . , vm) = (JγBx, v1, . . . , vm)

and its Fitzpatrick function ϕB :H×H→ R by

ϕB(x, v1, . . . , vm, x
∗, v∗1 , . . . , v

∗
m) = sup

y∈H
y∗∈By

wi∈Gi,i=1,...,m

{
〈x, y∗〉+ 〈y, x∗〉+

m∑
i=1
〈wi, v∗i 〉 − 〈y, y∗〉

}

=


ϕB(x, x∗), if v∗i = 0, i = 1, . . . ,m,

+∞, otherwise.
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Thus, in order to solve the primal-dual pair of monotone inclusion problems (15)–(16), one has to

solve

0 ∈ Ax + Dx +NC(x) (19)

in the product spaceH. By doing this via Algorithm 4.1 one obtains the following iterative scheme:

Algorithm 5.1 Choose x1 ∈ H and vi,1 ∈ Gi, i = 1, . . . ,m, and set for any n ≥ 1

y1,n := xn − λn

(
m∑
i=1

L∗i vi,n −Dxn

)
,

y2,i,n := vi,n − λn
(
D−1
i vi,n − Lixn

)
, i = 1, . . . ,m,

p1,n := JλnAy1,n,

p2,i,n := JλnA
−1
i
y2,i,n, i = 1, . . . ,m, i = 1, . . . ,m,

qn := p1,n − λn

(
m∑
i=1

L∗i p2,i,n −Dp1,n

)
,

vi,n+1 := vi,n − y2,i,n + p2,i,n − λn
(
D−1
i p2,i,n − Lip1,n

)
, i = 1, . . . ,m,

xn+1 := JλnβnB(xn − y1,n + qn).

where (λn)n∈N and (βn)n∈N are sequences of postive real numbers.

For its convergence the following hypotheses are needed:

(i) A+NC is maximally monotone and zer
(
A+

m∑
i=1

L∗i ◦ (Ai�Di) ◦ Li +D +NC

)
6= ∅;

(ii) For every p ∈ RanNC ,
∑
n∈N

λnβn

(
sup
ũ∈C

ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
< +∞;

(iii) (λn)n≥0 ∈ `2 \ `1.


(Hpd)

Theorem 5.1 Consider the sequences generated by Algorithm 5.1 and assume that (Hpd) is ful-

filled. Then the sequence (zn)n∈N defined in (4) converges weakly to a solution of (15) and the

sequence
(

1∑n

k=1
λk

∑n
k=1 λk(v1,k, .., vm,k)

)
n∈N

converges weakly to a solution of (16) as n→ +∞.

If, additionally, A and A−1
i , i = 1, ...,m, are strongly monotone, then (xn)n∈N converges strongly to

the unique solution of (15) and (v1,n, .., vm,n)n∈N converges strongly to the unique solution of (16)

as n→ +∞.
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Proof. Clearly, the iterations in Algorithm 5.1 can be for any n ≥ 1 equivalently written as

(y1,n, y2,1,n, . . . , y2,m,n) = (Id− λnD)(xn, v1,n, . . . , vm,n),

(p1,n, p2,1,n, . . . , p2,m,n) = JA(y1,n, y2,1,n, . . . , y2,m,n),

(qn, q̃1,n, . . . , q̃m,n) = (Id− λnD)(p1,n, p2,1,n, . . . , p2,m,n),

(xn+1, v1,n+1, . . . , vm,n+1) = JλnβnB

(
(xn, v1,n, . . . , vm,n)− (y1,n, y2,1,n, . . . , y2,m,n)

+ (qn, q̃1,n, . . . , q̃m,n)
)
.

with the operators A, B and D defined in (17). The operators A and B are maximally monotone

by [8, Proposition 20.23], and the operator D is monotone and Lipschitz continuous ([22]). If A and

A−1
i , i = 1, . . . ,m, are strongly monotone, then A is strongly monotone, too. Thus the conclusion

is a direct consequence of the Theorem 4.1 and Theorem 4.2 applied to the monotone inclusion

problem (19), provided that the corresponding hypotheses (Hfitz) are fulfilled.

According to (Hpd), A+NC is maximally monotone, and so is A+NC . Further, the assumption

zer
(
A+

m∑
i=1

L∗i ◦ (Ai�Di) ◦ Li +D +NC

)
6= ∅ leads to zer (A + D +NC) 6= ∅.

Furthermore, RanNC = RanNC × {0} × . . .× {0}, so for all (p, 0, . . . , 0) ∈ RanNC∑
n∈N

λnβn sup
(ũ,v1,...,vm)∈C

(
ϕB

(
ũ, v1, . . . , vm,

p

βn
, 0, . . . , 0

)
− σC

(
p

βn
, 0, . . . , 0

))
=

∑
n∈N

λnβn sup
ũ∈C

(
ϕB

(
ũ,

p

βn

)
− σC

(
p

βn

))
< +∞.

�

Remark 5.1 Even if the operators D and D−1
i , i = 1, ...,m, are cocoercive, one cannot make use

of Algorithm 3.1 and of the corresponding convergence theorem in order to solve the monotone

inclusion problem (19). This is due to the fact that the operator

(x, v1, ..., vm) 7→
(

m∑
i=1

L∗i vi,−L1x, . . . ,−Lmx

)
,

being skew, fails to be cocoercive, which means that D is not cocoercive as well. This shows the

importance of having iterative schemes for monotone inclusion problems involving monotone and

Lipschitz continuous operators, which are not necessarily cocoercive, as is Algorithm 4.1 (see, also

[7]).
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6 Examples

In this section, we discuss the fulfillment of condition (ii) in the hypotheses (H) and (Hfitz), for

several particular instances of the operator B.

Example 6.1 For a convex and closed set ∅ 6= C ⊆ H, let B := NC . Then zerB = C and (see [14,

Example 3.1])

ϕB(x, u) = ϕNC
(x, u) = δC(x) + σC(u),

and condition (ii) in (Hfitz) becomes

∑
n∈N

λnβn

(
sup
ũ∈C

δC(ũ) + σC

(
p

βn

)
− σC

(
p

βn

))
< +∞,

which is satisfied for any choice of the sequences (λn)n∈N and (βn)n∈N. The same applies for

condition (ii) in (H), where Ψ(x) = δC(x) and Ψ∗(u) = σC(u).

Example 6.2 For a convex and closed set ∅ 6= C ⊆ H, let Ψ : H → R, Ψ(x) = 1
2dC(x)2, where

dC(x) = infz∈C ‖x− z‖ and B := ∂Ψ . Then zerB = C and (see [8, Corollary 12.30])

∇Ψ(x) = x− ProjC (x),

where ProjC : H → C denotes the projection operator on C. We have Ψ = δC �
(

1
2 ‖·‖

2
)
, so

Ψ∗ = σC + 1
2 ‖·‖

2. If C 6= H, condition (ii) in (H) is therefore equivalent to (see [2])

∑
n∈N

λn
βn

< +∞, (20)

in which case condition (ii) in (Hfitz) is also fulfilled. Let also notice that the resolvent of B is given

by

JγB(x) = x

γ + 1 + γ ProjC (x)
γ + 1 ∀x ∈ H.

Notice that in this example the approach from [6] could also be applied to the single-valued operator

B, resulting in slightly different algorithms.

Next, we present two examples, for which condition (ii) in (Hfitz) fails for any choice of the sequence

of positive penalty parameters (βn)n∈N.
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Example 6.3 For a convex and closed set ∅ 6= C ⊆ H, let Ψ : H → R, Ψ(x) = dC(x), and B := ∂Ψ .

Then (see [8, Example 16.49])

Bx = ∂dC(x) =


{u ∈ NC(x) | ‖u‖ ≤ 1} , if x ∈ C,{

x−ProjC (x)
‖x−ProjC (x)‖

}
, otherwise

and zerB = C. Since Ψ∗ = σC + δB,

∑
n∈N

λnβn

(
Ψ∗
(
p

βn

)
− σC

(
p

βn

))
=
∑
n∈N

λnβnδB

(
p

βn

)
. (21)

For C 6= H and arbitrary βn > 0, with n ∈ N, there exists p ∈ RanNC with ‖p‖ > βn, for which

expression (21) is equal to +∞. Thus, condition (ii) in (H) is not verified.

Condition (ii) in (Hfitz) fails for similar reasons. Let be βn > 0, with n ∈ N, y ∈ C and p ∈ NC(y)

with ‖p‖ > βn. Then

(
y + tp,

p

‖p‖

)
∈ Graph ∂dC ∀t > 0,

which implies that

sup
ũ∈C

ϕ∂dC

(
ũ,

p

βn

)
− σC

(
p

βn

)
≥ ϕ∂dC

(
y,

p

βn

)
− σC

(
p

βn

)
≥ sup

t>0

(〈
y,

p

‖p‖

〉
+
〈
y + tp,

p

βn

〉
−
〈
y + tp,

p

‖p‖

〉
−
〈
y,

p

βn

〉)
= sup

t>0

(
t ‖p‖

(
‖p‖
βn
− 1
))

= +∞.

Remark 6.1 One can notice that in the previous three examples, despite of the different choices

of the operator B, the set of its zeros is the convex and closed set C. In what concerns condition

(ii) in (Hfitz) and (H), it is satisfied for any choice of (λn)n∈N and (βn)n∈N when B = NC and for

the two sequences fulfilling assumption (20) when B = ∂
( 1

2d
2
C

)
, however, it fails for any choice of

(λn)n∈N and (βn)n∈N when B = ∂dC . The applicability of (Hfitz) and (H) therefore depends on the

modeling of the variational inequality via the set-valued operator B.
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Example 6.4 Let B : H → H be a nonzero skew linear continuous operator. So zerB = kerB and

by taking a nonzero element p ∈ RanNkerB = (kerB)⊥, it holds for any n ∈ N

sup
ũ∈kerB

ϕB

(
ũ,

p

βn

)
− σkerB

(
p

βn

)
= sup
ũ∈kerB

sup
y∈H

(
〈ũ, By〉+

〈
y,

p

βn

〉
− 〈y,By〉

)
≥ sup
y∈H

〈
y,

p

βn

〉
= +∞.

This shows that condition (ii) in (Hfitz) is not satisfied.

Example 6.5 On the other hand, let S : H → H be a nonzero skew linear continuous operator,

and let B := (Id + S)−1 be its resolvent. This operator is not symmetric, therefore it cannot be the

subdifferential of a convex function ([23, Proposition 2.51]). We have kerB = (Id + S)(0) = {0}.

For every p ∈ RanNkerB = (kerB)⊥ = H, we have (recall that Id + S is surjective and S∗ = −S)

∑
n∈N

λnβn

(
sup

ũ∈kerB
ϕB

(
ũ,

p

βn

)
− σkerB

(
p

βn

))

=
∑
n∈N

λnβnϕB

(
0, p
βn

)
=
∑
n∈N

λnβn sup
y∈H

{〈
p

βn
, y

〉
− 〈y,By〉

}

=
∑
n∈N

λnβn sup
x∈H

{〈
p

βn
, x+ Sx

〉
− 〈x+ Sx, x〉

}
=
∑
n∈N

λnβn sup
x∈H

{〈
x,
p− Sp
βn

〉
− ‖x‖2

}

=
∑
n∈N

λnβn sup
x∈H

{
−
∥∥∥∥x− p− Sp

2βn

∥∥∥∥2
+ ‖p‖

2 + ‖Sp‖2

4β2
n

}
=
(∑
n∈N

λn
βn

)
‖p‖2 + ‖Sp‖2

4 ,

so condition (ii) in (Hfitz) is equivalent to (20).

Example 6.6 Let B : H → H be a self-adjoint linear continuous operator with closed range. We

have for each p ∈ RanNkerB = (kerB)⊥ = RanB

∑
n∈N

λnβn

(
sup

ũ∈kerB
ϕB

(
ũ,

p

βn

)
− σkerB

(
p

βn

))

=
∑
n∈N

λnβn

 sup
ũ∈kerB
y∈H

{
〈ũ, By〉+

〈
p

βn
, y

〉
− 〈y,By〉

}
=
∑
n∈N

λnβn

(
sup
y∈H

{〈
p

βn
, y

〉
− 〈y,By〉

})
.

For every βn > 0 the function y 7→
〈
p
βn
, y
〉
− 〈y,By〉 is concave and differentiable. Setting its

derivative equal to zero yields for its maximizers the necessary and sufficient optimality condition
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By = p
2βn

. Since p ∈ RanB, we find x ∈ H with Bx = p, so y = x
2βn

furnishes the supremum and

it holds

∑
n∈N

λnβn

(
sup

ũ∈kerB
ϕB

(
ũ,

p

βn

)
− σkerB

(
p

βn

))

=
∑
n∈N

λnβn

(〈
p

βn
,
x

2βn

〉
−
〈

x

2βn
,
p

2βn

〉)

=
(∑
n∈N

λn
βn

)
〈p, x〉

4 .

In other words, condition (ii) in (Hfitz) is equivalent to (20) (and to (H)).

7 Conclusions

We have proposed two iterative penalty schemes for solving variational inequalities on the set

of zeros of a general maximally monotone operator depending on the structure of the problem.

The operators involved were evaluated seperately according to their regularity properties. The

theoretical results guarantee weak ergodic convergence in the general setting and norm convergence

under strong monotonicity assumptions. We provided examples for the applicability of the schemes

for several operators defining the constraint set.
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