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Abstract. We incorporate inertial terms in the hybrid proximal-extragradient algorithm
and investigate the convergence properties of the resulting iterative scheme designed for
finding the zeros of a maximally monotone operator in real Hilbert spaces. The convergence
analysis relies on extended Fejér monotonicity techniques combined with the celebrated
Opial Lemma. We also show that the classical hybrid proximal-extragradient algorithm
and the inertial versions of the proximal point, the forward-backward and the forward-
backward-forward algorithms can be embedded in the framework of the proposed iterative
scheme.
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1 Introduction

The problem of numerically approaching the set of zeros of a maximally monotone operator
in real Hilbert spaces is a topic of relevance for research communities working in differ-
ent mathematical areas, like partial differential equations, evolution systems and convex
optimization, with wide applications to real-life problems as in image processing, signal
recovery, classification via machine learning, location theory, average consensus in network
coloring, clustering, etc.

The classical iterative scheme for solving this problem is the proximal point algorithm
(see [23]):

xk+1 = (Id +ckT )−1(xk) ∀k ≥ 0,

where T : H ⇒ H is a maximally monotone operator, H is a real Hilbert space, Id is the
identity operator on H and (ck)k∈N is a real sequence fulfilling lim infk→+∞ ck > 0. In
case zerT = {x ∈ H : 0 ∈ Tx} 6= ∅, the above algorithm weakly converges to a point in
zerT , no matter how the staring point x0 ∈ H is chosen.
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Following the ideas from [13], developed in the context of dealing with variational
inequalities, and [27], the following hybrid proximal-extragradient algorithm has been pro-
posed in [26]:

Algorithm 1 Choose x0 ∈ H, σ ∈ [0, 1) and (ck)k∈N such that ck ≥ c > 0 for all k ∈ N.
For all k ∈ N consider the following iterative scheme:

(i) for some εk ≥ 0, choose vk ∈ T [εk](yk) such that

‖ckvk + yk − xk‖2 + 2ckεk ≤ σ2‖yk − xk‖2;

(ii) define xk+1 = xk − ckvk.

In the above iterative scheme, T [ε] : H⇒ H denotes the ε-enlargement of the operator
T . It is shown in [26] that the sequence (xk)k∈N weakly converges to a point in zerT , pro-
vided this set is nonempty. We refer the reader to [19] for iteration complexity results and
also to [25] for a more general treatment of the hybrid-type proximal-extragradient meth-
ods. Several classical algorithms from the literature, like the classical proximal point, the
forward-backward and the forward-backward-forward algorithms can derived as particular
instances from the hybrid proximal-extragradient iterative scheme. Let us notice that the
forward-backward and the forward-backward-forward (see [28]) algorithms are designed for
finding the zeros of the sum of two maximally monotone operators, one of them being
single-valued, their formulations depending whether the single-valued operator is cocoer-
cive or (only) monotone and Lipschitz continuous. The book [5] is an excellent reference
for anyone interested in proximal algorithms.

In this paper we will focus on the class of so-called inertial proximal methods, the
origins of which go back to [1, 3]. The idea behind the iterative scheme relies on the use
of an implicit discretization of a differential system of second-order in time and it was
employed for the first time in the context of finding the zeros of a maximally monotone
operator in [3]. One of the main features of the inertial proximal algorithm is that the
next iterate is defined by making use of the previous two iterates. It also turns out that
the method is a generalization of the classical proximal point one (see [23]). Since its
introduction, one can notice an increasing interest in the class of inertial type algorithms,
see [1, 3, 4, 8–10, 15, 17, 18, 20, 21]. Especially noticeable is that these ideas where also
used in [20] in the context of determining the zeros of the sum of a maximally monotone
operator and a (single-valued) cocoercive operator, giving rise to the so-called inertial
forward-backward algorithm. We also notice that an inertial forward-backward-forward
algorithm has been proposed in [8] for the same problem in case the single-valued operator
is monotone and Lipschitz continuous.

In this note we propose a hybrid proximal-extragradient algorithm with inertial and
memory effects. The convergence of the iterative scheme relies on extended Fejér mono-
tonicity techniques adapted to the needs of the inertial-type numerical scheme. Moreover,
we also show, like in [25], that the classical hybrid proximal-extragradient algorithm, the
inertial proximal point algorithm and the inertial versions of the forward-backward and
forward-backward-forward algorithms can be derived from the inertial hybrid proximal-
extragradient scheme proposed in the paper.
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2 Preliminaries

In this section we recall some notations and results in order to make the paper self con-
tained. For the notions and results presented as follows we refer the reader to [5–7, 12,
16, 24]. Let N = {0, 1, 2, ...} be the set of nonnegative integers. Let H be a real Hilbert
space with inner product 〈·, ·〉 and associated norm ‖ · ‖ =

√
〈·, ·〉. The symbols ⇀ and →

denote weak and strong convergence, respectively.
For an arbitrary set-valued operator T : H ⇒ H we denote by GrT = {(x, u) ∈

H×H : u ∈ Tx} its graph, by domT = {x ∈ H : Tx 6= ∅} its domain, by ranT = ∪x∈HTx
its range. We use also the notation zerT = {x ∈ H : 0 ∈ Tx} for the set of zeros
of T . We say that T is monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrT .
A monotone operator T is said to be maximally monotone, if there exists no proper
monotone extension of the graph of T on H × H. The resolvent of T , JT : H ⇒ H, is
defined by p ∈ JTx if and only if (p, x−p) ∈ GrT . Moreover, if T is maximally monotone,
then JT : H → H is single-valued and maximally monotone (see [5, Proposition 23.7 and
Corollary 23.10]).

Let γ > 0. A single-valued operator A : H → H is said to be γ-cocoercive if 〈x −
y,Ax − Ay〉 ≥ γ‖Ax − Ay‖2 for all (x, y) ∈ H × H. Moreover, A is γ-Lipschitzian if
‖Ax−Ay‖ ≤ γ‖x− y‖ for all (x, y) ∈ H ×H.

Let T : H ⇒ H be a monotone operator and ε ≥ 0. The ε-enlargement of T , denoted
by T [ε] : H⇒ H, is defined by

T [ε](x) = {u ∈ H : 〈x− y, u− v〉 ≥ −ε ∀(y, v) ∈ GrT}.

Introduced in [13], this notion proved to possess fruitful properties in connection with
the theory of monotone operators [11, 12, 14], being used also in the formulation of sev-
eral numerical schemes of proximal-type. The following properties, which will be used
throughout the paper, have been taken from [25].

Proposition 2 Let T, T1, T2 : H⇒ H be maximally monotone operators and A : H → H
be γ-cocoercive, where γ > 0. The following hold:

(i) T = T [0];
(ii) if 0 ≤ ε1 ≤ ε2, then T [ε1](x) ⊆ T [ε2](x) for all x ∈ H;
(iii) if uk ∈ T [εk](xk) for all k ∈ N, xk ⇀ x, uk → u and εk → ε, then u ∈ T [ε](x);

(iv) T
[ε1]
1 (x) + T

[ε2]
2 (x) ⊆ (T1 + T2)

[ε1+ε2](x) for all x ∈ H and ε1, ε2 ≥ 0;

(v) Az ∈ A[ε](x), for all x, z ∈ H, where ε = ‖x−z‖2
4γ .

We close this section by presenting two convergence results which will be crucial for
the proof of the main results in the next section.

Lemma 3 (see [1–3]) Let (ϕk)k∈N, (δk)k∈N and (αk)k∈N be sequences in [0,+∞) such that
ϕk+1 ≤ ϕk + αk(ϕk − ϕk−1) + δk for all k ≥ 1,

∑
k∈N δk < +∞ and there exists a real

number α with 0 ≤ αk ≤ α < 1 for all k ∈ N. Then the following hold:

(i)
∑

k≥1[ϕk − ϕk−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that limk→+∞ ϕk = ϕ∗.

Lemma 4 (Opial, see for example [5]) Let C be a nonempty set of H and (xk)k∈N be a
sequence in H such that the following two conditions hold:
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(a) for every x ∈ C, limk→+∞ ‖xk − x‖ exists;

(b) every sequential weak cluster point of (xk)k∈N is in C;

Then (xk)k∈N converges weakly to a point in C.

3 An inertial hybrid proximal point algorithm

This section is dedicated to the formulation of an inertial hybrid proximal-extragradient
algorithm and the convergence analysis of it. The iterative scheme we propose for finding
the zeros of a given maximally monotone operator T : H⇒ H has the following form.

Algorithm 5 Choose x0, x1, x2, y0, y1, v1 ∈ H, α, σ ≥ 0, c > 0, (ck)k≥1 and (αk)k≥1 such
that

ck ≥ c > 0 ∀k ≥ 1,

0 ≤ αk ≤ α ∀k ≥ 1

and
α(5 + 4σ2) + σ2 < 1. (1)

For every k ≥ 2 consider the following iterative scheme:

(i) for some εk ≥ 0, choose vk ∈ T [εk](yk) such that

2ckεk + ‖ckvk + yk − xk − αk(xk − xk−1)‖2+
4αk‖ck−1vk−1 + yk−1 − xk−1 − αk−1(xk−1 − xk−2)‖2

≤ σ2‖yk − xk‖2 + 4αkσ
2‖yk−1 − xk−1‖2;

(ii) define xk+1 = xk + αk(x
k − xk−1)− ckvk.

3.1 Relation to other splitting algorithms from the literature

Before analyzing the convergence of the above algorithm, we show that several algorithms
from the literature can be embedded in the setting of this inertial hybrid scheme, by
following some techniques from [25].

(i) The hybrid proximal-extragradient algorithm (see [26]) presented in Algorithm 1
follows by taking α = 0, which enforces αk = 0 for all k ≥ 1.

(ii) The inertial proximal point algorithm (see [3]) for finding the zeros of T reads:

xk+1 = JckT
(
xk + αk(x

k − xk−1)
)
∀k ≥ 1, (2)

where 0 ≤ αk ≤ α < 1
5 for every k ≥ 1.

By taking in Algorithm 5 σ = 0, we obtain for every k ≥ 2 that εk = 0 and yk =
xk + αk(x

k − xk−1)− ckvk = xk+1. Since vk ∈ T [0](yk) we derive from Proposition 2(i)

xk − xk+1 + αk(x
k − xk−1) = ckv

k ∈ ckTyk = ckTx
k+1,

which, by the definition of the resolvent, is nothing else than the iterative scheme (2)
starting with k = 2.
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(iii) The inertial forward-backward algorithm for finding the zeros of T := A+B, where
A : H → H is a γ-cocoercive operator with γ > 0 and B : H⇒ H is a maximally monotone
operator reads in the error-free case (see [20]):

xk+1 = JckB

(
xk − ckAxk + αk(x

k − xk−1)
)
∀k ≥ 1, (3)

where for α, σ ≥ 0 fulfilling (1) it is assumed that 0 ≤ αk ≤ α and 0 < c ≤ ck ≤ 2γσ2 for
every k ≥ 1.

Considering (xk)k∈N the sequence generated by (3), for every k ≥ 1 we define:

vk =
1

ck
(xk − xk+1) +

αk
ck

(xk − xk−1)

yk = xk+1

ε1k =
‖xk+1 − xk‖2

4γ

ε2k =
αk
γ
‖xk − xk−1‖2

εk = ε1k + ε2k.

Let k ≥ 2 be fixed. By the choice of vk, the equality (ii) in Algorithm 5 is obviously
verified. Moreover, from (3) we derive that vk ∈ Axk +Bxk+1.

From (i)-(ii) and (iv)-(v) in Proposition 2 we get

vk ∈ A[ε1k](xk+1) +Bxk+1 ⊆A[ε1k](xk+1) +B[ε2k](xk+1) ⊆
(A+B)[εk](xk+1) = T [εk](xk+1) = T [εk](yk).

Finally, we show that the inequality in Algorithm 5(i) holds. By the choices we met
we have clv

l + yl − xl − αl(xl − xl−1) = 0 for all l ≥ 1, hence

2ckεk + ‖ckvk + yk − xk − αk(xk − xk−1)‖2+
4αk‖ck−1vk−1 + yk−1 − xk−1 − αk−1(xk−1 − xk−2)‖2 = 2ckεk ≤ 4γσ2εk =

σ2‖xk+1 − xk‖2 + 4αkσ
2‖xk − xk−1‖2 = σ2‖yk − xk‖2 + 4αkσ

2‖yk−1 − xk−1‖2.

(iv) Finally, we consider the inertial forward-backward-forward algorithm (see [8]) for
finding the zeros of T := A + B, where A : H → H is a monotone and β-Lipschitz
continuous operator with β ≥ 0 and B : H ⇒ H is a maximally monotone operator.
According to [8] (see also [8, Remark 6]) this has the following iterative scheme:{

yk = JckB[xk − ckAxk + αk(x
k − xk−1)]

xk+1 = yk + ck(Ax
k −Ayk), ∀k ≥ 1,

for α, σ ≥ 0 fulfilling (1) and σ > 0 chosen such that 1−5α−σ2(4α+1)
2(σ2+1)

≤ σ < 1−5α
2 , it is

assumed that 0 ≤ αk ≤ α and 0 < c ≤ ck ≤ 1
β

√
1−5α−2σ
4α+2σ+1 for every k ≥ 1.
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Consider the sequences (xk)k∈N and (yk)k∈N generated by this algorithm. For every
k ≥ 1 we define:

εk = 0

bk =
1

ck
(xk − yk)−Axk +

αk
ck

(xk − xk−1),

vk = Ayk + bk

rk = ckv
k + yk − xk − αk(xk − xk−1).

Let k ≥ 2 be fixed. The definition of the resolvent yields bk ∈ Byk, hence vk ∈ Tyk.
Further, from the definition of bk we get

rk = ckAy
k + ckb

k + yk − xk − αk(xk − xk−1) = ck(Ay
k −Axk),

hence
xk+1 = yk + ck(Ax

k −Ayk) = yk − rk = xk + αk(x
k − xk−1)− ckvk

and the update rule in Algorithm 5(ii) is verified. In what concerns the inequality in

Algorithm 5(i), we notice first that
√

1−5α−2σ
4α+2σ+1 ≤ σ < 1. By using the fact that A is

β-Lipschitz, we get

2ckεk + ‖ckvk + yk − xk − αk(xk − xk−1)‖2+
4αk‖ck−1vk−1 + yk−1 − xk−1 − αk−1(xk−1 − xk−2)‖2 = ‖rk‖2 + 4αk‖rk−1‖2 =

‖ck(Ayk −Axk)‖2 + 4αk‖ck−1(Ayk−1 −Axk−1)‖2 ≤
c2kβ

2‖yk − xk‖2 + 4αkc
2
k−1β

2‖yk−1 − xk−1‖2 ≤
σ2‖yk − xk‖2 + 4αkσ

2‖yk−1 − xk−1‖2.

3.2 Convergence analysis

In this subsection we prove the convergence of the proposed inertial hybrid proximal-
extragradient algorithm.

Theorem 6 Let T : H ⇒ H be a maximally monotone operator such that zerT 6= ∅.
Consider the sequences generated by Algorithm 5, where (αk)k≥1 is supposed to be non-
decreasing and we either take α1 = 0 or x1 = x0. Then the following statements are
true:

(i)
∑

k∈N ‖xk+1 − xk‖2 < +∞,
∑

k∈N ‖xk − yk‖2 < +∞,
∑

k≥1 ‖vk‖2 < +∞ and∑
k≥2 εk < +∞;

(ii) (xk)k∈N converges weakly to an element in zerT .

Proof. We fix an element z ∈ zerT and k ≥ 1 and make the following notations

rk = ckv
k + yk − xk − αk(xk − xk−1) and ϕk =

1

2
‖xk − z‖2.

By the update rule in Algorithm 5(ii) one obviously has

rk = yk − xk+1. (4)
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Since vk ∈ T [εk](yk) and 0 ∈ Tz, the definition of the enlargement yields the inequality

〈vk, yk − z〉 ≥ −εk.

Multiplying it with −ck and taking into account Algorithm 5(ii) and (4) we derive

〈xk+1 − xk − αk(xk − xk−1), xk+1 − z〉 ≤ ckεk + 〈ckvk, rk〉. (5)

Let us take now a look at the left-hand side of the above inequality. We have

〈xk+1 − xk − αk(xk − xk−1), xk+1 − z〉

= 〈xk+1 − xk, xk+1 − z〉 − αk(〈xk − xk−1, xk − z〉+ 〈xk − xk−1, xk+1 − xk〉)

=
1

2
‖xk+1−xk‖2+ϕk+1−ϕk−αk

(
1

2
‖xk − xk−1‖2 + ϕk − ϕk−1 + 〈xk − xk−1, xk+1 − xk〉

)
= ϕk+1−ϕk−αk(ϕk−ϕk−1)+

1

2
‖xk+1−xk‖2− αk

2
‖xk−xk−1‖2−αk〈xk−xk−1, xk+1−xk〉.

The term 〈ckvk, rk〉 in the right-hand side of (5) can be written as

〈ckvk, rk〉 = 〈xk + αk(x
k − xk−1)− xk+1, yk − xk+1〉

= 〈xk − xk+1, yk − xk+1〉+ αk〈xk − xk−1, yk − xk+1〉

=
1

2
‖xk+1 − xk‖2 +

1

2
‖rk‖2 − 1

2
‖xk − yk‖2 + αk〈xk − xk−1, yk − xk+1〉.

Consequently, (5) can be equivalently written as

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ αk〈xk − xk−1, yk − xk〉+
αk
2
‖xk − xk−1‖2

+ ckεk +
1

2
‖rk‖2 − 1

2
‖xk − yk‖2. (6)

Further,

αk〈xk − xk−1, yk − xk〉+
αk
2
‖xk − xk−1‖2 ≤ αk‖xk − xk−1‖2 +

αk
2
‖yk − xk‖2

≤ 2αk(‖rk−1‖2 + ‖xk−1 − yk−1‖2) +
αk
2
‖yk − xk‖2

and from (6) we obtain

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤
αk − 1

2
‖xk − yk‖2 + 2αk‖xk−1 − yk−1‖2

+ ckεk +
1

2
‖rk‖2 + 2αk‖rk−1‖2. (7)

On the other hand, the inequality in Algorithm 5(ii) yields

ckεk +
1

2
‖rk‖2 + 2αk‖rk−1‖2 ≤

σ2

2
‖yk − xk‖2 + 2αkσ

2‖yk−1 − xk−1‖2, (8)

hence from (7) we get

ϕk+1−ϕk−αk(ϕk−ϕk−1) ≤ −
1− αk − σ2

2
‖xk− yk‖2 + 2αk(1 +σ2)‖xk−1− yk−1‖2. (9)
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(i) For the proof of this statement we are going to use some techniques from [3]. We
define the sequence

µk := ϕk − αkϕk−1 + 2αk(1 + σ2)‖xk−1 − yk−1‖2 ∀k ≥ 1.

Using the monotonicity of (αk)k≥1 and the fact that ϕk ≥ 0 for every k ≥ 1, we get

µk+1 − µk ≤ ϕk+1 − ϕk − αk(ϕk − ϕk−1)
+ 2αk+1(1 + σ2)‖xk − yk‖2 − 2αk(1 + σ2)‖xk−1 − yk−1‖2,

which gives by (9)

µk+1 − µk ≤ −
(

1− αk − σ2

2
− 2αk+1(1 + σ2)

)
‖xk − yk‖2 ∀k ≥ 1. (10)

The upper bound requested for (αk)k≥1 and (1) shows the inequality

1− αk − σ2

2
− 2αk+1(1 + σ2) ≥ 1− α(5 + 4σ2)− σ2

2
> 0 ∀k ≥ 1, (11)

thus

µk+1 − µk ≤ −
1− α(5 + 4σ2)− σ2

2
‖xk − yk‖2 ∀k ≥ 1. (12)

The sequence (µk)k≥1 is nonincreasing and the bound for (αk)k≥1 delivers

−αϕk−1 ≤ ϕk − αϕk−1 ≤ µk ≤ µ1 ∀k ≥ 1. (13)

We obtain

ϕk ≤ αkϕ0 + µ1

k−1∑
i=0

αi ≤ αkϕ0 +
µ1

1− α
∀k ≥ 1,

where we notice that µ1 ≥ 0. Indeed, in case α1 = 0 one has µ1 = ϕ1 ≥ 0, while in
the case x1 = x0 we have ϕ1 = ϕ0 and µ1 = ϕ1 − α1ϕ0 + 2α1(1 + σ2)‖x0 − y0‖2 ≥
(1 − α)ϕ0 + 2α1(1 + σ2)‖x0 − y0‖2 ≥ 0 due to (1). Combining (12) and (13) we get for
every n ≥ 1

1− α(5 + 4σ2)− σ2

2

n∑
k=1

‖xk − yk‖2 ≤ µ1 − µn+1 ≤ µ1 + αϕn ≤ αn+1ϕ0 +
µ1

1− α
,

which shows that
∑

k∈N ‖xk − yk‖2 < +∞.
The fact that

∑
k≥2 εk < +∞ follows now from (8), since ck ≥ c and αk ≤ α for every

k ≥ 1. Notice that from (8) we deduce also that
∑

k≥1 ‖rk‖2 < +∞. Further, from (4)

we have
∑n

k=1 ‖xk+1 − xk‖2 ≤ 2
(∑n

k=1 ‖rk‖2 +
∑n

k=1 ‖yk − xk‖2
)

for every n ≥ 1, hence∑
k∈N ‖xk+1 − xk‖2 < +∞. Finally, from Algorithm 5(ii) we derive that

∑
k≥1 ‖vk‖2 <

+∞.
(ii) In order to prove this statement we are going to use Lemma 4. We shown above

that for an arbitrary z ∈ zerT the inequality (9) is true. By (11) we get

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ 2αk(1 + σ2)‖xk−1 − yk−1‖2 ∀k ≥ 1 (14)
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and from Lemma 3 and part (i) it follows that limk→+∞ ‖xk − z‖ exists. On the other
hand, let x be a sequential weak cluster point of (xk)k∈N, that is, this sequence has a
subsequence (xkn)n∈N fulfilling xkn ⇀ x as n→ +∞. Since xk − yk → 0 as k → +∞, we
get ykn ⇀ x as n → +∞. Further, we have vkn ∈ T [εkn ](ykn), vkn → 0 and εkn → 0 as
n → +∞, hence from Proposition 2(iii) and (i) we deduce 0 ∈ Tx, thus x ∈ zerT . By
Lemma 4, (xk)k∈N converges weakly to an element in zerT . �

Remark 7 By arguing in a similar manner as for Algorithm 5, one can prove the conver-
gence of the following inertial-type hybrid proximal-extragradient algorithm, as well:

Algorithm 8 Choose x0, x1, x2, y0, y1, v1 ∈ H, α, σ ≥ 0, c > 0, (ck)k≥1 and (αk)k≥1 such
that

ck ≥ c > 0 ∀k ≥ 1,

0 ≤ αk ≤ α ∀k ≥ 1

and
5α+ σ2 < 1. (15)

For every k ≥ 2 consider the following iterative scheme:

(i) for some εk ≥ 0, choose vk ∈ T [εk](yk) such that

2ckεk + ‖ckvk + yk − xk − αk(xk − xk−1)‖2+
4αk‖ck−1vk−1 + yk−1 − xk−1 − αk−1(xk−1 − xk−2)‖2 ≤ σ2‖yk − xk‖2;

(ii) define xk+1 = xk + αk(x
k − xk−1)− ckvk.

The differences between the two iterative scheme are in the relations (1) and (15) and the
two inequalities in the statements (i), respectively. The hybrid proximal-extragradient, the
inertial proximal point and the inertial forward-backward algorithms can be rediscovered
as particular instances of this iterative scheme, too (notice that for the latter on needs to
take ε2k = 0, k ≥ 1). However, the inertial forward-backward-forward algorithm cannot be
embedded in Algorithm 8 and this is why we opted in this paper for the inertial version
provided in Algorithm 5, despite its more complex formulation.
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[14] R.S. Burachik, C.A. Sagastizábal, B.F. Svaiter, ε-enlargements of maximal monotone
operators: theory and applications, In: M. Fukushima and L. Qi (eds), Reformula-
tion: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne,
1997), Appl. Optim. 22, Kluwer Acad. Publ., Dordrecht, 25–43, 1999

[15] A. Cabot, P. Frankel, Asymptotics for some proximal-like method involving inertia
and memory aspects, Set-Valued and Variational Analysis 19, 59–74, 2011

[16] E.R. Csetnek, Overcoming the failure of the classical generalized interior-point regu-
larity conditions in convex optimization. Applications of the duality theory to enlarge-
ments of maximal monotone operators, Logos Verlag Berlin, PhD Thesis, Faculty of
Mathematics, Chemnitz University of Technology, 2009, available at http://archiv.tu-
chemnitz.de/pub/2009/0202/data/dissertation.csetnek.pdf
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