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Abstract. We begin by considering second order dynamical systems of the from ẍ(t)+γ(t)ẋ(t)+
λ(t)B(x(t)) = 0, where B : H → H is a cocoercive operator defined on a real Hilbert space H,
λ : [0,+∞)→ [0,+∞) is a relaxation function and γ : [0,+∞)→ [0,+∞) a damping function,
both depending on time. For the generated trajectories, we show existence and uniqueness of
the generated trajectories as well as their weak asymptotic convergence to a zero of the operator
B. The framework allows to address from similar perspectives second order dynamical systems
associated with the problem of finding zeros of the sum of a maximally monotone operator and
a cocoercive one. This captures as particular case the minimization of the sum of a nonsmooth
convex function with a smooth convex one. Furthermore, we prove that when B is the gradient
of a smooth convex function the value of the latter converges along the ergodic trajectory to its
minimal value with a rate of O(1/t).
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1 Introduction and preliminaries

This paper is motivated by the heavy ball with friction dynamical system

ẍ+ γẋ+∇f(x) = 0, (1)

which is a nonlinear oscillator with damping γ > 0 and potential f : H → R, supposed to be
a convex and differentiable function defined on the real Hilbert space H. The system (1) is a
simplified version of the differential system describing the motion of a heavy ball that keeps
rolling over the graph of the function f under its own inertia until friction stops it at a critical
point of f (see [15]). Motivated by different models of friction, in [3,25] a generalized version of
(1) has been investigated in finite-dimensional spaces, by replacing the damping γẋ with ∂Φ(ẋ),
which is the convex subdifferential of a convex function Φ : Rn → R at ẋ.

The second order dynamical system (1) has been considered by several authors in the context
of minimizing the function f , these investigations being either concerned with the asymptotic
convergence of the generated trajectories to a critical point of f or with the convergence of the
function value along the trajectories to its global minimum value (see [4,8,9,15]). It is also worth
to mention that the time discretization of the heavy ball with friction dynamical system leads
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to so-called inertial type algorithms, which are numerical schemes sharing the feature that the
current iterate of the generated sequence is defined by making use of the previous two iterates
(see, for instance, [4–6,23,30,33]).

In order to approach the minimization of f over a nonempty, convex and closed set C ⊆ H,
the gradient-projection second order dynamical system

ẍ+ γẋ+ x− PC(x− η∇f(x)) = 0 (2)

has been considered, where PC : H → C denotes the projection onto the set C and η > 0.
Convergence statements for the trajectories to a global minimizer of f over C have been provided
in [8, 9]. Furthermore, in [9], these investigations have been expanded to more general second
order dynamical systems of the form

ẍ+ γẋ+ x− Tx = 0, (3)

where T : H → H is a nonexpansive operator. It has been shown that when γ2 > 2 the
trajectory of (8) converges weakly to an element in the fixed points set of T , provided the latter
is nonempty.

In this manuscript, we first treat the second order dynamical system

ẍ(t) + γ(t)ẋ(t) + λ(t)B(x(t)) = 0, (4)

where B : H → H is a cocoercive operator, λ : [0,+∞)→ [0,+∞) is a relaxation function in time
and γ : [0,+∞)→ [0,+∞) is a continuous damping parameter. We refer the reader to [10,12,13,
16, 24, 26, 27, 37] for other works where second order differential equations with time dependent
damping have been considered and investigated in connection with optimization problems. On
the other hand, second order dynamical systems governed by cocoercive operators have been
recently considered also in [13], however, with constant relaxation and damping functions. The
existence and uniqueness of strong global solutions for (4) is obtained by applying the classical
Cauchy-Lipschitz-Picard Theorem (see [29]). We also show that under mild assumptions on the
relaxation function the trajectory x(t) converges weakly as t → +∞ to a zero of the operator
B, provided the latter has a nonempty set of zeros. To this end we use the continuous version
of the Opial Lemma (see also [4, 8, 9], where similar techniques have been used).

Further, we approach the problem of finding a zero of the sum of a maximally monotone
operator and a cocoercive one via a second order dynamical system formulated by making use of
the resolvent of the set-valued operator, see (24). Dynamical systems of implicit type have been
already considered in the literature in [1, 2, 14, 17, 19, 21, 22]. We specialize these investigations
to the minimization of the sum of a nonsmooth convex function with a smooth convex function,
which is approached by means of a second order dynamical system of forward-backward type.
This fact allows us to recover and improve results given in [8, 9] in the context of studying (2).
We also emphasize the fact that the explicit discretization of the second order forward-backward
dynamical system gives rise to a relaxed forward-backward algorithm with inertial effects. By
approaching minimization problems from continuous perspective we expect to gain more insights
into how to properly chose the relaxation and damping parameters in the corresponding iterative
schemes in order to improve their convergence behavior. Finally, whenever B is the gradient
of a smooth convex function we show that the value of the latter converges along the ergodic
trajectories generated by (4) to its minimum value with a rate of convergence of O(1/t).

Throughout this paper N = {0, 1, 2, ...} denotes the set of nonnegative integers and H a real
Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖ · ‖ =

√
〈·, ·〉.
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2 Existence and uniqueness of strong global solutions

This section is devoted to the study of existence and uniqueness of strong global solutions of a
second order dynamical system governed by Lipschitz continuous operators.

Let B : H → H be an L-Lipschitz continuous operator (that is L ≥ 0 and ‖Bx − By‖ ≤
L‖x−y‖ for all x, y ∈ H), λ, γ : [0,+∞)→ [0,+∞) be Lebesgue measurable functions, u0, v0 ∈ H
and consider the dynamical system{

ẍ(t) + γ(t)ẋ(t) + λ(t)B(x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(5)

As in [2, 17], we consider the following definition of an absolutely continuous function.

Definition 1 (see, for instance, [2, 17]) A function x : [0, b] → H (where b > 0) is said to be
absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function y : [0, b]→ H such that

x(t) = x(0) +

∫ t

0
y(s)ds ∀t ∈ [0, b];

(ii) x is continuous and its distributional derivative ẋ is Lebesgue integrable on [0, b];
(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik = (ak, bk)

we have the implication(
Ik ∩ Ij = ∅ and

∑
k

|bk − ak| < η

)
=⇒

∑
k

‖x(bk)− x(ak)‖ < ε.

Remark 1 (a) It follows from the definition that an absolutely continuous function is dif-
ferentiable almost everywhere, its derivative coincides with its distributional derivative almost
everywhere and one can recover the function from its derivative ẋ = y by the integration formula
(i).

(b) If x : [0, b] → H (where b > 0) is absolutely continuous, then the function z = B ◦ x
is absolutely continuous, too. This can be easily seen by using the characterization of absolute
continuity in Definition 1(iii). Moreover, z is almost everywhere differentiable and the inequality
‖ż(·)‖ ≤ L‖ẋ(·)‖ holds almost everywhere.

Definition 2 We say that x : [0,+∞) → H is a strong global solution of (5) if the following
properties are satisfied:

(i) x, ẋ : [0,+∞)→ H are locally absolutely continuous, in other words, absolutely continu-
ous on each interval [0, b] for 0 < b < +∞;

(ii) ẍ(t) + γ(t)ẋ(t) + λ(t)B(x(t)) = 0 for almost every t ∈ [0,+∞);
(iii) x(0) = u0 and ẋ(0) = v0.

For proving the existence and uniqueness of strong global solutions of (5) we use the Cauchy-
Lipschitz-Picard Theorem for absolutely continues trajectories. The key observation here is that
one can rewrite (5) as a particular first order dynamical system in a suitably chosen product
space (see also [7]).

Theorem 2 Let B : H → H be an L-Lipschitz continuous operator and λ, γ : [0,+∞) →
[0,+∞) be Lebesgue measurable functions such that λ, γ ∈ L1

loc([0,+∞)) (that is λ, γ ∈ L1([0, b])
for every 0 < b < +∞). Then for each u0, v0 ∈ H there exists a unique strong global solution of
the dynamical system (5).
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Proof. The system (5) can be equivalently written as a first order dynamical system in the
phase space H×H {

Ẏ (t) = F (t, Y (t))
Y (0) = (u0, v0),

(6)

with
Y : [0,+∞)→ H×H, Y (t) = (x(t), ẋ(t))

and
F : [0,+∞)×H×H → H×H, F (t, u, v) = (v,−γ(t)v − λ(t)Bu).

We endow H×H with scalar product 〈(u, v), (u, v)〉H×H = 〈u, u〉+ 〈v, v〉 and corresponding
norm ‖(u, v)‖H×H =

√
‖u‖2 + ‖v‖2.

(a) For arbitrary u, u, v, v ∈ H, by using the Lipschitz continuity of the involved operators,
we obtain

‖F (t, u, v)− F (t, u, v)‖H×H =
√
‖v − v‖2 + ‖γ(t)(v − v) + λ(t)(Bu−Bu)‖2

≤
√

(1 + 2γ2(t))‖v − v‖2 + 2L2λ2(t)‖u− u‖2

≤
√

1 + 2γ2(t) + 2L2λ2(t)‖(u, u)− (v, v)‖H×H
≤ (1 +

√
2γ(t) +

√
2Lλ(t))‖(u, u)− (v, v)‖H×H ∀t ≥ 0.

As λ, γ ∈ L1
loc([0,+∞)), the Lipschitz constant of F (t, ·, ·) is locally integrable.

(b) Next we show that

∀u, v ∈ H, ∀b > 0, F (·, u, v) ∈ L1([0, b],H×H). (7)

For arbitrary u, v ∈ H and b > 0 it holds∫ b

0
‖F (t, u, v)‖H×Hdt =

∫ b

0

√
‖v‖2 + ‖γ(t)v + λ(t)Bu‖2dt

≤
∫ b

0

√
(1 + 2γ2(t))‖v‖2 + 2λ2(t)‖Bu‖2dt

≤
∫ b

0

(
(1 +

√
2γ(t))‖v‖+

√
2λ(t)‖Bu‖

)
dt

and from here, by using the assumptions made on λ, γ, (7) follows.
In the light of the statements (a) and (b), the existence and uniqueness of a strong global

solution for (6) follow from the Cauchy-Lipschitz-Picard Theorem for first order dynamical
systems (see, for example, [29, Proposition 6.2.1]). The conclusion is a consequence of the
equivalence of (5) and (6). �

3 Convergence of the trajectories

In this section we address the convergence properties of the trajectories generated by the dynam-
ical system (5) by assuming that B : H → H is β-cocoercive for β > 0, that is β‖Bx− By‖2 ≤
〈x − y,Bx − By〉 for all x, y ∈ H. This implies that B is 1

β -Lipschitz continuous. If B = ∇g,

where g : H → R is a convex and differentiable function such that ∇g is 1
β -Lipschitz continuous,

then the reverse implication holds, too. Indeed, according to the Baillon-Haddad Theorem, ∇g
is a β-cocoercive operator (see [18, Corollary 18.16]).

The following results, which can be interpreted as continuous versions of the quasi-Fejér
monotonicity for sequences, plays an important role in the forthcoming investigations. For their
proofs we refer the reader to [2, Lemma 5.1] and [2, Lemma 5.2], respectively.
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Lemma 3 Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded below
and that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.

Lemma 4 If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is locally absolutely continuous,
F ∈ Lp([0,+∞)), G : [0,+∞)→ R, G ∈ Lr([0,+∞)) and for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t),

then limt→+∞ F (t) = 0.

The next result which we recall here is the continuous version of the Opial Lemma (see, for
example, [2, Lemma 5.3], [1, Lemma 1.10]).

Lemma 5 Let S ⊆ H be a nonempty set and x : [0,+∞)→ H a given map. Assume that
(i) for every x∗ ∈ S, limt→+∞ ‖x(t)− x∗‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.

In order to prove the convergence of the trajectories of (5), we make the following assumptions
on the relaxation function λ and the damping parameter γ, respectively:

(A1) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists θ > 0 such
that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 1 + θ

β
. (8)

Due to Definition 1 and Remark 1(a), λ̇(t), γ̇(t) exists for almost every t ≥ 0 and λ̇, γ̇ are
Lebesgue integrable on each interval [0, b] for 0 < b < +∞. This combined with γ̇(t) ≤ 0 ≤ λ̇(t)
and the fact that λ, γ take only positive values yield the existence of a positive lower bound λ
for λ and of a positive upper bound γ for γ. Furthermore, the second assumption in (8) provides
also a positive upper bound λ for λ and a positive lower bound γ for γ. Notice that the couple
of functions

λ(t) =
1

ae−ρt + b
and γ(t) = a′e−ρ

′t + b′,

where a, a′, ρ, ρ′ ≥ 0 and b, b′ > 0 fulfill the inequality b′2b > 1
β , verify the conditions in assump-

tion (A1).
We would also like to point out that under the conditions considered in (A1) the global

version of the Picard-Lindelöf Theorem allows us to conclude that, for u0, v0 ∈ H, there exists
a unique trajectory x : [0,+∞)→ H which is a C2-function and which satisfies the relation (ii)
in Definition 2 for every t ∈ [0,+∞). The considerations we make in the following take into
account this fact.

Let us also mention that in case γ(t) = γ and λ(t) = λ for every t ∈ [0,+∞), where γ, λ > 0,
the assumption (A1) becomes γ2β > λ, a condition which has been used in [13] in relation with
the study of the asymptotical convergence of the dynamical system (5).

We state now the convergence result.
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Theorem 6 Let B : H → H be a β-cocoercive operator for β > 0 such that ZerB := {u ∈
H : Bu = 0} 6= ∅, λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A1) and u0, v0 ∈ H. Let
x : [0,+∞)→ H be the unique strong global solution of (5). Then the following statements are
true:

(i) the trajectory x is bounded and ẋ, ẍ, Bx ∈ L2([0,+∞);H);
(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞B(x(t) = 0;
(iii) x(t) converges weakly to an element in ZerB as t→ +∞.

Proof. (i) Take an arbitrary x∗ ∈ ZerB and consider for every t ∈ [0,+∞) the function
h(t) = 1

2‖x(t)− x∗‖2. We have ḣ(t) = 〈x(t)− x∗, ẋ(t)〉 and ḧ(t) = ‖ẋ(t)‖2 + 〈x(t)− x∗, ẍ(t)〉 for
every t ∈ [0,+∞). Taking into account (5), we get for every t ∈ [0,+∞)

ḧ(t) + γ(t)ḣ(t) + λ(t) 〈x(t)− x∗, B(x(t))〉 = ‖ẋ(t)‖2. (9)

The cocoercivity of B and the fact that Bx∗ = 0 yields for every t ∈ [0,+∞)

ḧ(t) + γ(t)ḣ(t) + βλ(t)‖B(x(t))‖2 ≤ ‖ẋ(t)‖2.

Taking again into account (5) one obtains for every t ∈ [0,+∞)

ḧ(t) + γ(t)ḣ(t) +
β

λ(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 ≤ ‖ẋ(t)‖2

or, equivalently,

ḧ(t) + γ(t)ḣ(t) +
βγ(t)

λ(t)

d

dt

(
‖ẋ(t)‖2

)
+

(
βγ2(t)

λ(t)
− 1

)
||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2 ≤ 0.

Combining this inequality with

γ(t)

λ(t)

d

dt

(
‖ẋ(t)‖2

)
=

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
− γ̇(t)λ(t)− γ(t)λ̇(t)

λ2(t)
‖ẋ(t)‖2 (10)

and

γ(t)ḣ(t) =
d

dt
(γh)(t)− γ̇(t)h(t) ≥ d

dt
(γh)(t), (11)

it yields for every t ∈ [0,+∞)

ḧ(t) +
d

dt
(γh)(t)+

β
d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+

(
βγ2(t)

λ(t)
+ β
−γ̇(t)λ(t) + γ(t)λ̇(t)

λ2(t)
− 1

)
||ẋ(t)||2 +

β

λ(t)
||ẍ(t)||2 ≤ 0.

Now, assumption (A1) delivers for almost every t ∈ [0,+∞) the inequality

ḧ(t) +
d

dt
(γh)(t) + β

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+ θ||ẋ(t)||2 + βλ

−1‖ẍ(t)||2 ≤ 0. (12)

This implies that the function t 7→ ḣ(t) + γ(t)h(t) + β γ(t)λ(t)‖ẋ(t)‖2, which is locally absolutely
continuous, is monotonically decreasing. Hence there exists a real number M such that for every
t ∈ [0,+∞)

ḣ(t) + γ(t)h(t) + β
γ(t)

λ(t)
‖ẋ(t)‖2 ≤M, (13)
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which yields that for every t ∈ [0,+∞)

ḣ(t) + γh(t) ≤M.

By multiplying this inequality with exp(γt) and then integrating from 0 to T , where T > 0, one
easily obtains

h(T ) ≤ h(0) exp(−γT ) +
M

γ
(1− exp(−γT )),

thus
h is bounded (14)

and, consequently,
the trajectory x is bounded. (15)

On the other hand, from (13), it follows that for every t ∈ [0,+∞)

ḣ(t) + βγλ
−1‖ẋ(t)‖2 ≤M,

hence
〈x(t)− x∗, ẋ(t)〉+ βγλ

−1‖ẋ(t)‖2 ≤M.

This inequality in combination with (15) yields

ẋ is bounded, (16)

which further implies that
ḣ is bounded. (17)

Integrating the inequality (12) we obtain that there exists a real number N ∈ R such that
for every t ∈ [0,+∞)

ḣ(t) + γ(t)h(t) + β
γ(t)

λ(t)
‖ẋ(t)‖2 + θ

∫ t

0
||ẋ(s)||2ds+ βλ

−1
∫ t

0
||ẍ(s)||2ds ≤ N.

From here, via (17), we conclude that ẋ(·), ẍ(·) ∈ L2([0,+∞);H). Finally, from (5) and (A1)
we deduce Bx ∈ L2([0,+∞);H) and the proof of (i) is complete.

(ii) For every t ∈ [0,+∞) it holds

d

dt

(
1

2
‖ẋ(t)‖2

)
= 〈ẋ(t), ẍ(t)〉 ≤ 1

2
‖ẋ(t)‖2 +

1

2
‖ẍ(t)‖2

and Lemma 4 together with (i) lead to limt→+∞ ẋ(t) = 0.
Further, by taking into consideration Remark 1(b), for every t ∈ [0,+∞) we have

d

dt

(
1

2
‖B(x(t))‖2

)
=

〈
B(x(t)),

d

dt
(Bx(t))

〉
≤ 1

2
‖B(x(t))‖2 +

1

2β2
‖ẋ(t)‖2.

By using again Lemma 4 and (i) we get limt→+∞B(x(t)) = 0, while the fact that limt→+∞ ẍ(t) =
0 follows from (5) and (A2).

(iii) We are going to prove that both assumptions in Opial Lemma are fulfilled. The first
one concerns the existence of limt→+∞ ‖x(t)−x∗‖. As seen in the proof of part (i), the function

t 7→ ḣ(t) + γ(t)h(t) + β γ(t)λ(t)‖ẋ(t)‖2 is monotonically decreasing, thus from (i), (ii) and (A1) we

deduce that limt→+∞ γ(t)h(t) exists and it is a real number. By taking also into account that
∃ limt→+∞ γ(t) ∈ (0,∞), we obtain the existence of limt→+∞ ‖x(t)− x∗‖.
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We come now to the second assumption of the Opial Lemma. Let x be a weak sequential
cluster point of x, that is, there exists a sequence tn → +∞ (as n→ +∞) such that (x(tn))n∈N
converges weakly to x. Since B is a maximally monotone operator (see for instance [18, Example
20.28]), its graph is sequentially closed with respect to the weak-strong topology of the product
space H × H. By using also that limn→+∞B(x(tn)) = 0, we conclude that Bx = 0, hence
x ∈ ZerB and the proof is complete. �

A standard choice of a cocoercive operator defined on a real Hilbert spaces is B = Id−T ,
where T : H → H is a nonexpansive operator, that is, a 1-Lipschitz continuous operator. As
it easily follows from the nonexpansiveness of T , B is in this case 1/2-cocoercive. For this
particular operator B the dynamical system (5) becomes{

ẍ(t) + γ(t)ẋ(t) + λ(t)
(
x(t)− T (x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(18)

while assumption (A1) reads

(A2) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists θ > 0 such
that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 2(1 + θ). (19)

Theorem 6 gives rise to the following result.

Corollary 7 Let T : H → H be a nonexpansive operator such that FixT := {u ∈ H : Tu = u} 6=
∅, λ, γ : [0,+∞)→ (0,+∞) be functions fulfilling (A2) and u0, v0 ∈ H. Let x : [0,+∞)→ H be
the unique strong global solution of (18). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−T )x ∈ L2([0,+∞);H);
(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−T )(x(t)) = 0;
(iii) x(t) converges weakly to a point in FixT as t→ +∞.

Remark 8 In the particular case when γ(t) = γ > 0 for all t ≥ 0 and λ(t) = 1 for all t ∈ [0,+∞)
the dynamical system (18) becomes{

ẍ(t) + γẋ(t) + x(t)− T (x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(20)

The convergence of the trajectories generated by (20) has been studied in [9, Theorem 3.2] under
the condition γ2 > 2. In this case (A2) is obviously fulfilled for an arbitrary 0 < θ ≤ (γ2− 2)/2.
However, different to [9], we allow in Corollary 7 nonconstant damping and relaxation functions
depending on time. We would also like to notice that in [4] an anisotropic damping has been
considered in the context of approaching the minimization of a smooth convex function via
second order dynamical systems.

We close the section by addressing an immediate consequence of the above corollary applied
to second order dynamical systems governed by averaged operators. The operator R : H → H is
said to be α-averaged for α ∈ (0, 1), if there exists a nonexpansive operator T : H → H such that
R = (1−α) Id +αT . For α = 1

2 we obtain as an important representative of this class the firmly
nonexpansive operators. For properties and insights concerning these families of operators we
refer to the monograph [18].

We consider the dynamical system{
ẍ(t) + γ(t)ẋ(t) + λ(t)

(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0
(21)

and formulate the assumption
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(A3) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists θ > 0 such
that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 2α(1 + θ). (22)

Corollary 9 Let R : H → H be an α-averaged operator for α ∈ (0, 1) such that FixR 6= ∅,
λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A3) and u0, v0 ∈ H. Let x : [0,+∞) → H be
the unique strong global solution of (21). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, (Id−R)x ∈ L2([0,+∞);H);
(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞(Id−R)(x(t)) = 0;
(iii) x(t) converges weakly to a point in FixR as t→ +∞.

Proof. Since R is α-averaged, there exists a nonexpansive operator T : H → H such that
R = (1 − α) Id +αT . The conclusion is a direct consequence of Corollary 7, by taking into
account that (21) is equivalent to{

ẍ(t) + γ(t)ẋ(t) + αλ(t)
(
x(t)− T (x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,

and FixR = FixT . �

4 Forward-backward second order dynamical systems

In this section we approach the monotone inclusion problem

find 0 ∈ A(x) +B(x),

where A : H⇒ H is a maximally monotone operator and B : H → H is a β-cocoercive operator
for β > 0 via a second order forward-backward dynamical system with relaxation and damping
functions depending on time.

For readers convenience we recall at the beginning some standard notions and results in
monotone operator theory (see also [18,20,36]). For an arbitrary set-valued operator A : H⇒ H
we denote by GrA = {(x, u) ∈ H × H : u ∈ Ax} its graph. We use also the notation ZerA =
{x ∈ H : 0 ∈ Ax} for the set of zeros of A. We say that A is monotone, if 〈x−y, u−v〉 ≥ 0 for all
(x, u), (y, v) ∈ GrA. A monotone operator A is said to be maximally monotone, if there exists
no proper monotone extension of the graph of A on H×H. The resolvent of A, JA : H⇒ H, is
defined by JA = (Id +A)−1. If A is maximally monotone, then JA : H → H is single-valued and
maximally monotone (see [18, Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0
we have (see [18, Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA. (23)

The operator A is said to be uniformly monotone if there exists an increasing function
φA : [0,+∞)→ [0,+∞] that vanishes only at 0 and fulfills 〈x− y, u− v〉 ≥ φA (‖x− y‖) for all
(x, u), (y, v) ∈ GrA. A popular class of operators having this property is the one of strongly
monotone operators. We say that A is γ-strongly monotone for γ > 0, if 〈x−y, u−v〉 ≥ γ‖x−y‖2
for all (x, u), (y, v) ∈ GrA.

For η > 0 we consider the dynamical system{
ẍ(t) + γ(t)ẋ(t) + λ(t)

[
x(t)− JηA

(
x(t)− ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(24)

Further, we consider the following assumption, where δ := 4β−η
2β :

9



(A4) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists θ > 0 such
that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ 2(1 + θ)

δ
. (25)

Theorem 10 Let A : H ⇒ H be a maximally monotone operator and B : H → H be a β-
cocoercive operator for β > 0 such that Zer(A+B) 6= ∅. Let η ∈ (0, 2β) and set δ := 4β−η

2β . Let
λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A4), u0, v0 ∈ H and x : [0,+∞) → H be the
unique strong global solution of (24). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−JηA ◦ (Id−ηB)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id−JηA ◦ (Id−ηB)
)
(x(t)) = 0;

(iii) x(t) converges weakly to a point in Zer(A+B) as t→ +∞;
(iv) if x∗ ∈ Zer(A+B), then B(x(·))−Bx∗ ∈ L2([0,+∞);H), limt→+∞B(x(t)) = Bx∗ and

B is constant on Zer(A+B);
(v) if A or B is uniformly monotone, then x(t) converges strongly to the unique point in

Zer(A+B) as t→ +∞.

Proof. (i)-(iii) It is immediate that the dynamical system (24) can be written in the form{
ẍ(t) + γ(t)ẋ(t) + λ(t)

(
x(t)−R(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(26)

where R = JηA ◦ (Id−ηB). According to [18, Corollary 23.8 and Remark 4.24(iii)], JηA is 1/2-
cocoercive. Moreover, by [18, Proposition 4.33], Id−ηB is η/(2β)-averaged. Combining this
with [32, Theorem 3(b)], we derive that R is 1/δ-averaged. The statements (i)-(iii) follow now
from Corollary 9 by noticing that FixR = Zer(A+B) (see [18, Proposition 25.1(iv)]).

(iv) The fact that B is constant on Zer(A + B) follows from the cocoercivity of B and the
monotonicity of A. A proof of this statement when A is the subdifferential of a proper, convex
and lower semicontinuous function is given for instance in [1, Lemma 1.7].

Let be an arbitrary x∗ ∈ Zer(A+B). From the definition of the resolvent we have for every
t ∈ [0,+∞)

−B(x(t))− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t) ∈ A

(
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)

)
, (27)

which combined with −Bx∗ ∈ Ax∗ and the monotonicity of A leads to

0 ≤
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗,−B(x(t)) +Bx∗ − 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
. (28)

10



The cocoercivity of B yields for every t ∈ [0,+∞)

β‖B(x(t))−Bx∗‖2 ≤
〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t),−B(x(t)) +Bx∗

〉
− 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
≤ 1

2β

∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t)

∥∥∥∥2 +
β

2
‖B(x(t))−Bx∗‖2

− 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
=

η − 2β

2ηβλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

β

2
‖B(x(t))−Bx∗‖2

+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
≤β

2
‖B(x(t))−Bx∗‖2 +

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
.

For evaluating the last term of the above inequality we use the function h : [0,+∞) → R,
h(t) = 1

2‖x(t)− x∗‖2, already used in the proof of Theorem 6. From〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
= − 1

ηλ(t)

(
ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2

)
(29)

we obtain for every t ∈ [0,+∞)

βλ(t)

2
‖B(x(t))−Bx∗‖2 +

1

η

(
ḧ(t) + γ(t)ḣ(t)

)
≤ 1

η
‖ẋ(t)‖2.

Taking into account also the relation (11) and the bounds for λ, we get for every t ∈ [0,+∞)

βλ

2
‖B(x(t))−Bx∗‖2 +

1

η

(
ḧ(t) +

d

dt
(γh)(t)

)
≤ 1

η
‖ẋ(t)‖2.

After integration we obtain that for every T ∈ [0,+∞)

βλ

2

∫ T

0
‖B(x(t))−Bx∗‖2dt+

1

η

(
ḣ(T )− ḣ(0) + γ(T )h(T )− γ(0)h(0)

)
≤ 1

η

∫ T

0
‖ẋ(t)‖2dt.

Since ẋ ∈ L2([0,+∞);H), γ has a positive upper bound, h(T ) ≥ 0, γ(T ) ≥ 0 for every T ∈
[0,+∞) and limT→+∞ ḣ(T ) = 0, it follows that B(x(·))−Bx∗ ∈ L2([0,+∞);H).

Further, by taking into consideration Remark 1(b), we have

d

dt

(
1

2
‖B(x(t))−Bx∗‖2

)
=

〈
B(x(t))−Bx∗, d

dt
(Bx(t))

〉
≤ 1

2
‖B(x(t))−Bx∗‖2 +

1

2β2
‖ẋ(t)‖2

and from here, in the light of Lemma 4, it follows that limt→+∞B(x(t)) = Bx∗.
(v) Let x∗ be the unique element of Zer(A + B). For the beginning we suppose that A is

uniformly monotone with corresponding function φA : [0,+∞) → [0,+∞], which is increasing
and vanishes only at 0.

By similar arguments as in the proof of statement (iv), for every t ∈ [0,+∞) we have

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥) ≤〈
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗,−B(x(t)) +Bx∗ − 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
,
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which combined with the monotonicity of B yields

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥) ≤〈
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t),−B(x(t)) +Bx∗

〉
− 1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2+〈

x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
≤〈

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t),−B(x(t)) +Bx∗

〉
+

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
.

As λ and γ are bounded by positive constants, by using (i)-(iv) it follows that the right-hand
side of the last inequality converges to 0 as t→ +∞. Hence

lim
t→+∞

φA

(∥∥∥∥ 1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) + x(t)− x∗

∥∥∥∥) = 0

and the properties of the function φA allow to conclude that 1
λ(t) ẍ(t) + γ(t)

λ(t) ẋ(t) + x(t) − x∗

converges strongly to 0 as t→ +∞. By using again the boundedness of λ and γ and assumption
(ii) we obtain that x(t) converges strongly to x∗ as t→ +∞.

Finally, suppose that B is uniformly monotone with corresponding function φB : [0,+∞)→
[0,+∞], which is increasing and vanishes only at 0. The conclusion follows by letting t in the
inequality

〈x(t)− x∗, B(x(t))−Bx∗〉 ≥ φB(‖x(t)− x∗‖) ∀t ∈ [0,+∞)

converge to +∞ and by using that x is bounded and limt→+∞(B(x(t)−Bx∗) = 0. �

Remark 11 We would like to emphasize the fact that the statements in Theorem 10 remain
valid also for η := 2β. Indeed, in this case the cocoercivity of B implies that Id−ηB is nonex-
pansive, hence the operator R = JηA ◦ (Id−ηB) used in the proof is nonexpansive, too, and so
the statements in (i)-(iii) follow from Corollary 7. Furthermore, the proof of the statements (iv)
and (v) can be repeated also for η = 2β.

In the remaining of this section we turn our attention to optimization problems of the form

min
x∈H

f(x) + g(x),

where f : H → R∪{+∞} is a proper, convex and lower semicontinuous function and g : H → R
is a convex and (Fréchet) differentiable function with 1

β -Lipschitz continuous gradient for β > 0.
We recall some standard notations and facts in convex analysis. For a proper, convex and

lower semicontinuous function f : H → R ∪ {+∞}, its (convex) subdifferential at x ∈ H is
defined as

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 ∀y ∈ H}.

When seen as a set-valued mapping, it is a maximally monotone operator (see [34]) and its
resolvent is given by Jη∂f = proxηf (see [18]), where proxηf : H → H,

proxηf (x) = argmin
y∈H

{
f(y) +

1

2η
‖y − x‖2

}
, (30)

denotes the proximal point operator of f and η > 0. According to [18, Definition 10.5], f is
said to be uniformly convex with modulus function φ : [0,+∞) → [0,+∞], if φ is increasing,
vanishes only at 0 and fulfills f(αx+ (1− α)y) + α(1− α)φ(‖x− y‖) ≤ αf(x) + (1− α)f(y) for
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all α ∈ (0, 1) and x, y ∈ dom f := {x ∈ H : f(x) < +∞}. Notice that if this inequality holds for
φ = (ν/2)| · |2 for ν > 0, then f is said to be ν-strongly convex.

In the following statement we approach the minimizers of f+g via the second order dynamical
system {

ẍ(t) + γ(t)ẋ(t) + λ(t)
[
x(t)− proxηf

(
x(t)− η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(31)

Corollary 12 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontinuous function
and g : H → R be a convex and (Fréchet) differentiable function with 1

β -Lipschitz continuous

gradient for β > 0 such that argminx∈H{f(x) + g(x)} 6= ∅. Let η ∈ (0, 2β] and set δ := 4β−η
2β .

Let λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A4), u0, v0 ∈ H and x : [0,+∞) → H be
the unique strong global solution of (31). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id−proxηf ◦(Id−η∇g)
)
(x(t)) = 0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;
(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈ L2([0,+∞);H), limt→+∞

∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f(x) + g(x)};
(v) if f or g is uniformly convex, then x(t) converges strongly to the unique minimizer of

f + g as t→ +∞.

Proof. The statements are direct consequences of the corresponding ones from Theorem 10
(see also Remark 11), by choosing A := ∂f and B := ∇g, by taking into account that

Zer(∂f +∇g) = argmin
x∈H

{f(x) + g(x)}.

For statement (v) we also use the fact that if f is uniformly convex with modulus φ, then ∂f is
uniformly monotone with modulus 2φ (see [18, Example 22.3(iii)]). �

Remark 13 Consider again the setting in Remark 8, namely, when γ(t) = γ > 0 for every
t ≥ 0cand λ(t) = 1 for every t ∈ [0,+∞). Furthermore, for C a nonempty, convex, closed subset
of H, let f = δC be the indicator function of C, which is defined as being equal to 0 for x ∈ C
and to +∞, else. The dynamical system (31) attached in this setting to the minimization of g
over C becomes {

ẍ(t) + γẋ(t) + x(t)− PC
(
x(t)− η∇g(x(t))

)
= 0

x(0) = u0, ẋ(0) = v0,
(32)

where PC denotes the projection onto the set C.
The asymptotic convergence of the trajectories of (32) has been studied in [9, Theorem 3.1]

under the conditions γ2 > 2 and 0 < η ≤ 2β. In this case assumption (A4) trivially holds by
choosing θ such that 0 < θ ≤ (γ2 − 2)/2 ≤ (δγ2 − 2)/2. Thus, in order to verify (A4) in case
λ(t) = 1 for every t ∈ [0,+∞) one needs to equivalently assume that γ2 > 2/δ. Since δ ≥ 1, this
provides a slight improvement over [9, Theorem 3.1] in what concerns the choice of γ. We refer
the reader also to [8] for an analysis of the convergence rates of trajectories of the dynamical
system (32) when g is endowed with supplementary properties.

For the two main convergence statements provided in this section it was essential to choose
the step size η in the interval (0, 2β] (see Theorem 10, Remark 11 and Corollary 12). This,
because of the fact that in this way we were able to guarantee for the generated trajectories the
existence of the limit limt→+∞ ‖x(t) − x∗‖2, where x∗ denotes a solution of the problem under
investigation. It is interesting to observe that, when dealing with convex optimization problems,
one can go also beyond this classical restriction concerning the choice of the step size (a similar
phenomenon has been reported also in [1, Section 5.2]). This is pointed out in the following
result, which is valid under the assumption

13



(A5) λ, γ : [0,+∞) → (0,+∞) are locally absolutely continuous and there exists θ > 0 such
that for almost every t ∈ [0,+∞) we have

γ̇(t) ≤ 0 ≤ λ̇(t) and
γ2(t)

λ(t)
≥ ηθ +

η

β
+ 1. (33)

and for the proof of which we use instead of ‖x(·)− x∗‖2 a modified energy functional.

Corollary 14 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontinuous function
and g : H → R be a convex and (Fréchet) differentiable function with 1

β -Lipschitz continuous
gradient for β > 0 such that argminx∈H{f(x)+g(x)} 6= ∅. Let be η > 0, λ, γ : [0,+∞)→ (0,+∞)
be functions fulfilling (A5), u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong global solution
of (31). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id−proxηf ◦(Id−η∇g)
)
(x(t)) = 0;

(iii) x(t) converges weakly to a minimizer of f + g as t→ +∞;
(iv) if x∗ is a minimizer of f + g, then ∇g(x(·)) − ∇g(x∗) ∈ L2([0,+∞);H), limt→+∞

∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f(x) + g(x)};
(v) if f or g is uniformly convex, then x(t) converges strongly to the unique minimizer of

f + g as t→ +∞.

Proof. Consider an arbitrary element x∗ ∈ argminx∈H{f(x)+g(x)} = Zer(∂f+∇g). Similarly
to the proof of Theorem 10(iv), we derive for every t ∈ [0,+∞) (see the first inequality after
(28))

β‖∇g(x(t))−∇g(x∗)‖2 ≤
1

λ(t)

(
〈ẍ(t),−∇g(x(t)) +∇g(x∗)〉+ γ(t) 〈ẋ(t),−∇g(x(t)) +∇g(x∗)〉

)
−

1

ηλ2(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

〈
x(t)− x∗,− 1

ηλ(t)
ẍ(t)− γ(t)

ηλ(t)
ẋ(t)

〉
. (34)

In what follows we evaluate the right-hand side of the above inequality and introduce to this
end the function

q : [0,+∞)→ R, q(t) = g(x(t))− g(x∗)− 〈∇g(x∗), x(t)− x∗〉 .

Due to the convexity of g one has
q(t) ≥ 0 ∀t ≥ 0.

Further, for every t ∈ [0,+∞)

q̇(t) = 〈ẋ(t),∇g(x(t))−∇g(x∗)〉 ,

thus

γ(t) 〈ẋ(t),−∇g(x(t)) +∇g(x∗)〉 = −γ(t)q̇(t) = − d

dt
(γq)(t) + γ̇(t)q(t) ≤ − d

dt
(γq)(t) (35)

On the other hand, for every t ∈ [0,+∞)

q̈(t) = 〈ẍ(t),∇g(x(t))−∇g(x∗)〉+

〈
ẋ(t),

d

dt
∇g(x(t))

〉
,

hence

〈ẍ(t),−∇g(x(t)) +∇g(x∗)〉 ≤ −q̈(t) +
1

β
‖ẋ(t)‖2. (36)
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We have for almost every t ∈ [0,+∞) (see also (10))

1

λ(t)
‖ẍ(t) + γ(t)ẋ(t)‖2 =

1

λ(t)
‖ẍ(t)‖2 +

γ2(t)

λ(t)
‖ẋ(t)‖2+

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
− γ̇(t)λ(t)− γ(t)λ̇(t)

λ2(t)
‖ẋ(t)‖2. (37)

Finally, by multiplying (34) with λ(t) and by using (35), (36), (37) and (29) we obtain after
rearranging the terms for almost every t ∈ [0,+∞) that

βλ(t)‖∇g(x(t))−∇g(x∗)‖2 +
d

dt2

(
1

η
h+ q

)
+
d

dt

(
γ(t)

(
1

η
h+ q

))
+

1

η

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+

(
γ2(t)

ηλ(t)
+
−γ̇(t)λ(t) + γ(t)λ̇(t)

ηλ2(t)
− 1

β
− 1

η

)
‖ẋ(t)‖2 +

1

ηλ(t)
‖ẍ(t)‖2 ≤ 0.

This relation gives rise via (A5) to

βλ(t)‖∇g(x(t))−∇g(x∗)‖2 +
d

dt2

(
1

η
h+ q

)
+
d

dt

(
γ(t)

(
1

η
h+ q

))
+

1

η

d

dt

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
+ θ‖ẋ(t)‖2 +

1

ηλ(t)
‖ẍ(t)‖2 ≤ 0, (38)

for almost every t ∈ [0,+∞). This implies that the function

t 7→ d

dt

(
1

η
h+ q

)
(t) + γ(t)

(
1

η
h+ q

)
(t) +

1

η

(
γ(t)

λ(t)
‖ẋ(t)‖2

)
(39)

is monotonically decreasing. Arguing as in the proof of Theorem 6, by taking into account that
λ, γ have positive upper and lower bounds, it follows that 1

ηh + q, h, q, x, ẋ, ḣ, q̇ are bounded

and ẋ, ẍ,
(

Id−proxηf ◦(Id−η∇g)
)
x ∈ L2([0,+∞);H). Furthermore, limt→+∞ ẋ(t) = 0. Since

d
dt

(
Id−proxηf ◦(Id−η∇g)

)
x ∈ L2([0,+∞);H) (see Remark 1(b)), we derive from Lemma 4

that limt→+∞
(

Id−proxηf ◦(Id−η∇g)
)
(x(t)) = 0. As

ẍ(t) = −γ(t)ẋ(t)− λ(t)
(

Id−proxηf ◦(Id−η∇g)
)
(x(t))

for every t ∈ [0,+∞), we obtain that limt→+∞ ẍ(t) = 0. From (38) it also follows that∇g(x(·))−
∇g(x∗) ∈ L2([0,+∞);H) and, by applying again Lemma 4, it yields limt→+∞∇g(x(t)) =
∇g(x∗). In this way the statements (i), (ii) and (iv) are shown.

(iii) Since the function in (39) is monotonically decreasing, from (i), (ii) and (iv) it follows

that the limit limt→+∞

(
γ(t)

(
1
ηh+ u

)
(t)
)

exists and it is a real number. From limt→+∞ γ(t) ∈

(0,+∞) we get that ∃ limt→+∞

(
1
ηh+ u

)
(t) ∈ R.

Furthermore, since x∗ has been chosen as an arbitrary minimizer of f + g, we conclude that
for all x∗ ∈ argminx∈H{f(x) + g(x)} the limit

lim
t→+∞

E(t, x∗) ∈ R

exists, where

E(t, x∗) =
1

2η
‖x(t)− x∗‖2 + g(x(t))− g(x∗)− 〈∇g(x∗), x(t)− x∗〉 .

In what follows we use a similar technique as in [19] (see, also, [1, Section 5.2]). Since x(·)
is bounded, it has at least one weak sequential cluster point.
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We prove first that each weak sequential cluster point of x(·) is a minimizer of f + g. Let
x∗ ∈ argminx∈H{f(x) + g(x)} and tn → +∞ (as n → +∞) be such that (x(tn))n∈N converges
weakly to x. Since (x(tn),∇g(x(tn))) ∈ Gr(∇g), limn→+∞∇g(x(tn)) = ∇g(x∗) and Gr(∇g) is
sequentially closed in the weak-strong topology, we obtain ∇g(x) = ∇g(x∗).

From (27) written for t = tn, A = ∂f and B = ∇g, by letting n converge to +∞ and by using
that Gr(∂f) is sequentially closed in the weak-strong topology, we obtain −∇g(x∗) ∈ ∂f(x).
This, combined with ∇g(x) = ∇g(x∗), delivers −∇g(x) ∈ ∂f(x), hence x ∈ Zer(∂f + ∇g) =
argminx∈H{f(x) + g(x)}.

Next we show that x(·) has at most one weak sequential cluster point, fact which guarantees
that it has exactly one weak sequential cluster point. This implies the weak convergence of the
trajectory to a minimizer of f + g.

Let x∗1, x
∗
2 be two weak sequential cluster points of x(·). This means that there exist tn → +∞

(as n→ +∞) and t′n → +∞ (as n→ +∞) such that (x(tn))n∈N converges weakly to x∗1 (as n→
+∞) and (x(t′n))n∈N converges weakly to x∗2 (as n → +∞). Since x∗1, x

∗
2 ∈ argminx∈H{f(x) +

g(x)}, we have limt→+∞E(t, x∗1) ∈ R and limt→+∞E(t, x∗2) ∈ R, hence ∃ limt→+∞(E(t, x∗1) −
E(t, x∗2)) ∈ R. We obtain

∃ lim
t→+∞

(
1

η
〈x(t), x∗2 − x∗1〉+ 〈∇g(x∗2)−∇g(x∗1), x(t)〉

)
∈ R,

which, when expressed by means of the sequences (tn)n∈N and (t′n)n∈N, leads to

1

η
〈x∗1, x∗2 − x∗1〉+ 〈∇g(x∗2)−∇g(x∗1), x

∗
1〉 =

1

η
〈x∗2, x∗2 − x∗1〉+ 〈∇g(x∗2)−∇g(x∗1), x

∗
2〉 .

This is the same with

1

η
‖x∗1 − x∗2‖2 + 〈∇g(x∗2)−∇g(x∗1), x

∗
2 − x∗1〉 = 0

and by the monotonicity of ∇g we conclude that x∗1 = x∗2.
(v) The proof of this statement follows in analogy to the one of the corresponding statement

of Theorem 10(v) written for A = ∂f and B = ∇g. �

Remark 15 When γ(t) = γ > 0 for every t ≥ 0 and λ(t) = 1 for every t ∈ [0,+∞), the
second inequality in (33) is verified if and only if γ2 > η

β + 1. In other words, (A5) allows in
this particular setting a more relaxed choice for the parameters γ, η and β, beyond the standard
assumptions 0 < η ≤ 2β and γ2 > 2 considered in [9].

Remark 16 The explicit discretization of (31) with respect to the time variable t, with step
size hn > 0, relaxation variable λn > 0, damping variable γn > 0 and initial points x0 := u0 and
x1 := v0 yields the following iterative scheme

xn+1 − 2xn + xn−1
h2n

+ γn
xn+1 − xn

hn
= λn

[
proxηf

(
xn − η∇g(xn)

)
− xn

]
∀n ≥ 1.

For hn = 1 this becomes

xn+1 =

(
1− λn

1 + γn

)
xn +

λn
1 + γn

proxηf

(
xn − η∇g(xn)

)
+

λn
1 + γn

(xn − xn−1) ∀n ≥ 1, (40)

which is a relaxed forward-backward algorithm for minimizing f + g with inertial effects. In
order to investigate the convergence properties of the above iterative scheme, it is natural to
assume, according to (A4) or (A5) that (γn)n≥1 is nonincreasing, (λn)n≥1 is nondecreasing, and
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there exists a lower bound for (γ2n/λn)n≥1. The control of the inertial term by means of the
variable parameters λn and γn could increase the speed of convergence of the algorithm (40).
Making use of the the sequence (λn)n≥1 in (40), one obtains a relaxed forward-backward scheme,
where the relaxation is usually considered in the literature in order to achieve more freedom in
the choice of the parameters involved in the numerical scheme.

We leave as an open question the investigation of the convergence proprties of (40). For
more on inertial-type forward-backward algorithms we refer the reader to [30].

In the following we provide a rate for the convergence for a convex and (Fréchet) differentiable
function g : H → R with Lipschitz continuous gradient to its minimum value along the ergodic
trajectory generated by {

ẍ(t) + γ(t)ẋ(t) + λ(t)∇g(x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(41)

To this end we make the following assumption:

(A6) λ : [0,+∞) → (0,+∞) is locally absolutely continuous, γ : [0,+∞) → (0,+∞) is twice
differentiable and there exists ζ > 0 such that for almost every t ∈ [0,+∞) we have

0 < ζ ≤ γ(t)λ(t)− λ̇(t), γ̇(t) ≤ 0 and 2γ̇(t)γ(t)− γ̈(t) ≤ 0. (42)

Let us mention that the following result is in the spirit of a convergence rate statement recently
given in [28, Theorem 1] for the objective function values on a sequence iteratively generated by
an inertial gradient-type algorithm.

Theorem 17 Let g : H → R be a convex and (Fréchet) differentiable function with 1
β -Lipschitz

continuous gradient for β > 0 such that argminx∈H g(x) 6= ∅. Let λ, γ : [0,+∞) → (0,+∞) be
functions fulfilling (A6) u0, v0 ∈ H and x : [0,+∞)→ H be the unique strong global solution of
(41).

Then for every minimizer x∗ of g and every T > 0 it holds

0 ≤g
(

1

T

∫ T

0
x(t)dt

)
− g(x∗) ≤

1

2ζT

[
‖v0 + γ(0)(u0 − x∗)‖2 +

(
λ(0)

β
− γ̇(0)

)
‖u0 − x∗‖2

]
.

Proof. By using (41), the convexity of g and (A6) we get for almost every t ∈ [0,+∞)

d

dt

(
1

2
‖ẋ(t) + γ(t)(x(t)− x∗)‖2 + λ(t)g(x(t))− γ̇(t)

2
‖x(t)− x∗‖2

)
= 〈ẍ(t) + γ̇(t)(x(t)− x∗) + γ(t)ẋ(t), ẋ(t) + γ(t)(x(t)− x∗)〉

− γ̈(t)

2
‖x(t)− x∗‖2 − γ̇(t) 〈ẋ(t), x(t)− x∗〉+ λ̇(t)g(x(t)) + λ(t) 〈ẋ(t),∇g(x(t))〉

=− γ(t)λ(t) 〈∇g(x(t)), x(t)− x∗〉+ λ̇(t)g(x(t)) +

(
γ̇(t)γ(t)− γ̈(t)

2

)
‖x(t)− x∗‖2

≤− γ(t)λ(t) 〈∇g(x(t)), x(t)− x∗〉+ λ̇(t)g(x(t))

≤(λ̇(t)− γ(t)λ(t))(g(x(t))− g(x∗)) + λ̇(t)g(x∗)

≤− ζ(g(x(t))− g(x∗)) + λ̇(t)g(x∗).
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We obtain after integration

1

2
‖ẋ(T ) + γ(T )(x(T )− x∗)‖2 + λ(T )g(x(T ))− γ̇(T )

2
‖x(T )− x∗‖2

−1

2
‖ẋ(0) + γ(0)(x(0)− x∗)‖2 − λ(0)g(x(0)) +

γ̇(0)

2
‖x(0)− x∗‖2

+ζ

∫ T

0
(g(x(t))− g(x∗))dt ≤ (λ(T )− λ(0))g(x∗).

Be neglecting the nonnegative terms in the left-hand side of the inequality above and by using
that g(x(T )) ≥ g(x∗), it yields

ζ

∫ T

0
(g(x(t))− g(x∗))dt ≤ 1

2
‖v0 + γ(0)(u0 − x∗)‖2 −

γ̇(0)

2
‖u0 − x∗‖2 + λ(0)(g(u0)− g(x∗)).

The conclusion follows by using

g(u0)− g(x∗) ≤ 1

2β
‖u0 − x∗‖2,

which is a consequence of the descent lemma (see [31, Lemma 1.2.3] and notice that ∇g(x∗) = 0),
and the inequality

g

(
1

T

∫ T

0
x(t)dt

)
− g(x∗) ≤ 1

T

∫ T

0
(g(x(t))− g(x∗))dt,

which holds since g is convex. �

Remark 18 Under assumption (A6), we obtain in the above theorem (only) the convergence
of the function g along the ergodic trajectory to a global minimum value. If one is interested
also in the (weak) convergence of the trajectory to a minimizer of g, this follows via Theorem 6
when λ, γ are assumed to fulfill (A1) (notice that if x converges weakly to a minimizer of g, then
from the Cesaro-Stolz Theorem one also obtains the weak convergence of the ergodic trajectory
T 7→ 1

T

∫ T
0 x(t)dt to the same minimizer).

For a, a′, ρ, ρ′ ≥ 0 and b, b′ > 0 fulfilling the inequalities b′2b > 1
β and 0 ≤ ρ ≤ b′ one can

prove that the functions

λ(t) =
1

ae−ρt + b
and γ(t) = a′e−ρ

′t + b′,

verify assumption (A1) in Theorem 6 for 0 < θ ≤ b′2bβ − 1 and assumption (A6) in Theorem
17 for 0 < ζ ≤ bb′

(a+b)2
. Hence, for this choice of the relaxation and damping functions, both

convergence of both the objective function g along the ergodic trajectory to its global minimum
value and (weak) convergence of the trajectory to a minimizer of g are guaranteed.
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