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Abstract. The aim of this article is to present two different primal-dual methods for
solving structured monotone inclusions involving parallel sums of compositions of maxi-
mally monotone operators with linear bounded operators. By employing some elaborated
splitting techniques, all of the operators occurring in the problem formulation are pro-
cessed individually via forward or backward steps. The treatment of parallel sums of
linearly composed maximally monotone operators is motivated by applications in imag-
ing which involve first- and second-order total variation functionals, to which a special
attention is given.
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1 Introduction
In applied mathematics, a wide variety of convex optimization problems such as single-
or multifacility location problems, support vector machine problems for classification and
regression, problems in clustering and portfolio optimization as well as signal and image
processing problems, all of them potentially possessing nonsmooth terms in their objec-
tives, can be reduced to the solving of inclusion problems involving mixtures of monotone
set-valued operators. Therefore, the solving of monotone inclusion problems involving
maximally monotone operators continues to be one of the most attractive branches of
research (see [1, 3, 5, 6, 9, 12,13,15–24,26–29]).

1.1 Motivation

The problem formulation we consider in this article is inspired by a real-world application
in image denoising, where first- and second-order total variation functionals are linked via
infimal convolutions in order to reduce staircasing effects in the reconstructed images.

Let b ∈ Rn be the observed and vectorized noisy image of size M ×N (with n = MN
for greyscale and n = 3MN for colored images). For k ∈ N and ω = (ω1, . . . , ωk) ∈ Rk++
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we consider on Rk×n the following norm defined for y = (y1, . . . , yk)T ∈ Rk×n as

‖y‖1,ω =
∥∥∥(ω1y

2
1 + . . .+ ωky

2
k

) 1
2
∥∥∥

1
,

where addition, multiplication and square root of vectors are understood to be componen-
twise. Further, we consider the forward difference matrix

Dk :=


−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · 0 0 −1 1
0 · · · 0 0 0 0

 ∈ Rk×k,

which models the discrete first-order derivative. Note that −DT
kDk is then an approxi-

mation of the second-order derivative. We denote by A⊗B the Kronecker product of the
matrices A and B and define

Dx = IN ⊗DM , Dy = DN ⊗ IM and D1 =
[
Dx

Dy

]
, (1.1)

where Dx and Dy represent the vertical and horizontal difference operators, respectively,
and IN and IM are the identity matrices of sizes N and M , respectively. Further, we
define the discrete second-order derivatives matrices

Dxx = IN ⊗ (−DT
MDM ), Dyy = (−DT

NDN )⊗ IM , D2 =
[
Dxx

Dyy

]
(1.2)

and

L1 =
[
−DT

x 0
0 −DT

y

]

and notice that D2 = L1D1. This approach was initially proposed in [14] and further
investigated in [27]. We refer the reader to [27] for other discrete second-order derivatives
involving also mixed partial derivatives (in horizontal-vertical direction and vice versa).

The reconstructed image is obtained by solving one of the following convex optimization
problems (see [27, Example 2.2 and Example 3.1])

(`22-IC/P) inf
x∈Rn

{1
2‖x− b‖

2 +
(
(α1‖ · ‖1,ω1 ◦ D1)� (α2‖ · ‖1,ω2 ◦ D2)

)
(x)
}

(1.3)

and

(`22-MIC/P) inf
x∈Rn

{1
2‖x− b‖

2 +
(
(α1‖ · ‖1,ω1)� (α2‖ · ‖1,ω2 ◦ L1)

)
(D1x)

}
, (1.4)

respectively, where α1, α2 ∈ R++ are the regularization parameters and the regularizers
correspond to anistropic total variation functionals.

This is the reason why we are going to treat the following more general primal-dual
pair of complexly structured convex optimization problems.

Problem 1.1. Let H be a real Hilbert space, z ∈ H and f, h ∈ Γ(H) such that h
is differentiable with µ-Lipschitzian gradient for µ ∈ R++. Furthermore, for every i =
1, . . . ,m, let Gi, Xi, Yi be real Hilbert spaces, ri ∈ Gi, let gi ∈ Γ(Xi) and li ∈ Γ(Yi)
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and consider the nonzero linear bounded operators Li : H → Gi, Ki : Gi → Xi and
Mi : Gi → Yi. We want to solve the primal optimization problem

inf
x∈H

{
f(x) +

m∑
i=1

((
gi ◦Ki

)
�
(
li ◦Mi

))
(Lix− ri) + h(x)− 〈x, z〉

}
(1.5)

together with its conjugate dual problem

sup
(p,q)∈X⊕Y,

K∗
i pi=M∗

i qi, i=1,...,m

{
− (f∗�h∗)

(
z −

m∑
i=1

L∗iK
∗
i pi

)
−

m∑
i=1

[
g∗i (pi) + l∗i (qi) + 〈pi,Kiri〉

]}
.

(1.6)

By R++ we denote the set of strictly positive real numbers and by R+ := R++ ∪ {0}.
For a function f : H → R := R ∪ {±∞}, where H is a real Hilbert space, we denote by
dom f := {x ∈ H : f(x) < +∞} its effective domain and call f proper, if dom f 6= ∅ and
f(x) > −∞ for all x ∈ H. We let

Γ(H) := {f : H → R | f is proper, convex and lower semicontinuous}.

The conjugate function of f is f∗ : H → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for all
p ∈ H, and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. For a linear bounded operator
L : H → G, where G is another real Hilbert space, the operator L∗ : G → H defined via
〈Lx, y〉 = 〈x, L∗y〉 for all x ∈ H and all y ∈ G denotes its adjoint.

Having two proper functions f, g : H → R, their infimal convolution is defined by
f � g : H → R, (f � g)(x) = infy∈H {f(y) + g(x− y)} for all x ∈ H. If f and g are convex,
then f � g is convex, too.

In order to solve the primal-dual pair of optimization problems (1.5)-(1.6), we will ac-
tually solve the corresponding system of optimality conditions (see (3.2)), which is nothing
else than a system of monotone inclusions with a complex and intricate structure. This
motivates the investigation of the following primal-dual pair of monotone inclusion prob-
lems.

Problem 1.2. Let H be a real Hilbert space, z ∈ H, A : H → 2H a maximally monotone
operator and C : H → H a monotone µ−1-cocoercive operator for µ ∈ R++. Furthermore,
for every i = 1, . . . ,m, let Gi, Xi, Yi be real Hilbert spaces, ri ∈ Gi, Bi : Xi → 2Xi and
Di : Yi → 2Yi be maximally monotone operators and consider the nonzero linear bounded
operators Li : H → Gi, Ki : Gi → Xi and Mi : Gi → Yi. We want to solve the primal
inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i

((
K∗i ◦Bi ◦Ki

)
�
(
M∗i ◦Di ◦Mi

))
(Lix− ri) + Cx

(1.7)

together with its dual inclusion

find


pi ∈ Xi, i = 1, ...,m,
qi ∈ Yi, i = 1, ...,m,
yi ∈ Gi, i = 1, ...,m,

such that∃x ∈ H :


z −

∑m
i=1 L

∗
iK
∗
i pi ∈ Ax+ Cx,

Ki(Lix− yi − ri) ∈ B−1
i pi, i = 1, ...,m,

Miyi ∈ D−1
i qi, i = 1, ...,m,

K∗i pi = M∗i qi, i = 1, ...,m.
(1.8)
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We propose in this paper two iterative methods of forward-backward and forward-
backward-forward type, respectively, for solving this primal-dual pair of monotone inclu-
sion problems and investigate their asymptotic behavior. The two methods share the
common feature to reduce the solving of the primal-dual pair of monotone inclusions to
the determination of the set of the zeros of the sum of two maximally monotone opera-
tors defined on an suitable product space endowed with a topology that is synchronized
with the problem. Depending on the nature of the two operators we employ the forward-
backward algorithm (see [2]) or Tseng’s forward-backward-forward algorithm (see [28]) and
obtain easily implementable iterative schemes. These have the property that each of the
operators arising in the formulation of the monotone inclusion problem (1.7) is evaluated
separately. More precisely, the set-valued operators are evaluated via their resolvents,
called backward steps, while the single-valued ones are accessed via explicit forward steps.
A forward-backward-forward algorithm for solving the primal-dual pair of monotone inclu-
sions (1.7) - (1.8), in the particular situation when Li is the identity operator and ri = 0 for
any i = 1, ...,m, has been recently investigated in [3]. However, since it makes a forward
step less, the forward-backward method is naturally more attractive from the perspective
numerical implementations. This phenomenon is supported by our experimental results
reported in Section 4.

After the appearance of the proximal point algorithm for approximating the set of
zeros of a maximal monotone operator defined on a Hilbert space (see [26]), the attention
of the community was drawn to iterative schemes for determining the zeros of the sum
of two maximally monotone operators, due to the role played by these schemes in the
minimization of the sum of two convex functions. To the most classical methods of this
type belongs the Douglas-Rachford splitting algorithm (see [22]), which has the property
that at each iteration the operators are processed separately via their resolvents. Of equal
importance are methods designed to determine the zeros of the sum of a single-valued
monotone operator and a maximally monotone operator, like the forward-backward [2]
and Tseng’s forward-backward-forward [28] algorithms, which evaluate the single-valued
operator via a forward step and the set-valued one via its resolvent.

In the last years, motivated by different applications, the complexity of the mono-
tone inclusion problems increased, by including sums of maximally monotone opera-
tors composed with linear bounded operators (see [13, 15]), (single-valued) Lipschitzian
or cocoercive monotone operators and parallel sums of maximally monotone operators
(see [3, 5, 12, 19–21, 29]). For some of these iterative schemes, under strong monotonicity
assumptions accelerated versions have been provided (see [6, 9, 15]).

The article is organized as follows. In the remaining of this section we introduce
notations and preliminary results in convex analysis and monotone operator theory. In
Section 2 we formulate the two algorithms and study their convergence behavior. In
Section 3 we employ the outcomes of the previous one to the simultaneously solving of
convex minimization problems and their conjugate dual problems. Numerical experiments
in the context of image denoising problems with first- and second-order total variation
functionals are made in Section 4.

1.2 Notation and preliminaries

We are considering the real Hilbert space H endowed with inner product 〈·, ·〉 and asso-
ciated norm ‖·‖ =

√
〈·, ·〉. The symbols ⇀ and → denote weak and strong convergence,

respectively. Having the sequences (xn)n≥0 and (yn)n≥0 in H, we mind errors in the
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implementation of the algorithm by using the following notation taken from [3]

(xn ≈ yn ∀n ≥ 0)⇔
∑
n≥0
‖xn − yn‖ < +∞. (1.9)

Let M : H → 2H be a set-valued operator. We denote by zerM = {x ∈ H : 0 ∈ Mx}
its set of zeros, by graM = {(x, u) ∈ H×H : u ∈Mx} its graph and by ranM = {u ∈ H :
∃x ∈ H, u ∈Mx} its range. The inverse of M is M−1 : H → 2H, u 7→ {x ∈ H : u ∈Mx}.
The operator M is said to be monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ graM .
The operator M is said to be maximally monotone if it is monotone and there exists no
monotone operatorM ′ : H → 2H such that graM ′ properly contains graM . The operator
M is said to be uniformly monotone with modulus φM : R+ → [0,+∞] if φM is increasing,
vanishes only at 0, and 〈x− y, u− v〉 ≥ φM (‖x− y‖) for all (x, u), (y, v) ∈ graM .

Let µ > 0 be arbitrary. A single-valued operator M : H → H is said to be µ-cocoercive
if 〈x−y,Mx−My〉 ≥ µ‖Mx−My‖2 for all (x, y) ∈ H×H. Moreover,M is µ-Lipschitzian
if ‖Mx−My‖ ≤ µ‖x− y‖ for all (x, y) ∈ H×H. A linear bounded operator M : H → H
is said to be self-adjoint, if M = M∗ and skew, if M∗ = −M .

The sum and the parallel sum of two set-valued operators M1, M2 : H → 2H are
defined as M1 +M2 : H → 2H, (M1 +M2)(x) = M1(x) +M2(x) ∀x ∈ H and

M1 �M2 : H → 2H,M1 �M2 =
(
M−1

1 +M−1
2

)−1
,

respectively. If M1 and M2 are monotone, then M1 + M2 and M1 �M2 are monotone,
too. However, if M1 and M2 are maximally monotone, this property is in general not true
neither for M1 + M2 nor for M1 �M2, unless some qualification conditions are fulfilled
(see [2, 4, 30]).

The resolvent of an operator M : H → 2H is

JM = (Id +M)−1 ,

where the operator Id denotes the identity on H. When M is maximally monotone, its
resolvent is a single-valued firmly nonexpansive operator and, by [2, Proposition 23.18],
we have for γ ∈ R++

Id = JγM + γJγ−1M−1 ◦ γ−1Id. (1.10)

Moreover, for f ∈ Γ(H) and γ ∈ R++, the subdifferential ∂(γf) is maximally monotone (cf.
[25]) and it holds Jγ∂f = (Id + γ∂f)−1 = Proxγf . Recall that the (convex) subdifferential
of f : H → R at x ∈ H is the set ∂f(x) = {p ∈ H : f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if
f(x) ∈ R, and is taken to be the empty set, otherwise. Furthermore, Proxγf (x) denotes the
proximal point of γf at x ∈ H, representing the unique optimal solution of the optimization
problem

inf
y∈H

{
γf(y) + 1

2‖y − x‖
2
}
. (1.11)

In this particular situation, relation (1.10) becomes Moreau’s decomposition formula

Id = Proxγf +γ Proxγ−1f∗ ◦γ−1Id. (1.12)

When Ω ⊆ H is a nonempty, convex and closed set, the function δΩ : H → R, defined by
δΩ(x) = 0 for x ∈ Ω and δΩ(x) = +∞, otherwise, denotes the indicator function of the set
Ω. For each γ > 0 the proximal point of γδΩ at x ∈ H is nothing else than

ProxγδΩ(x) = ProxδΩ(x) = PΩ(x) = arg min
y∈Ω

1
2‖y − x‖

2,
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which is the projection of x on Ω.
Finally, when for i = 1, . . . ,m the real Hilbert spaces Hi are endowed with inner

product 〈·, ·〉Hi
and associated norm ‖·‖Hi

=
√
〈·, ·〉Hi

, we denote by

H = H1 ⊕ . . .⊕Hm

their direct sum. For v = (v1, . . . , vm), q = (q1, . . . , qm) ∈ H, this real Hilbert space is
endowed with inner product and associated norm defined via

〈v, q〉H =
m∑
i=1
〈vi, qi〉Hi

and, respectively, ‖v‖H =

√√√√ m∑
i=1
‖vi‖2Hi

.

2 The primal-dual iterative schemes
Within this section we provide two different algorithms for solving the primal-dual inclu-
sions introduced in Problem 1.2 and discuss their asymptotic convergence. In Subsection
2.2, however, the assumptions imposed on the monotone operator C : H → H are weak-
ened by assuming that C is only µ-Lipschitz continuous for some µ ∈ R++.

In the following, we let

X = X1 ⊕ . . .⊕Xm, Y = Y1 ⊕ . . .⊕ Ym, G = G1 ⊕ . . .⊕ Gm

and

p = (p1, . . . , pm) ∈ X , q = (q1, . . . , qm) ∈ Y , y = (y1, . . . , ym) ∈ G.

We say that (x,p, q,y) ∈ H ⊕X ⊕Y ⊕ G is a primal-dual solution to Problem 1.2, if

z −
m∑
i=1

L∗iK
∗
i pi ∈ Ax+ Cx and

Ki(Lix− yi − ri) ∈ B−1
i pi, Miyi ∈ D−1

i qi, K
∗
i pi = M∗i qi, i = 1, . . . ,m.

(2.1)

If (x,p, q,y) ∈ H ⊕ X ⊕ Y ⊕ G is a primal-dual solution to Problem 1.2, then x is a
solution to (1.7) and (p, q,y) is a solution to (1.8). Notice also that

x solves (1.7)⇔ z ∈ Ax+
m∑
i=1

L∗i

((
K∗i ◦Bi ◦Ki

)
�
(
M∗i ◦Di ◦Mi

))
(Lix− ri) + Cx

⇔ ∃v ∈ G such that


z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx,

Lix− ri ∈
(
K∗i ◦Bi ◦Ki

)−1(vi) +
(
M∗i ◦Di ◦Mi

)−1(vi),
i = 1, . . . ,m

⇔ ∃ (v,y) ∈ G ⊕ G such that


z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx,

vi ∈
(
K∗i ◦Bi ◦Ki

)
(Lix− yi − ri), i = 1, . . . ,m,

vi ∈
(
M∗i ◦Di ◦Mi

)
(yi), i = 1, . . . ,m

⇔ ∃ (p, q,y) ∈ X ⊕Y ⊕ G such that


z −

∑m
i=1 L

∗
iK
∗
i pi ∈ Ax+ Cx,

pi ∈
(
Bi ◦Ki

)
(Lix− yi − ri), i = 1, . . . ,m,

qi ∈
(
Di ◦Mi

)
(yi), i = 1, . . . ,m,

K∗i pi = M∗i qi, i = 1, . . . ,m
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⇔ ∃ (p, q,y) ∈ X ⊕Y ⊕ G such that


z −

∑m
i=1 L

∗
iK
∗
i pi ∈ Ax+ Cx,

Ki(Lix− yi − ri) ∈ B−1
i pi, i = 1, . . . ,m,

Miyi ∈ D−1
i qi, i = 1, . . . ,m,

K∗i pi = M∗i qi, i = 1, . . . ,m

(2.2)

Thus, if x is a solution to (1.7), then there exists (p, q,y) ∈ X⊕Y⊕G such that (x,p, q,y)
is a primal-dual solution to Problem 1.2 and if (p, q,y) is a solution to (1.8), then there
exists x ∈ H such that (x,p, q,y) is a primal-dual solution to Problem 1.2.

Remark 2.1. The notations (1.9) have been introduced in order to allow errors in the
implementation of the algorithm, without affecting the readability of the paper in the
sequel. This is reasonable since errors preserve their summability under addition, scalar
multiplication and linear bounded mappings.

2.1 An algorithm of forward-backward type

In this subsection we propose a forward-backward type algorithm for solving Problem 1.2
and prove its convergence by showing that it can be reduced to an error-tolerant forward-
backward iterative scheme.

Algorithm 2.1.
Let x0 ∈ H, and for any i = 1, . . . ,m, let pi,0 ∈ Xi, qi,0 ∈ Yi and zi,0, yi,0, vi,0 ∈ Gi. For
any i = 1, . . . ,m, let τ, θ1,i, θ2,i, γ1,i, γ2,i and σi be strictly positive real numbers such
that

2µ−1 (1− α) min
i=1,...,m

{1
τ
,

1
θ1,i

,
1
θ2,i

,
1
γ1,i

,
1
γ2,i

,
1
σi

}
> 1, (2.3)

for

α = max


√√√√τ m∑

i=1
σi‖Li‖2, max

j=1,...,m

{√
θ1,jγ1,j‖Kj‖2,

√
θ2,jγ2,j‖Mj‖2

} .
Furthermore, let ε ∈ (0, 1), (λn)n≥0 be a sequence in [ε, 1] and set

(∀n ≥ 0)



x̃n ≈ JτA (xn − τ (Cxn +
∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m

p̃i,n ≈ Jθ1,iB
−1
i

(pi,n + θ1,iKizi,n)
q̃i,n ≈ Jθ2,iD

−1
i

(qi,n + θ2,iMiyi,n)
u1,i,n ≈ zi,n + γ1,i (K∗i (pi,n − 2p̃i,n) + vi,n + σi (Li(2x̃n − xn)− ri))
u2,i,n ≈ yi,n + γ2,i (M∗i (qi,n − 2q̃i,n) + vi,n + σi (Li(2x̃n − xn)− ri))
z̃i,n ≈ 1+σiγ2,i

1+σi(γ1,i+γ2,i)

(
u1,i,n − σiγ1,i

1+σiγ2,i
u2,i,n

)
ỹi,n ≈ 1

1+σiγ2,i
(u2,i,n − σiγ2,iz̃i,n)

ṽi,n ≈ vi,n + σi (Li(2x̃n − xn)− ri − z̃i,n − ỹi,n)
xn+1 = xn + λn(x̃n − xn)
For i = 1, . . . ,m
pi,n+1 = pi,n + λn(p̃i,n − pi,n)
qi,n+1 = qi,n + λn(q̃i,n − qi,n)
zi,n+1 = zi,n + λn(z̃i,n − zi,n)
yi,n+1 = yi,n + λn(ỹi,n − yi,n)
vi,n+1 = vi,n + λn(ṽi,n − vi,n).

(2.4)
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Theorem 2.1. For Problem 1.2, suppose that

z ∈ ran
(
A+

m∑
i=1

L∗i

((
K∗i ◦Bi ◦Ki

)
�
(
M∗i ◦Di ◦Mi

))
(Li · −ri) + C

)
, (2.5)

and consider the sequences generated by Algorithm 2.1. Then there exists a primal-dual
solution (x,p, q,y) to Problem 1.2 such that

(i) xn ⇀ x, pi,n ⇀ pi, qi,n ⇀ qi and yi,n ⇀ yi for any i = 1, . . . ,m as n→ +∞.
(ii) if C is uniformly monotone at x, then xn → x as n→ +∞.

Proof. We introduce the real Hilbert space K = H⊕X ⊕Y ⊕ G ⊕ G ⊕ G and let
p = (p1, . . . , pm)
q = (q1, . . . , qm)
y = (y1, . . . , ym)

and


z = (z1, . . . , zm)
v = (v1, . . . , vm)
r = (r1, . . . , rm)

. (2.6)

We introduce the maximally monotone operators

B : X → 2X , p 7→ B1p1 × . . .×Bmpm and D : Y → 2Y , q 7→ D1q1 × . . .×Dmqm.

Further, consider the set-valued operator

M : K→ 2K, (x,p, q, z,y,v) 7→(−z +Ax)×B−1p×D−1q × (−v,−v, r + z + y),

which is maximally monotone, since A, B and D are maximally monotone (cf. [2, Propo-
sition 20.22 and Proposition 20.23]) and the linear bounded operator

(x,p, q,y, z,v) 7→ (0,0,0,−v,−v, z + y)

is skew and hence maximally monotone (cf. [2, Example 20.30]). Therefore, M can be
written as the sum of two maximally monotone operators, one of them having full do-
main, fact which leads to the maximality of M (see, for instance, [2, Corollary 24.4(i)]).
Furthermore, consider the linear bounded operators

K̃ : G → X , z 7→ (K1z1, . . . ,Kmzm), M̃ : G → Y , y 7→ (M1y1, . . . ,Mmym),

and

S : K→ K,

(x,p, q, z,y,v) 7→
(

m∑
i=1

L∗i vi,−K̃z,−M̃y, K̃∗p, M̃∗q,−L1x, . . . ,−Lmx
)
.

The operator S is skew as well and therefore maximally monotone. As dom S = K, the
sum M + S is maximally monotone (see [2, Corollary 24.4(i)]).

Finally, we introduce the monotone operator

Q : K→ K, (x,p, q, z,y,v) 7→ (Cx,0,0,0,0,0)

which is, obviously, µ−1-cocoercive. By making use of (2.2), we observe that

(2.5) ⇔ ∃ (x,p, q,y) ∈ H ⊕X ⊕Y ⊕ G :


z −

∑m
i=1 L

∗
iK
∗
i pi ∈ Ax+ Cx,

Ki(Lix− yi − ri) ∈ B−1
i pi, i = 1, . . . ,m,

Miyi ∈ D−1
i qi, i = 1, . . . ,m,

K∗i pi = M∗i qi, i = 1, . . . ,m.
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⇔ ∃ (x,p, q) ∈ H ⊕X ⊕Y
∃ (z,y,v) ∈ G ⊕ G ⊕ G :



0 ∈ −z +Ax+
∑m
i=1 L

∗
i vi + Cx,

0 ∈ −Kizi +B−1
i pi, i = 1, . . . ,m,

0 ∈ −Miyi +D−1
i qi, i = 1, . . . ,m,

0 = K∗i pi − vi, i = 1, . . . ,m,
0 = M∗i qi − vi, i = 1, . . . ,m,
0 = ri + zi + yi − Lix, i = 1, . . . ,m

⇔ ∃ (x,p, q, z,y,v) ∈ zer(M + S + Q).

From here it follows that

(x,p, q, z,y,v) ∈ zer(M + S + Q)

⇒


z −

∑m
i=1 L

∗
iK
∗
i pi ∈ Ax+ Cx,

Ki(Lix− yi − ri) ∈ B−1
i pi, i = 1, . . . ,m,

Miyi ∈ D−1
i qi, i = 1, . . . ,m,

K∗i pi = M∗i qi, i = 1, . . . ,m.
⇔ (x,p, q,y) is a primal-dual solution to Problem 1.2. (2.7)

Further, for positive real values τ, θ1,i, θ2,i, γ1,i, γ2,i, σi ∈ R++, i = 1, . . . ,m, we introduce
the notations

p
θ1

=
(
p1
θ1,1

, . . . , pm

θ1,m

)
q
θ2

=
(
q1
θ2,1

, . . . , qm

θ2,m

),


z
γ1

=
(
z1
γ1,1

, . . . , zm
γ1,m

)
y
γ2

=
(
y1
γ2,1

, . . . , ym

γ2,m

), {
v
σ =

(
v1
σ1
, . . . , vm

σm

)
,

and define the linear bounded operator

V : K→ K, (x,p, q, z,y,v) 7→
(
x

τ
,

p

θ1
,

q

θ2
,

z

γ1
,

y

γ2
,
v

σ

)
+(

−
m∑
i=1

L∗i vi, K̃z, M̃y, K̃∗p, M̃∗q,−L1x, . . . ,−Lmx
)
.

It is a simple calculation to prove that V is self-adjoint. Furthermore, the operator V is
ρ-strongly positive with

ρ = (1− α) min
i=1,...,m

{1
τ
,

1
θ1,i

,
1
θ2,i

,
1
γ1,i

,
1
γ2,i

,
1
σi

}
> 0,

for

α = max


√√√√τ m∑

i=1
σi‖Li‖2, max

j=1,...,m

{√
θ1,jγ1,j‖Kj‖2,

√
θ2,jγ2,j‖Mj‖2

} .
The fact that ρ is a positive real number follows by the assumptions made in Algorithm
2.1. Indeed, using that 2ab ≤ αa2 + b2

α for every a, b ∈ R and every α ∈ R++, it yields for
any i = 1, . . . ,m

2‖Li‖‖x‖H‖vi‖Gi ≤
σi‖Li‖2√

τ
∑m
i=1 σi‖Li‖2

‖x‖2H +
√
τ
∑m
i=1 σi‖Li‖2
σi

‖vi‖2Gi
,

2‖Ki‖‖pi‖Xi‖zi‖Gi ≤
γ1,i‖Ki‖√
θ1,iγ1,i

‖pi‖2Xi
+

√
θ1,iγ1,i‖Ki‖2

γ1,i
‖zi‖2Gi

,

2‖Mi‖‖qi‖Yi‖yi‖Gi ≤
γ2,i‖Mi‖√
θ2,iγ2,i

‖qi‖2Yi
+

√
θ2,iγ2,i‖Mi‖2

γ2,i
‖yi‖2Gi

.

(2.8)
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Consequently, for each x = (x,p, q, z,y,v) ∈ K, using the Cauchy–Schwarz inequality
and (2.8), it follows that

〈x,V x〉K = ‖x‖
2
H

τ
+

m∑
i=1

[
‖pi‖2Xi

θ1,i
+
‖qi‖2Yi

θ2,i
+
‖zi‖2Gi

γ1,i
+
‖yi‖2Gi

γ2,i
+
‖vi‖2Gi

σi

]

− 2
m∑
i=1
〈Lix, vi〉Gi

+ 2
m∑
i=1
〈pi,Kizi〉Xi

+ 2
m∑
i=1
〈qi,Miyi〉Yi

≥ (1− α) min
i=1,...,m

{1
τ
,

1
θ1,i

,
1
θ2,i

,
1
γ1,i

,
1
γ2,i

,
1
σi

}
‖x‖2K

= ρ‖x‖2K. (2.9)

Since V is maximally monotone (cf. [2, Example 20.29]) and ρ-strongly positive, it is
strongly monotone and therefore, by [2, Proposition 22.8], it holds that V is surjective.
Consequently, V −1 exists and ‖V −1‖ ≤ 1

ρ .
In consideration of (1.9), the algorithmic scheme (2.4) can equivalently be written in

the form

(∀n ≥ 0)



xn−x̃n
τ −

∑m
i=1 L

∗
i (vi,n − ṽi,n)− Cxn
∈ −z +A(x̃n − an) +

∑m
i=1 L

∗
i ṽi,n − an

τ
For i = 1, . . . ,m

pi,n−p̃i,n

θ1,i
+Ki(zi,n − z̃i,n) ∈ B−1

i (p̃i,n − bi,n)−Kiz̃i,n − bi,n

θ1,i

qi,n−q̃i,n

θ2,i
+Mi(yi,n − ỹi,n) ∈ D−1

i (q̃i,n − di,n)−Miỹi,n − di,n

θ2,i

zi,n−z̃i,n

γ1,i
+K∗i (pi,n − p̃i,n) = −ṽi,n +K∗i p̃i,n − e1,i,n

yi,n−ỹi,n

γ2,i
+M∗i (qi,n − q̃i,n) = −ṽi,n +M∗i q̃i,n − e2,i,n

vi,n−ṽi,n

σi
− Li(xn − x̃n) = ri + z̃i,n + ỹi,n − Lix̃n − e3,i,n

xn+1 = xn + λn(x̃n − xn),

(2.10)

where 

pn = (p1,n, . . . pm,n) ∈ X
qn = (q1,n, . . . , qm,n) ∈ Y
zn = (z1,n, . . . , zm,n) ∈ G
yn = (y1,n, . . . , ym,n) ∈ G
vn = (v1,n, . . . , vm,n) ∈ G



p̃n = (p̃1,n, . . . p̃m,n) ∈ X
q̃n = (q̃1,n, . . . , q̃m,n) ∈ Y
z̃n = (z̃1,n, . . . , z̃m,n) ∈ G
ỹn = (ỹ1,n, . . . , ỹm,n) ∈ G
ṽn = (ṽ1,n, . . . , ṽm,n) ∈ G

and {
xn = (xn,pn, qn, zn,yn,vn) ∈ K
x̃n = (x̃n, p̃n, q̃n, z̃n, ỹn, ṽn) ∈ K.

Also, for any n ≥ 0, we consider sequences defined by
an ∈ H
bn = (b1,n, . . . bm,n) ∈ X
dn = (d1,n, . . . , dm,n) ∈ Y

and


e1,n = (e1,1,n, . . . , e1,m,n) ∈ G
e2,n = (e2,1,n, . . . , e2,m,n) ∈ G,
e3,n = (e3,1,n, . . . , e3,m,n) ∈ G

(2.11)

that are summable in the corresponding norm. Further, by denoting for any n ≥ 0{
en = (an, bn,dn,0,0,0) ∈ K
eτn =

(
an
τ ,

bn
θ1
, dn
θ2
, e1,n, e2,n, e3,n

)
∈ K,
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which are also terms of summable sequences in the corresponding norm, it yields that the
scheme in (2.10) is equivalent to

(∀n ≥ 0)
⌊

V (xn − x̃n)−Qxn ∈ (M + S) (x̃n − en) + Sen − eτn
xn+1 = xn + λn (x̃n − xn) . (2.12)

We now introduce the notations

AK := V −1 (M + S) and BK := V −1Q (2.13)

and the summable sequence with terms eV
n = V −1 ((V + S)en − eτn) for any n ≥ 0. Then,

for any n ≥ 0, we have

V (xn − x̃n)−Qxn ∈ (M + S) (x̃n − en) + Sen − eτn

⇔ V xn −Qxn ∈ (V + M + S) (x̃n − en) + (V + S)en − eτn

⇔ xn − V −1Qxn ∈
(
Id + V −1 (M + S)

)
(x̃n − en) + V −1 ((V + S)en − eτn)

⇔ x̃n =
(
Id + V −1 (M + S)

)−1 (
xn − V −1Qxn − eV

n

)
+ en

⇔ x̃n = (Id + AK)−1
(
xn −BKxn − eV

n

)
+ en. (2.14)

Taking into account that the resolvent is Lipschitz continuous, the sequence having as
terms

eAK
n = JAK

(
xn −BKxn − eV

n

)
− JAK (xn −BKxn) + en ∀n ≥ 0

is summable and we have

x̃n = JAK (xn −BKxn) + eAK
n ∀n ≥ 0.

Thus, the iterative scheme in (2.12) becomes

(∀n ≥ 0)
⌊

x̃n ≈ JAK (xn −BKxn)
xn+1 = xn + λn(x̃n − xn), (2.15)

which shows that the algorithm we propose in this subsection has the structure of a
forward-backward method.

In addition, let us observe that

zer (AK + BK) = zer
(
V −1 (M + S + Q)

)
= zer (M + S + Q) .

We then introduce the Hilbert space KV with inner product and norm respectively defined,
for x,y ∈ K, via

〈x,y〉KV
= 〈x,V y〉K and ‖x‖KV

=
√
〈x,V x〉K. (2.16)

Since M + S and Q are maximally monotone on K, the operators AK and BK are
maximally monotone on KV . Moreover, since V is self-adjoint and ρ-strongly positive,
one can easily see that weak and strong convergence in KV are equivalent with weak and
strong convergence in K, respectively. By making use of ‖V −1‖ ≤ 1

ρ , one can show that
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BK is (µ−1ρ)-cocoercive on KV . Indeed, we get for x, y ∈ KV that (see, also, [29, Eq.
(3.35)])

〈x− y,BKx−BKy〉KV
= 〈x− y,Qx−Qy〉K
≥ µ−1‖Qx−Qy‖2K
≥ µ−1‖V −1‖−1‖V −1Qx− V −1Qy‖K‖Qx−Qy‖K
≥ µ−1‖V −1‖−1 〈BKx−BKy,Qx−Qy〉K
= µ−1‖V −1‖−1‖BKx−BKy‖2KV

≥ µ−1ρ‖BKx−BKy‖2KV
. (2.17)

As our assumption imposes that 2µ−1ρ > 1, we can use the statements given in [17,
Corollary 6.5] in the context of an error tolerant forward-backward algorithm in order to
establish the desired convergence results.

(i) By Corollary 6.5 in [17], the sequence (xn)n≥0 converges weakly in KV (and there-
fore in K) to some x = (x,p, q, z,y,v) ∈ zer (AK + BK) = zer (M + S + Q). By (2.7),
it thus follows that (x,p, q,y) is a primal-dual solution with respect to Problem 1.2.

(ii) From [17, Remark 3.4], it follows∑
n≥0
‖BKxn −BKx‖2KV

< +∞,

and therefore we have BKxn → BKxn or, equivalently, Qxn → Qx as n→ +∞. Consid-
ering the definition of Q, one can see that this implies Cxn → Cx as n → +∞. As C is
uniformly monotone, there exists an increasing function φC : [0,+∞)→ [0,+∞] vanishing
only at 0 such that

φC(‖xn − x‖) ≤ 〈xn − x,Cxn − Cx〉 ≤ ‖xn − x‖‖Cxn − Cx‖ ∀n ≥ 0.

The boundedness of (xn − x)n≥0 and the convergence Cxn → Cx further imply that
xn → x as n→ +∞.

Remark 2.2. Suppose that C : H → H, x 7→ {0}, in Problem 1.2. Then condition (2.3)
simplifies to

max
{
τ

m∑
i=1

σi‖Li‖2, max
j=1,...,m

{
θ1,jγ1,j‖Kj‖2, θ2,jγ2,j‖Mj‖2

}}
< 1.

In this case, the scheme (2.15) reads

(∀n ≥ 0)
⌊

xn+1 ≈ xn + λn(JAKxn − xn), (2.18)

and it can be shown to convergence under the relaxed assumption that (λn)n≥0 ⊆ [ε, 2− ε],
for ε ∈ (0, 1) (see, for instance, [16,17,23]).

Remark 2.3. (i) When implementing Algorithm 2.1, the term Li(2x̃n−xn) should be
stored in a separate variable for any i = 1, . . . ,m. Taking this into account, each
linear bounded operator occurring in Problem 1.2 needs to be processed once via
some forward evaluation and once via its adjoint.

(ii) The maximally monotone operators A, Bi and Di, i = 1, . . . ,m, in Problem 1.2 are
accessed via their resolvents (so-called backward steps), also by taking into account
the relation between the resolvent of a maximally monotone operator and its inverse
given in (1.10).
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(iii) The possibility of performing a forward step for the cocoercive monotone operator
C is an important aspect, since forward steps are usually much easier to implement
than resolvent steps (resp. evaluations of proximal operators). Due to the Baillon–
Haddad theorem (cf. [2, Corollary 18.16]), each µ-Lipschitzian gradient with µ ∈ R++
of a convex and Fréchet differentiable function f : H → R is µ−1-cocoercive.

2.2 An algorithm of forward-backward-forward type

In this subsection we propose a forward-backward-forward type algorithm for solving Prob-
lem 1.2, with the modification that the operator C : H → H is assumed to be µ-Lipschitz
continuous for some µ ∈ R++, but not necessarily µ−1-cocoercive.

Algorithm 2.2.
Let x0 ∈ H, and for any i = 1, ...,m, let pi,0 ∈ Xi, qi,0 ∈ Yi, and zi,0, yi,0, vi,0 ∈ Gi. Set

β = µ+

√√√√max
{ m∑
i=1
‖Li‖2, max

j=1,...,m

{
‖Kj‖2, ‖Mj‖2

}}
, (2.19)

let ε ∈
(
0, 1

β+1

)
, (γn)n≥0 be a sequence in

[
ε, 1−ε

β

]
and set

(∀n ≥ 0)



x̃n ≈ JγnA (xn − γn (Cxn +
∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m

p̃i,n ≈ JγnB
−1
i

(pi,n + γnKizi,n)
q̃i,n ≈ JγnD

−1
i

(qi,n + γnMiyi,n)
u1,i,n ≈ zi,n − γn (K∗i pi,n − vi,n − γn (Lixn − ri))
u2,i,n ≈ yi,n − γn (M∗i qi,n − vi,n − γn (Lixn − ri))
z̃i,n ≈ 1+γ2

n
1+2γ2

n

(
u1,i,n − γ2

n
1+γ2

n
u2,i,n

)
ỹi,n ≈ 1

1+γ2
n

(
u2,i,n − γ2

nz̃i,n
)

ṽi,n ≈ vi,n + γn (Lixn − ri − z̃i,n − ỹi,n)
xn+1 ≈ x̃n + γn(Cxn − Cx̃n +

∑m
i=1 L

∗
i (vi,n − ṽi,n))

For i = 1, . . . ,m
pi,n+1 ≈ p̃i,n − γn(Ki(zi,n − z̃i,n))
qi,n+1 ≈ q̃i,n − γn(Mi(yi,n − ỹi,n))
zi,n+1 ≈ z̃i,n + γn(K∗i (pi,n − p̃i,n))
yi,n+1 ≈ ỹi,n + γn(M∗i (qi,n − q̃i,n))
vi,n+1 ≈ ṽi,n − γn(Li(xn − x̃n)).

(2.20)

Theorem 2.2. In Problem 1.2, let C : H → H be µ-Lipschitz continuous for µ ∈ R++,
suppose that

z ∈ ran
(
A+

m∑
i=1

L∗i

((
K∗i ◦Bi ◦Ki

)
�
(
M∗i ◦Di ◦Mi

))
(Li · −ri) + C

)
, (2.21)

and consider the sequences generated by Algorithm 2.2. Then there exists a primal-dual
solution (x,p, q,y) to Problem 1.2 such that

(i)
∑
n≥0 ‖xn − x̃n‖2 < +∞ and for any i = 1, ...,m∑
n≥0
‖pi,n − p̃i,n‖2 < +∞,

∑
n≥0
‖qi,n − q̃i,n‖2 < +∞ and

∑
n≥0
‖yi,n − ỹi,n‖2 < +∞.
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(ii) xn ⇀ x, x̃n ⇀ x, and for any i = 1, ...,m{
pi,n ⇀ pi,n
p̃i,n ⇀ pi,n

,

{
qi,n ⇀ qi,n
q̃i,n ⇀ qi,n

and
{
yi,n ⇀ yi,n
ỹi,n ⇀ yi,n

.

Proof. As in the proof of Theorem 2.1, consider K = H⊕X ⊕Y ⊕G ⊕G ⊕G along with
the notations introduced in (2.6). Further, let the operators M : K → 2K, S : K → K
and Q : K → K be defined as in the proof of the same result. The operator S + Q is
monotone, Lipschitz continuous, hence maximally monotone (cf. [2, Corollary 20.25]), and
it fulfills dom(S + Q) = K. Therefore the sum M + S + Q is maximally monotone as
well (see [2, Corollary 24.4(i)]).

In the following we derive the Lipschitz constant of S + Q. For arbitrary

x = (x,p, q, z,y,v) and x̃ = (x̃, p̃, q̃, z̃, ỹ, ṽ) ∈ K,

by using the Cauchy–Schwarz inequality, it yields

‖(S + Q)x− (S + Q)x̃‖ ≤ ‖Qx−Qx̃‖+ ‖Sx− Sx̃‖

≤ µ‖x− x̃‖+
∥∥∥∥∥
( m∑
i=1

L∗i (vi − ṽi),−K̃(z − z̃),−M̃(y − ỹ), K̃∗(p− p̃),

M̃∗(q − q̃),−L1(x− x̃), . . . ,−Lm(x− x̃)
)∥∥∥∥∥

= µ‖x− x̃‖+
(∥∥∥ m∑

i=1
L∗i (vi − ṽi)

∥∥∥2
+

m∑
i=1

[
‖Ki(zi − z̃i)‖2 + ‖Mi(yi − ỹi)‖2

+ ‖K∗i (pi − p̃i)‖2 + ‖M∗i (qi − q̃i)‖2 + ‖Li(x− x̃)‖2
]) 1

2

≤ µ‖x− x̃‖+
(( m∑

i=1
‖Li‖2

)(
‖x− x̃‖2 +

m∑
i=1
‖vi − ṽi‖2

)
+

m∑
i=1

[
‖Ki‖2‖zi − z̃i‖2

+ ‖Mi‖2‖yi − ỹi‖2 + ‖Ki‖2‖pi − p̃i‖2 + ‖Mi‖2‖qi − q̃i‖2
]) 1

2

≤

µ+

√√√√max
{ m∑
i=1
‖Li‖2, max

j=1,...,m

{
‖Kj‖2, ‖Mj‖2

}} ‖x− x̃‖. (2.22)

In the following we use the sequences in (2.11) for modeling summable errors in the
implementation. In addition we consider the summable sequences in K with terms defined
for any n ≥ 0 as

en = (an, bn,dn,0,0,0) and ẽn = (0,0,0, e1,n, e2,n, e3,n).
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Note that (2.20) can equivalently be written as

(∀n ≥ 0)



xn − γn
(
Cxn +

∑m
i=1 L

∗
i vi,n

)
∈
(
Id + γn(−z +A)

)
(x̃n − an)

For i = 1, . . . ,m
pi,n + γnKizi,n ∈

(
Id + γnB

−1
i

)
(p̃i,n − bi,n)

qi,n + γnMiyi,n ∈
(
Id + γnD

−1
i

)
(q̃i,n − di,n)

zi,n − γnK∗i pi,n = z̃i,n − γnṽi,n − e1,i,n
yi,n − γnM∗i qi,n = ỹi,n − γnṽi,n − e2,i,n
vi,n + γnLixn = ṽi,n + γn(ri + z̃i,n + ỹi,n)− e3,i,n

xn+1 ≈ x̃n + γn(Cxn − Cx̃n +
∑m
i=1 L

∗
i (vi,n − ṽi,n))

For i = 1, . . . ,m
pi,n+1 ≈ p̃i,n − γn(Ki(zi,n − z̃i,n))
qi,n+1 ≈ q̃i,n − γn(Mi(yi,n − ỹi,n))
zi,n+1 ≈ z̃i,n + γn(K∗i (pi,n − p̃i,n))
yi,n+1 ≈ ỹi,n + γn(M∗i (qi,n − q̃i,n))
vi,n+1 ≈ ṽi,n − γn(Li(xn − x̃n)).

(2.23)

Therefore, (2.23) is nothing else than

(∀n ≥ 0)
⌊

xn − γn(S + Q)xn ∈ (Id + γnM) (x̃n − en)− ẽn
xn+1 ≈ x̃n + γn ((S + Q)xn − (S + Q)pn) . (2.24)

We now introduce the notations

AK := M and BK := S + Q. (2.25)

Then (2.24) is

(∀n ≥ 0)
⌊

x̃n = JγnAK (xn − γnBKxn + ẽn) + en
xn+1 ≈ x̃n + γn (BKxn −BKx̃n) . (2.26)

We observe that for

eK
n := JγnAK (xn − γnBKxn + ẽn)− JγnAK (xn − γnBKxn) + en,

one has x̃n = JγnAK (xn − γnBKxn) + eK
n for any n ≥ 0 and it holds∑

n≥0
‖eK

n ‖ =
∑
n≥0
‖JγnAK (xn − γnBKxn + ẽn)− JγnAK (xn − γnBKxn) + en‖

≤
∑
n≥0

[‖JγnAK (xn − γnBKxn + ẽn)− JγnAK (xn − γnBKxn) ‖+ ‖en‖]

≤
∑
n≥0

[‖ẽn‖+ ‖en‖] < +∞.

Thus, (2.26) becomes

(∀n ≥ 0)
⌊

x̃n ≈ JγnAK (xn − γnBKxn)
xn+1 ≈ x̃n + γn (BKxn −BKx̃n) , (2.27)

which is an error-tolerant forward-backward-forward method in K whose convergence has
been investigated in [13]. Note that the exact version of this algorithm was proposed by
Tseng in [28].
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(i) By [13, Theorem 2.5(i)] we have∑
n≥0
‖xn − x̃n‖2 < +∞,

which yields
∑
n≥0 ‖xn − x̃n‖2 < +∞ and for any i = 1, ...,m,∑

n≥0
‖pi,n − p̃i,n‖2 < +∞,

∑
n≥0
‖qi,n − q̃i,n‖2 < +∞ and

∑
n≥0
‖yi,n − ỹi,n‖2 < +∞.

(ii) Let x = (x,p, q, z,y,v) ∈ zer(M + S + Q). Using [13, Theorem 2.5(ii)], we obtain
xn ⇀ x and x̃n ⇀ x. In consideration of (2.7), it follows that (x,p, q,v) is a primal-dual
solution to Problem 1.2, xn ⇀ x, x̃n ⇀ x, and for i = 1, ...,m{

pi,n ⇀ pi,n
p̃i,n ⇀ pi,n

,

{
qi,n ⇀ qi,n
q̃i,n ⇀ qi,n

, and
{
yi,n ⇀ yi,n
ỹi,n ⇀ yi,n

.

Remark 2.4. (i) In contrast to Algorithm 2.1, the iterative scheme in Algorithm 2.2
requires twice the amount of forward steps and is therefore more time-intensive. On
the other hand, many steps in Algorithm 2.2 can be processed in parallel.

(ii) A forward-backward-forward type algorithm for solving the primal-dual pair of
monotone inclusions (1.7) - (1.8), in the particular situation when Li is the identity
operator and ri = 0 for any i = 1, ...,m, has been recently investigated in [3].

3 Application to convex minimization
In this section we employ the algorithms introduced in the previous one in the context of
solving the primal-dual pairs of convex optimization problems introduced in Problem 1.1.

For every x ∈ H and (p, q) ∈ X ⊕ Y with K∗i pi = M∗i qi, i = 1, . . . ,m, by the Young-
Fenchel inequality, it holds

f(x) + h(x) + (f∗�h∗)
(
z −

m∑
i=1

L∗iK
∗
i pi

)
≥
〈
z −

m∑
i=1

L∗iK
∗
i pi, x

〉

and, for any i = 1, . . . ,m and yi ∈ G,

gi(Ki(Lix− ri − yi)) + g∗i (pi) ≥ 〈pi,Ki(Lix− ri − yi)〉 = 〈K∗i pi, Lix− ri − yi〉

and
li(Miyi) + l∗i (qi) ≥ 〈qi,Miyi〉 = 〈M∗i qi, yi〉.

This yields

inf
x∈H

{
f(x) +

m∑
i=1

((
gi ◦Ki

)
�
(
li ◦Mi

))
(Lix− ri) + h(x)− 〈x, z〉

}

= inf
(x,y)∈H⊕G

{
f(x) +

m∑
i=1

(
gi(Ki(Lix− ri − yi)) + li(Miyi)

)
+ h(x)− 〈x, z〉

}
(3.1)

≥ sup
(p,q)∈X⊕Y,

K∗
i pi=M∗

i qi, i=1,...,m

{
− (f∗�h∗)

(
z −

m∑
i=1

L∗iK
∗
i pi

)
−

m∑
i=1

[
g∗i (pi) + l∗i (qi) + 〈pi,Kiri〉

]}
,
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which means that for the primal-dual pair of optimization problems (1.5)-(1.6) weak du-
ality is always given.

Considering (x,p, q,y) ∈ H ⊕ X ⊕ Y ⊕ G a solution of the primal-dual system of
monotone inclusions

z −
m∑
i=1

L∗iK
∗
i pi ∈ ∂f(x) +∇h(x) and

Ki(Lix− yi − ri) ∈ ∂g∗i (pi), Miyi ∈ ∂l∗i (qi), K∗i pi = M∗i qi, i = 1, . . . ,m,
(3.2)

it follows that x is an optimal solution to (1.5) and that (p, q) is an optimal solution to
(1.6). Indeed, as h is convex and everywhere differentiable, it holds

z −
m∑
i=1

L∗iK
∗
i pi ∈ ∂f(x) +∇h(x) ⊆ ∂(f + h)(x),

thus
f(x) + h(x) + (f∗�h∗)

(
z −

m∑
i=1

L∗iK
∗
i pi

)
=
〈
z −

m∑
i=1

L∗iK
∗
i pi, x

〉
.

On the other hand, since gi ∈ Γ(Xi) and li ∈ Γ(Yi), we have for any i = 1, . . . ,m

gi(Ki(Lix− yi − ri)) + g∗i (pi) = 〈K∗i pi, Lix− ri − yi〉

and
li(Miyi) + l∗i (qi) = 〈M∗i qi, yi〉.

By summing up these equations and using (3.2), it yields

f(x) +
m∑
i=1

((
gi ◦Ki

)
�
(
li ◦Mi

))
(Lix− ri) + h(x)− 〈x, z〉

≤ f(x) +
m∑
i=1

(
gi(Ki(Lix− ri − yi)) + li(Miyi)

)
+ h(x)− 〈x, z〉

= − (f∗�h∗)
(
z −

m∑
i=1

L∗iK
∗
i pi

)
−

m∑
i=1

[
g∗i (pi) + l∗i (qi) + 〈pi,Kiri〉

]
,

which, together with (3.1), leads to the desired conclusion.
In the following, by extending the result in [3, Proposition 4.2] to our setting, we

provide sufficient conditions which guarantee the validity of (2.5) when applied to convex
minimization problems. To this end we mention that the strong quasi-relative interior of
a nonempty convex set Ω ⊆ H is defined as

sqri Ω =

x ∈ Ω :
⋃
λ≥0

λ(Ω− x) is a closed linear subspace

 .
Proposition 3.1. Suppose that the primal problem (1.5) has an optimal solution, that

0 ∈ sqri (dom(gi ◦Ki)∗ − dom(li ◦Mi)∗) , i = 1, . . . ,m (3.3)

and

0 ∈ sqri E, (3.4)
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where

E :=
{ m×
i=1

{
Ki(Li(dom f)−ri−yi)−dom gi

}
×

m×
i=1

{
Miyi−dom li

}
: yi ∈ Gi, i = 1, ...,m

}
.

Then

z ∈ ran
(
∂f +

m∑
i=1

L∗i ((K∗i ◦ ∂gi ◦Ki)� (M∗i ◦ ∂li ◦Mi)) (Li · −ri) +∇h
)
.

Proof. Let x ∈ H be an optimal solution to (1.5). Since (3.4) holds, we have that (gi ◦Ki),
(li ◦Mi) ∈ Γ(Gi), i = 1, . . . ,m. Further, because of (3.3), [2, Proposition 15.7] guarantees
for any i = 1, . . . ,m the existence of yi ∈ Gi such that(

(gi ◦Ki)� (li ◦Mi)
)
(x) = (gi ◦Ki)(x− yi) + (li ◦Mi)(yi).

Hence, (x,y) = (x, y1, . . . , ym) is an optimal solution to the convex optimization problem

inf
(x,y)∈H⊕G

{
f(x) + h(x)− 〈x, z〉+

m∑
i=1

[
gi(Ki(Lix− ri − yi)) + li(Miyi)

]}
(3.5)

By denoting

f : H⊕ G → R, f(x,y) = f(x) + h(x)− 〈x, z〉

g : X ⊕Y → R, g(x,y) =
m∑
i=1

[
gi(xi −Kiri) + li(yi)

]
L : H⊕ G → X ⊕Y , (x,y) 7→

m×
i=1

{
Ki(Lix− yi)

}
×

m×
i=1

{
Miyi

}
,

(3.6)

problem (3.5) can be equivalently written as

inf
(x,y)∈H⊕G

{f(x,y) + g(L(x,y))} . (3.7)

Thus,
0 ∈ ∂(f + g ◦L)(x,y).

Since E = L(dom f)− dom g and (3.4) is fulfilled, it holds (see, for instance, [2, 4, 7])

0 ∈ ∂
(
f + g ◦L

)
(x,y) = ∂f(x,y) +

(
L∗ ◦ ∂g ◦L

)
(x,y),

where

L∗ : X ⊕Y → H⊕ G, (p, q) 7→
( m∑
i=1

L∗iK
∗
i pi,−K∗1p1 +M∗1 q1, . . . ,−K∗mpm +M∗mqm

)
.

We obtain

0 ∈ ∂f(x,y) +
(
L∗ ◦ ∂g ◦L

)
(x,y)

⇔
{

0 ∈ ∂f(x) +∇h(x)− z +
∑m
i=1 L

∗
i

(
K∗i ◦ ∂gi ◦Ki

)
(Lix− ri − yi)

0 ∈ −
(
K∗i ◦ ∂gi ◦Ki

)
(Lix− ri − yi) +

(
M∗i ◦ ∂li ◦Mi

)
yi, i = 1, . . . ,m

⇔ ∃v ∈ G :


0 ∈ ∂f(x) +∇h(x)− z +

∑m
i=1 L

∗
i vi

vi ∈
(
K∗i ◦ ∂gi ◦Ki

)
(Lix− ri − yi), i = 1, . . . ,m

vi ∈
(
M∗i ◦ ∂li ◦Mi

)
yi, i = 1, . . . ,m
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⇔ ∃v ∈ G :


0 ∈ ∂f(x) +∇h(x)− z +

∑m
i=1 L

∗
i vi

Lix− ri − yi ∈
(
K∗i ◦ ∂gi ◦Ki

)−1
vi, i = 1, . . . ,m

yi ∈
(
M∗i ◦ ∂li ◦Mi

)−1
vi, i = 1, . . . ,m

⇔ ∃v ∈ G :
{ 0 ∈ ∂f(x) +∇h(x)− z +

∑m
i=1 L

∗
i vi

vi ∈
((
K∗i ◦ ∂gi ◦Ki

)
�
(
M∗i ◦ ∂li ◦Mi

))
(Lix− ri), i = 1, . . . ,m

⇔ z ∈ ∂f(x) +
m∑
i=1

L∗i

((
K∗i ◦ ∂gi ◦Ki

)
�
(
M∗i ◦ ∂li ◦Mi

))
(Lix− ri) +∇h(x),

which completes the proof.

Remark 3.1. If one of the following two conditions

• f is real-valued and the operators Li, Ki and Mi are surjective for any i = 1, . . . ,m;
• the functions gi and li are real-valued for any i = 1, . . . ,m;

is fulfilled, then E = X ⊕Y and (3.4) is obviously true.
On the other hand, if H, Gi,Xi and Yi, i = 1, . . . ,m are finite dimensional and

for any i = 1, . . . ,m, there exists yi ∈ Gi :
{
Kiyi ∈ Ki(Li(ri dom f)− ri)− ri dom gi,
Miyi ∈ ri dom li

,

then (3.4) is also true. This follows by using that in finite dimensional spaces the strong
quasi-relative interior of a convex set is nothing else than its relative interior and by taking
into account the properties of the latter.

3.1 An algorithm of forward-backward type

When applied to (3.2), the iterative scheme introduced in (2.4) and the corresponding
convergence statements read as follows.

Algorithm 3.1.
Let x0 ∈ H, and for any i = 1, . . . ,m, let pi,0 ∈ Xi, qi,0 ∈ Yi and yi,0, zi,0, vi,0 ∈ Gi. For
any i = 1, . . . ,m, let τ, θ1,i, θ2,i, γ1,i, γ2,i and σi be strictly positive real numbers such
that

2µ−1 (1− α) min
i=1,...,m

{1
τ
,

1
θ1,i

,
1
θ2,i

,
1
γ1,i

,
1
γ2,i

,
1
σi

}
> 1, (3.8)

for

α = max


√√√√τ m∑

i=1
σi‖Li‖2, max

j=1,...,m

{√
θ1,jγ1,j‖Kj‖2,

√
θ2,jγ2,j‖Mj‖2

} .
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Furthermore, let ε ∈ (0, 1), (λn)n≥0 be a sequence in [ε, 1] and set

(∀n ≥ 0)



x̃n ≈ Proxτf (xn − τ (Cxn +
∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m

p̃i,n ≈ Proxθ1,ig∗
i

(pi,n + θ1,iKizi,n)
q̃i,n ≈ Proxθ2,il∗i

(qi,n + θ2,iMiyi,n)
u1,i,n ≈ zi,n + γ1,i (K∗i (pi,n − 2p̃i,n) + vi,n + σi (Li(2x̃n − xn)− ri))
u2,i,n ≈ yi,n + γ2,i (M∗i (qi,n − 2q̃i,n) + vi,n + σi (Li(2x̃n − xn)− ri))
z̃i,n ≈ 1+σiγ2,i

1+σi(γ1,i+γ2,i)

(
u1,i,n − σiγ1,i

1+σiγ2,i
u2,i,n

)
ỹi,n ≈ 1

1+σiγ2,i
(u2,i,n − σiγ2,iz̃i,n)

ṽi,n ≈ vi,n + σi (Li(2x̃n − xn)− ri − z̃i,n − ỹi,n)
xn+1 = xn + λn(x̃n − xn)
For i = 1, . . . ,m
pi,n+1 = pi,n + λn(p̃i,n − pi,n)
qi,n+1 = qi,n + λn(q̃i,n − qi,n)
zi,n+1 = zi,n + λn(z̃i,n − zi,n)
yi,n+1 = yi,n + λn(ỹi,n − yi,n)
vi,n+1 = vi,n + λn(ṽi,n − vi,n).

(3.9)

Theorem 3.2. For the optimization problem (1.5), suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i ((K∗i ◦ ∂gi ◦Ki)� (M∗i ◦ ∂li ◦Mi)) (Li · −ri) +∇h
)

(3.10)

and consider the sequences generated by Algorithm 3.1. Then there exists an optimal
solution x to (1.5) and optimal solution (p, q) to (1.6) such that

(i) xn ⇀ x, pi,n ⇀ pi and qi,n ⇀ qi for any i = 1, . . . ,m as n→ +∞.
(ii) if h is uniformly convex at x, then xn → x as n→ +∞.

Proof. The results is a direct consequence of Theorem 2.1 when taking

A = ∂f, C = ∇h, and Bi = ∂gi, Di = ∂li, i = 1, . . . ,m. (3.11)

We also notice that, according to Theorem 20.40 in [2], the operators in (3.11) are
maximally monotone, while, by [2, Corollary 16.24], we have A−1 = ∂f∗, C−1 = ∂h∗,
B−1
i = ∂g∗i and D−1

i = ∂l∗i for i = 1, . . . ,m. Furthermore, by [2, Corollary 18.16], C = ∇h
is µ−1-cocoercive, while, if h is uniformly convex at x ∈ H, then C = ∇h is uniformly
monotone at x (cf. [30, Section 3.4]).

Remark 3.2. If h ∈ Γ(H) such that ∇h(x) = 0 for all x ∈ H, then condition (3.8)
simplifies to

max
{
τ

m∑
i=1

σi‖Li‖2,max
j∈I

{
θ1,jγ1,j‖Kj‖2, θ2,jγ2,j‖Mj‖2

}}
< 1.

In this situation Algorithm 3.1 converges under the relaxed assumption that (λn)n≥0 ⊆
[ε, 2− ε] for ε ∈ (0, 1) (see also Remark 2.2).
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3.2 An algorithm of forward-backward-forward type

On the other hand, when applied to (3.2), the iterative scheme introduced in (2.20) and
the corresponding convergence statements read as follows.

Algorithm 3.2.
Let x0 ∈ H, and for any i = 1, . . . ,m, let pi,0 ∈ Xi, qi,0 ∈ Yi, and zi,0, yi,0, vi,0 ∈ Gi. Set

β = µ+

√√√√max
{ m∑
i=1
‖Li‖2, max

j=1,...,m

{
‖Kj‖2, ‖Mj‖2

}}
, (3.12)

let ε ∈
(
0, 1

β+1

)
, (γn)n≥0 be a sequence in

[
ε, 1−ε

β

]
and set

(∀n ≥ 0)



x̃n ≈ Proxγnf (xn − γn (Cxn +
∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m

p̃i,n ≈ Proxγng∗
i

(pi,n + γnKizi,n)
q̃i,n ≈ Proxγnl∗i

(qi,n + γnMiyi,n)
u1,i,n ≈ zi,n − γn (K∗i pi,n − vi,n − γn (Lixn − ri))
u2,i,n ≈ yi,n − γn (M∗i qi,n − vi,n − γn (Lixn − ri))
z̃i,n ≈ 1+γ2

n
1+2γ2

n

(
u1,i,n − γ2

n
1+γ2

n
u2,i,n

)
ỹi,n ≈ 1

1+γ2
n

(
u2,i,n − γ2

nz̃i,n
)

ṽi,n ≈ vi,n + γn (Lixn − ri − z̃i,n − ỹi,n)
xn+1 ≈ x̃n + γn(Cxn − Cx̃n +

∑m
i=1 L

∗
i (vi,n − ṽi,n))

For i = 1, . . . ,m
pi,n+1 ≈ p̃i,n − γn(Ki(zi,n − z̃i,n))
qi,n+1 ≈ q̃i,n − γn(Mi(yi,n − ỹi,n))
zi,n+1 ≈ z̃i,n + γn(K∗i (pi,n − p̃i,n))
yi,n+1 ≈ ỹi,n + γn(M∗i (qi,n − q̃i,n))
vi,n+1 ≈ ṽi,n − γn(Li(xn − x̃n)).

(3.13)

Theorem 3.3. For the optimization problem (1.5), suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i

((
K∗i ◦ ∂gi ◦Ki

)
�
(
M∗i ◦ ∂li ◦Mi

))
(Li · −ri) +∇h

)
, (3.14)

and consider the sequences generated by Algorithm 3.2. Then there exists an optimal
solution x to (1.5) and optimal solution (p, q) to (1.6) such that

(i)
∑
n≥0 ‖xn − x̃n‖2 < +∞ and for any i = 1,...,m∑

n≥0
‖pi,n − p̃i,n‖2 < +∞ and

∑
n≥0
‖qi,n − q̃i,n‖2 < +∞.

(ii) xn ⇀ x, x̃n ⇀ x and for any i = 1,...,m{
pi,n ⇀ pi,n
p̃i,n ⇀ pi,n

and
{
qi,n ⇀ qi,n
q̃i,n ⇀ qi,n

.

Proof. The conclusions follow by using the statements in the proof of Theorem 3.2 and by
applying Theorem 2.2.
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4 Numerical experiments
Within this section we show how the two algorithms we propose in this paper have per-
formed when solving the image denoising problems (1.3) and (1.4) formulated in the in-
troductory section, namely

(`22-IC/P) inf
x∈Rn

{1
2‖x− b‖

2 +
(
(α1‖ · ‖1,ω1 ◦ D1)� (α2‖ · ‖1,ω2 ◦ D2)

)
(x)
}

and

(`22-MIC/P) inf
x∈Rn

{1
2‖x− b‖

2 +
(
(α1‖ · ‖1,ω1)� (α2‖ · ‖1,ω2 ◦ L1)

)
(D1x)

}
,

respectively, also in comparison with other numerical schemes from the literature.
First, we notice that for both problems a condition of type (3.3) is fulfilled, thus the

infimal convolutions are proper, convex and lower semicontinuous functions. Due to the
fact that the objective functions of the two optimization problems are proper, strongly
convex and lower semicontinuous, these have unique optimal solutions. Finally, in the
light of Remark 3.1, a condition of type (3.4) holds. Thus, according to Proposition 3.1,
the hypotheses of the theorems 3.2 and 3.3 are for both optimization problems (`22-IC/P)
and (`22-MIC/P) fulfilled.

In order to compare our two primal-dual iterative schemes with algorithms relying on
(augmented) Lagrangian and smoothing techniques, we formulated using the definition of
the infimal convolution (1.3) and (1.4) as optimization problems with constraints of the
form

(`22-IC/P) inf
x1,x2,z1,z2

{1
2‖x1 + x2 − b‖2 + α1‖z1‖1,ω1 + α2‖z2‖1,ω2

}
,

subject to
(
D1 0
0 D2

)(
x1
x2

)
=
(
z1
z2

) (4.1)

and

(`22-MIC/P) inf
x,y1,y2,z

{1
2‖x− b‖

2 + α1‖y1‖1,ω1 + α2‖z‖1,ω2

}
,

subject to
(
D1 −Id
0 L1

)(
x
y2

)
=
(
y1
z

) (4.2)

respectively.
We performed our numerical tests on the colored test image lichtenstein (see Figure

4.1) of size 256 × 256 making each color ranging in the closed interval from 0 to 1. By
adding white Gaussian noise with standard deviation 0.08, we obtained the noisy image
b ∈ Rn. We took ω1 = (1, 1) and ω2 = (1, 1), the regularization parameters in (`22-IC/P)
and (`22-MIC/P) were set to α1 = 0.06 and α2 = 0.2, while the tests were made on an Intel
Core i7-3770 processor.

When measuring the quality of the restored images, we used the improvement in signal-
to-noise ratio (ISNR), which is given by

ISNRk = 10 log10

(
‖x− b‖2

‖x− xk‖2

)
,

22



(a) Original image (b) Noisy image (c) Reconstructed image

Figure 4.1: Figure (a) shows the clean 256 × 256 lichtenstein test image, (b) shows the image
obtained after adding white Gaussian noise with standard deviation 0.08 and (c) shows the recon-
structed image.

(a) ISNR values for (`2
2-IC/P)
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(b) ISNR values for (`2
2-MIC/P)
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Figure 4.2: Figure (a) shows the evolution of the ISNR for the (`2
2-IC/P) problem w.r.t. the CPU

times (in seconds) in log scale. Figure (b) shows the evolution of the ISNR for the (`2
2-MIC/P)

problem w.r.t. the CPU times (in seconds) in log scale.

where x, b, and xk are the original, the observed noisy and the reconstructed image at
iteration k ∈ N, respectively.

In Figure 4.2 we compare the performances of Algorithm 3.1 (FB) and Algorithm 3.2
(FBF) in the context of solving the optimization problems (1.3) and (1.4) to the ones of
different optimization algorithms.

The double smoothing (DS) algorithm, as proposed in [11], is applied to the Fenchel
dual problems of (4.1) and (4.2) by considering the acceleration strategies in [10]. One
should notice that, since the smoothing parameters are constant, (DS) solves continu-
ously differentiable approximations of (4.1) and (4.2) and does therefore not necessarily
converge to the unique minimizers of (1.3) and (1.4). As a second smoothing algorithm,
we considered the variable smoothing technique (VS) in [8], which successively reduces
the smoothing parameter in each iteration and therefore solves the primal optimization
problems as the iteration counter increases. We further considered the primal-dual hybrid
gradient method (PDHG) as discussed in [27], which is nothing else than the primal-dual
method in [15]. Finally, the alternating direction method of multipliers (ADMM) was
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applied to (4.1), as it was also done in [27]. Here, one makes use of the Moore-Penrose
inverse of a special linear bounded operator which can be implemented in this setting effi-
ciently, since DT1 D1 and DT2 D2 can be diagonalized by the discrete cosine transform. The
problem which arises in (4.2), however, is far more difficult to be solved with this method
(and was therefore not implemented), since the linear bounded operator assumed to be
inverted has a more complicated structure. This reveals a typical drawback of ADMM
given by the fact that this method does not provide a full splitting, like primal-dual or
smoothing algorithms do.

As it follows from the comparisons shown in Figure 4.2, the FBF method suffers because
of its additional forward step. However, many time-intensive steps in this algorithm could
have been executed in parallel, which would lead to a significant decrease of the execution
time. On the other hand, the FB method performs fast and stable in both examples, while
optical differences in the reconstructions for (`22-IC/P) and (`22-MIC/P) are not observable.

Acknowledgements. The authors are thankful to two anonymous reviewers for com-
ments and recommendations which improved the quality of the paper.
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