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Abstract

In the literature on singular perturbation (Lavrentiev regularization) for the sta-
ble approximate solution of operator equations with monotone operators in the
Hilbert space the phenomena of conditional stability and local well-posedness or
ill-posedness are rarely investigated. Our goal is to present some studies which try
to bridge this gap. So we present new results on the impact of conditional stabil-
ity on error estimates and convergence rates for the Lavrentiev regularization and
distinguish for linear problems well-posedness and ill-posedness in a specific manner
motivated by a saturation result. Taking into account that the behaviour of the
bias (regularization error in the noise-free case) is crucial, general convergence rates,
including logarithmic rates, are derived for linear operator equations by means of the
method of approximate source conditions. This allows us to extend well-known con-
vergence rates results for the Lavrentiev regularization that were based on general
source conditions to the case of non-selfadjoint linear monotone forward operators
for which general source conditions fail. Examples presenting the self-adjoint mul-
tiplication operator as well as the non-selfadjoint fractional integral operator and
Cesàro operator illustrate the theoretical results. Extensions to the nonlinear case
under specific conditions on the nonlinearity structure complete the paper.
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1 Introduction

If F : D(F ) ⊆ X → Y denotes a sufficiently smooth and possibly nonlinear operator
mapping between Hilbert spaces X and Y with norms ‖ · ‖, then it is not always trivial
to find in a stable manner the solution x† ∈ D(F ) to the operator equation

F (x) = y (1.1)

with the exact right-hand side y = F (x†) when only noisy data yδ obeying the determin-
istic noise model

‖y − yδ‖ ≤ δ (1.2)

with noise level δ > 0 are available. Even if (1.1) has x† as the unique solution, a least
squares approach

‖F (x)− yδ‖2 → min, subject to x ∈ D(F ),

is not always successful if the Hilbert space is infinite dimensional. Then the least squares
minimizers need not exist and if they exist their convergence to x† in the norm of X as
δ → 0 can only be expected if the operator equation is locally well-posed at x†. In this
context, we recall the following definition introduced in [25, Definition 2].

Definition 1.1. The equation (1.1) is called locally well-posed at the solution point x† ∈
D(F ) if there is a ball Br(x†) with radius r > 0 and center x† such that for every sequence
{xk}∞k=1 ⊂ Br(x†)∩D(F ) the convergence of images lim

k→∞
‖F (xk)−F (x†)‖ = 0 implies the

convergence of the preimages lim
k→∞
‖xk − x†‖ = 0. Otherwise it is called locally ill-posed.

In particular if the equation (1.1) is a model of an inverse and therefore mostly ill-posed
problem, it makes sense to exploit a singularly perturbed auxiliary problem to equation
(1.1), which is automatically locally well-posed. The most prominent such approach
is the Tikhonov regularization, where in the simplest case (cf. [13, Chapt. 10]) stable
approximate solutions xδα ∈ D(F ) solve the extremal problem

‖F (x)− yδ‖2 + ‖x− x̄‖2 → min, subject to x ∈ D(F ), (1.3)

with regularization parameter α > 0 and reference element (initial guess) x̄ ∈ X. Variants
of Tikhonov regularization, however, are also helpful and advantageous (cf., e.g., [10, 11]
and [26, §6.2]) if (1.1) is locally well-posed in the sense that a conditional stability estimate
of the form

‖x− x†‖ ≤ ϕ(‖F (x)− F (x†)‖) for all x ∈ D(F ) ∩Q (1.4)

applies, with some set Q ⊂ X containing x† and some concave index function ϕ, where
we call ϕ : [0,∞) → [0,∞) index function if it is continuous, strictly increasing and
satisfies the condition ϕ(0) = 0. Then the method ensures convergence and rates of the
approximate solutions when the regularized solutions are embedded in the stability region
D(F ) ∩Q.

The focus of this paper is on the specific situation of an operator equation (1.1) with
Y = X, D(F ) = X, and monotone operators F as characterized by the following assump-
tion. Mostly, infinite dimensional Hilbert spaces X will be under consideration, but for
examples also finite dimensional cases shall be exploited.
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Assumption 1.2. Consider the operator equation (1.1) with solution x† ∈ X under the
auspices that

(a) X is a real separable Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and

(b) F : X → X is a monotone operator, i.e.

〈F (x)− F (x̃), x− x̃〉 ≥ 0 for all x, x̃ ∈ X, (1.5)

which is moreover hemicontinuous and hence maximally monotone.

Under Assumption 1.2 there occur well-posed and ill-posed situations. The best situ-
ation of global well-posedness is characterized by strong monotonicity

〈F (x)− F (x̃), x− x̃〉 ≥ C ‖x− x̃‖2 for all x, x̃ ∈ X, (1.6)

with some constant C > 0, which implies the coercivity condition

lim
‖x‖→∞

〈F (x), x〉
‖x‖

=∞. (1.7)

Proposition 1.3. Under the requirements of Assumption 1.2 strengthened by the condi-
tion (1.6) the equation (1.1) is uniquely solvable in X for all y ∈ X, and the solutions
are Lipschitz continuous with respect to the data, i.e. the inverse operator F−1 : X → X
is well-defined with

‖F−1(y)− F−1(ỹ)‖ ≤ 1

C
‖y − ỹ‖ for all y, ỹ ∈ X. (1.8)

Proof. The Browder-Minty theorem ensures under the supposed conditions that F is
surjective and due to (1.6) even bijective. Also from (1.6) we have for all x, x̃ ∈ X

C ‖x− x̃‖2 ≤ 〈F (x)− F (x̃), x− x̃〉 ≤ ‖x− x̃‖ ‖F (x)− F (x̃)‖,

which yields (1.8) and completes the proof.

However, there are a lot of examples for inverse problems occurring in natural sciences,
engineering, and finance, where estimates of the form (1.8) fail and operator equations
(1.1) with monotone forward operators F have to be solved in a stable approximate
manner. Due to the smoothing character of F in these cases, local ill-posedness must
be conjectured, and we have so-called operator equations of the first kind. Compact
monotone operators F are typical for that situation. Then F obeys (1.5), but fails to
satisfy inequalities of the form (1.6). Examples of ill-posed problems in integral and
differential equations under monotone forward operators are, for example, presented in
[1, Section 1.3] and [23, Section 5]. However, for all α > 0 the associated equations of
the second kind G(x) = y with G(x) := F (x) + αx possess a strongly monotone forward
operator G and are hence locally well-posed everywhere, because we have

〈G(x)−G(x̃), x− x̃〉 = 〈F (x)− F (x̃), x− x̃〉+ α ‖x− x̃‖2 ≥ α ‖x− x̃‖2 for all x, x̃ ∈ X.
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This gives a substantial motivation for using singular perturbations for the stable ap-
proximate solution of equation (1.1) also here. Due to the maximal monotonicity of F
the simpler Lavrentiev regularization (cf. the seminal monograph [28] as well as the more
recent works [1, 29]) is applicable, where stable approximate solutions xδα ∈ X solve the
operator equation

F (xδα) + α(xδα − x̄) = yδ, (1.9)

with regularization parameter α > 0 and reference element x̄ ∈ X. Such approach is also
helpful if Proposition 1.3 is not applicable, because coercivity (1.7) fails or well-posedness
at x† takes place only in a local sense. The latter is the case if F is strongly monotone in
a neighbourhood of x†, i.e. the locally relaxed version of (1.6),

〈F (x)− F (x†), x− x†〉 ≥ C ‖x− x†‖2 for all x ∈ Br(x†), (1.10)

with some radius r > 0 and some constant C > 0 is valid, or if F is uniformly monotone
in a neighbourhood of x†, i.e.

〈F (x)− F (x†), x− x†〉 ≥ ζ(‖x− x†‖) for all x ∈ Br(x†) (1.11)

holds with some radius r > 0 and some index function ζ. In both situations we have local
well-posedness at x†, and we refer for examples to the monograph [42] and also to papers
like [6].

Theorem 1.4. Let the inequality (1.11) hold with an index function ζ of the form ζ(t) =
θ(t) t, t > 0, such that θ is a convex index function. Then the condition (1.11) of local
uniform monotonicity is a conditional stability estimate of the form (1.4) with D(F ) =
X, Q = Br(x†), and the concave index function ϕ(t) = θ−1(t), t > 0. This implies that
the operator equation (1.1) is locally well-posed at the solution point x†. Evidently, these
assertions apply for the local strong monotonicity (1.10) yielding (1.4) with ϕ(t) = 1

C
t.

Proof. For x ∈ Br(x†) we can estimate from (1.11) as

ζ(‖x− x†‖) = θ(‖x− x†‖) ‖x− x†‖ ≤ 〈F (x)− F (x†), x− x†〉 ≤ ‖F (x)− F (x†)‖ ‖x− x†‖

and hence ‖x− x†‖ ≤ θ−1(‖F (x)− F (x†)‖), where θ−1 is a concave index function which
plays the role of ϕ in (1.4). The special case of local strong monotonicity (1.10) applies
here with θ(t) = C t.

Remark 1.5. In very specific cases, see Example 2.4 below, the function θ in Theorem 1.4
can also be concave such that θ−1 is a convex index function. Then, surprisingly, with
0 < κ < 1 the convergence rate (2.8) in Corollary 2.3 below can be overlinear as O(δ1/κ).

A special case of (1.1) taking into account Assumption 1.2 is characterized by forward
operators A ∈ L(X) instead of F , where L(X) denotes the Banach space of bounded
linear operators A : X → X and ‖A‖ indicates the corresponding operator norm. So we
consider in this case linear operator equations

Ax = y (1.12)

under the noise model (1.2), where A is monotone (accretive), i.e.

〈Ax, x〉 ≥ 0 for all x ∈ X. (1.13)
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Note that for all such operators A and all α > 0 the properties

(A+ αI)−1 ∈ L(X), ‖(A+ αI)−1A‖ ≤ 1, (1.14)

and
‖(A+ αI)−1‖ ≤ 1

α
(1.15)

are valid (cf. [18, Section 7.1.1]. Regularized solutions xδα of Lavrentiev regularization in
the linear case attain the explicit form

xδα = (A+ αI)−1(yδ + α x̄), (1.16)

because they solve the equation

Axδα + α(xδα − x̄) = yδ. (1.17)

Since the properties of a linear operator A ∈ L(X) do not depend on the solution
point x†, well-posedness and ill-posedness of the operator equation (1.12) in the sense of
Definition 1.1 are global properties. Thus, the equation is locally well-posed everywhere
or locally ill-posed everywhere as the following proposition outlines.

Proposition 1.6. The linear operator equation (1.12) is under (1.13) locally well-posed
everywhere if and only if A is continuously invertible, i.e. if A−1 ∈ L(X) and we have a
constant K > 0 such that

‖(A+ αI)−1‖ ≤ K <∞ for all α > 0, (1.18)

where K = ‖A−1‖ holds true. Alternatively, (1.13) is locally ill-posed everywhere if and
only if the nullspace of A is non-trivial, i.e. N (A) 6= {0}, or the range R(A) of A is not
closed. Then we have

‖(A+ αI)−1‖ =
1

α
for all α > 0. (1.19)

Proof. The well-posed case (1.18) is characterized by 0 /∈ σ(A), where σ(A) denotes the
spectrum of the operator A, whereas the ill-posed case is characterized by 0 ∈ σ(A).

For 0 /∈ σ(A) we have by definition A−1 ∈ L(X), i.e. with bijective operator A : X →
X, ‖A−1‖ < ∞ and ‖A−1(y − ỹ)‖ ≤ ‖A−1‖ ‖y − ỹ‖ for all y, ỹ ∈ X, which indicates the
local well-posedness everywhere. With A also A−1 is monotone and thus we can estimate
with K := ‖A−1‖ as

‖(A+ αI)−1‖ = ‖A−1(I + αA−1)−1‖ ≤ ‖A−1‖ ‖(I + αA−1)−1‖ ≤ K for all α > 0.

For 0 ∈ σ(A) we have by definition that at least one of the assertions N(A) 6= {0} and
R(A) is not closed is true, which can be summarized by the condition R(A) 6= X due to
the orthogonal sum

R(A)⊕N (A) = X (1.20)

(cf., e.g., [34, Theorem 1.1.10]). Both cases indicate local ill-posedness everywhere. This
is obvious for N (A) 6= {0}. In the case N (A) = {0}, but R(A) 6= R(A), we have that A−1
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exists and is an unbounded linear operator and hence for all r > 0 that there is sequence
{xn} ⊂ X with ‖xn‖ = r and lim

n→∞
‖Axn‖ = 0. Then, we have for x†+xn ∈ Br(x†) the limit

properties x† + xn 6→ x† but A(x† + xn)→ Ax† as n→∞ and thus local ill-posedness at
x†. Taking into account (1.15), to prove (1.19) it remains to show ‖(A+αI)−1‖ ≥ 1

α
for all

α > 0. This, however, is a consequence of the Neumann series theory, which says that we
have, for a bounded linear operator B : X → X with ‖B‖ < 1, that (I − B)−1 ∈ L(X).
By setting B := ( 1

α
A + I)−1, we must have ‖B‖ ≥ 1. Otherwise, we would get that

0 /∈ σ(A). Evidently, the conditions (1.18) and (1.19) are incompatible, but one of them
is always true for a bounded monotone operator A. Now the proof is complete.

Note that the ill-posed case in Proposition 1.6 with R(A) 6= R(A) can only occur
if X is an infinite dimensional space and the range R(A) is also infinite dimensional.
Moreover, it will be a by-product of the assertion of Proposition 3.4 (cf. (3.14)) below
that for arbitrary monotone operators A ∈ L(X) the condition

‖(A+ αI)−1x‖ = O(1) as α→ 0,

which is in the case (1.18) valid for all x ∈ X, cannot be improved to

‖(A+ αI)−1x‖ = o(1) as α→ 0

if x 6= 0.

It is evident that strong monotonicity

〈Ax, x〉 ≥ C ‖x‖2 for all x ∈ X, (1.21)

with some constant C > 0 implies ‖x‖ ≤ 1
C
‖Ax‖ for all x ∈ X and hence with A−1 ∈ L(X)

local well-posedness of (1.13) everywhere. Vice versa, A−1 ∈ L(X) does not, in general,
imply strong monotonicity, because we have 〈Ax, x〉 = 0 for all x ∈ X if the monotone
operator A is skew-symmetric, i.e. for the adjoint operator A∗ that A∗ = −A. The simplest

case of such behaviour is A =

(
0 −1
1 0

)
for X = R2.

Remark 1.7. For linear equations (1.12) with monotone A ∈ L(X), the case distinction
(cf. Proposition 1.6) between locally well-posed and ill-posed situations based on Defini-
tion 1.1 is different from the usual case distinction in the literature of linear regularization
theory (see, e.g., [33]), where a bounded pseudoinverse A† characterized by R(A) = R(A)
denotes well-posedness and an unbounded A† characterized by R(A) 6= R(A) denotes ill-
posedness. However, we will see below in Proposition 2.6 that the concept of Definition 1.1
is the more appropriate one for our setting in the context of Lavrentiev regularization.

The remaining part of the paper is organized as follows: In Section 2, we discuss the
impact of conditional stability on error estimates and convergence rates for the Lavrentiev
regularization. Furthermore, we mention in Proposition 2.6 some saturation result from
[35] for the linear case which motivates to distinguish well-posedness and ill-posedness
on the basis of Definition 1.1. The role of the regularization error in the noise-free case,
called bias, will be investigated in Section 3 for nonlinear and linear problems. For linear
operator equations general convergence rates, including logarithmic rates, are derived in
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Section 4 by means of the method of approximate source conditions. This allows us
to extend well-known convergence rates results for the Lavrentiev regularization, which
were based on general source conditions, to the case of non-selfadjoint linear monotone
forward operators for which general source conditions fail. Examples presenting the self-
adjoint multiplication operator as well as the non-selfadjoint fractional integral operator
and Cesàro operator illustrate the theoretical results of this section. Extensions to the
nonlinear case under specific conditions on the nonlinearity structure in Section 5 complete
the paper.

2 Error estimates and the case of conditional stability

Proposition 2.1. Let under the Assumption 1.2 the solution set to equation (1.1)

L := {x ∈ X : F (x) = y}

be nonempty. This set L is closed and convex, and consequently there is a uniquely
determined x̄-minimum norm solution x†mn ∈ L to (1.1) such that

‖x†mn − x̄‖ = min{‖x† − x̄‖ : x† ∈ L}.

The Lavrentiev-regularized solution xδα ∈ X is uniquely determined, which means that
(1.9) has a unique solution xδα for all x̄ ∈ X, yδ ∈ X and α > 0, which depends continu-
ously on yδ. Moreover, for any solution x† ∈ L, the following three basic inequalities are
valid:

‖xδα − x†‖2 ≤ 〈x† − x̄, x† − xδα〉+
δ

α
‖xδα − x†‖, (2.1)

‖xδα − x†‖ ≤ ‖x† − x̄‖+
δ

α
, (2.2)

‖F (xδα)− F (x†)‖ ≤ α‖x† − x̄‖+ δ. (2.3)

Proof. The closedness and convexity of L is due to the maximal monotonicity of F :
X → X (cf. [5, Prop. 23.39]). Then the x̄-minimum norm solution x†mn is the uniquely
determined best approximation of x̄ in L. The next assertion of the proposition is a
consequence of the Browder-Minty theorem which ensures that for all α > 0 the operator
F + αI : X → X is bijective and strongly monotone such that xδα is uniquely determined
and depends continuously on the data yδ. As outlined in [23], by testing (1.9) with the
two elements xδα − x† and F (xδα)− F (x†) we obtain

〈F (xδα)− F (x†), xδα − x†〉+ 〈y − yδ, xδα − x†〉
+α‖xδα − x†‖2 + α〈x† − x̄, xδα − x†〉 = 0 (2.4)

and

‖F (xδα)− F (x†)‖2 + 〈y − yδ, F (xδα)− F (x†)〉
+α〈F (xδα)− F (x†), xδα − x†〉+ α〈x† − x̄, F (xδα)− F (x†)〉 = 0 , (2.5)

respectively. By using the monotonicity (1.5) of F , the Cauchy-Schwarz inequality yields
(2.1) and moreover (2.2), as a consequence of (2.4), while (2.3) follows as a consequence
of (2.5). This completes the proof.
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Theorem 2.2. For a solution x† of equation (1.1), assume that a conditional stability
estimate of the form (1.4) with D(F ) = X, Q = Br(x†), and some concave index function
ϕ holds. Then the solution set L is a singleton, i.e. L = {x†}, and for an a priori param-
eter choice α = α(δ) = c δ, c > 0, the Lavrentiev regularized solutions xδα convergence to
x† with the rate

‖xδα(δ) − x†‖ = O(ϕ(δ)) as δ → 0 (2.6)

if the radius r in (1.4) is sufficiently large such that r > ‖x† − x̄‖+ 1
c
.

Proof. A conditional stability estimate of the form (1.4) with D(F ) = X, Q = Br(x†)
and some r > 0 ensures that L ∩ Br(x†) = {x†} is a singleton. As L is a convex set
(cf. Proposition 2.1), there cannot be a second element in L. Now we have from (2.2)
that ‖xδα(δ) − x†‖ ≤ ‖x† − x̄‖+ 1

c
and thus xδα(δ) ∈ Br(x†). Then (1.4) and (2.3) yield

‖xδα(δ) − x†‖ ≤ ϕ(‖F (xδα(δ))− F (x†)‖) ≤ ϕ(c δ ‖x† − x̄‖+ δ) ≤ 2 max(1, c ‖x† − x̄‖)ϕ(δ).

This proves the theorem.

As was mentioned above for the Tikhonov regularization, Theorem 2.2 shows that also
the Lavrentiev regularization ensures convergence and rates of the approximate solutions
under the conditional stability estimate (1.4) by embedding the regularized solutions in
the stability region, which is here Br(x†). From Theorems 1.4 and 2.2 we immediately
arrive at the following corollary.

Corollary 2.3. Choose the regularization parameter for the Lavrentiev regularization a
priori as α(δ) ∼ δ. If F is strongly monotone with sufficiently large r > 0 in (1.10), then
we have a linear (Lipschitz) convergence rate

‖xδα(δ) − x†‖ = O(δ) as δ → 0. (2.7)

If F is uniformly monotone with ζ(t) = tκ+1, κ > 1, and sufficiently large r > 0 in (1.11),
then we have a Hölder convergence rate

‖xδα(δ) − x†‖ = O(δ1/κ) as δ → 0. (2.8)

Example 2.4. (One dimensional example) For X := R with ‖x‖ := |x| we consider the
continuous monotone operator F : R→ R defined for exponents κ > 0 as

F (x) :=


−1 if −∞ < x < −1

−(−x)κ if −1 ≤ x ≤ 0
xκ if 0 < x ≤ 1
1 if 1 < x <∞

,

which however is not bijective and not coercive. Then we have obviously local ill-posedness
at x† if x† < −1 or x† > 1. On the other hand we have for all κ > 0 local well-posedness
at x† = 0, because the local uniform monotonicity condition (1.11) is satisfied there with
ζ(t) = tκ+1 such that Theorem 1.4 and Corollary 2.3 apply for x† = 0 with θ(t) = tκ for
κ ≥ 1. Indeed, a superlinear convergence rate (2.8) at x† = 0 occurs if 0 < κ < 1.
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Remark 2.5. As fixed in item (b) of Assumption 1.2 we restrict our considerations
throughout this paper in a conscious way to the case D(F ) = X, where the operator F is
monotone on the whole Hilbert space X. By contrast, Tautenhahn [40] and subsequently
other authors apply and analyze the Lavrentiev regularization (1.9) for Fréchet differen-
tiable nonlinear operators F which are only defined and monotone on a ball Br(x†) with
sufficiently large radius

r > ‖x† − x̄‖+ δ/α. (2.9)

Then regularized solutions xδα can only exist in a systematic way if for fixed δ > 0 the
regularization parameter α > 0 is not too small. Otherwise, even if δ and α are fixed
such that (2.9) is satisfied, to apply Lavrentiev regularization it must be shown that for
arbitrary data yδ with (1.2) solutions xδα to equation (1.9) always exist. At the moment
this is not evident for the authors, because we cannot retrace the arguments in the proof
sketch of Theorem 1.1 in [40].

For the special case of monotone linear operators A ∈ L(X) we have the two dif-
ferent situations formulated in Proposition 2.6. This indicates a significant gap in the
convergence rates and motivates the specific case distinction between well-posedness and
ill-posedness based on Definition 1.1 also for linear monotone operators A as mentioned
above in Remark 1.7.

Proposition 2.6. For the maximal best possible error

Ex†(δ) := sup
yδ∈X: ‖y−yδ‖≤δ

inf
α>0
‖xδα − x†‖

of Lavrentiev regularization to equation (1.12) with bounded monotone linear operator A
we have on the one hand

Ex†(δ) = O(δ) as δ → 0 (2.10)

for all x† ∈ X if (1.18) is valid, i.e. if A is continuously invertible. On the other hand,
we have that

Ex†(δ) = o(
√
δ) as δ → 0 implies x† − x̄ = 0 (2.11)

if (1.18) is violated for arbitrarily large K > 0, that is exactly the case if the null-space
N (A) of A is not trivial or the range R(A) of A is not closed.

Proof. For the special case of monotone linear operators A ∈ L(X) we find directly from
(1.16) the error estimate

‖xδα − x†‖ ≤ ‖(A+ αI)−1[(yδ − y) + α(x̄− x†)]‖ ≤ ‖(A+ αI)−1‖(δ + α ‖x† − x̄‖). (2.12)

This ensures the linear convergence rate (2.7) for the regularization parameter choice
α(δ) ∼ δ in the well-posed case (1.18) and hence (2.10). The implication (2.11), however,
recalls the recently published saturation result from Theorem 5.1 in [35] for the ill-posed
case. This proves a significant gap in the convergence rates between well-posed and ill-
posed situations.

It should be mentioned that the saturation result (2.11) for noisy data is a Lavrentiev
regularization analogue to the well-known saturation result [13, Proposition 5.3] for the
Tikhonov regularization.
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3 The distinguished role of bias

For the error analysis of Lavrentiev-regularized solutions it is helpful to consider in addi-
tion to xδα the regularized solutions xα := x0

α in the noise-free case (δ = 0), which satisfy
the operator equations

F (xα) + α(xα − x̄) = y (3.1)

and
Axα + α(xα − x̄) = y (3.2)

in the nonlinear and linear case, respectively. From Proposition 2.1 we have that also the
elements xα ∈ X are uniquely determined for all α > 0. It is obvious in regularization
theory that the total norm error of regularization can be estimated above by the triangle
inequality as

‖xδα − x†‖ ≤ ‖xα − x†‖+ ‖xα − xδα‖ (3.3)

such that an upper bound of the noise propagation error ‖xα− xδα‖ is independent of the
solution x†, but depends on the noise level δ and on the regularization parameter α > 0.
If the regularization procedure Rα is expressed by a continuous linear mapping yδ 7→ xδα,
then estimates of the form ‖xα−xδα‖ ≤ ‖Rα‖δ are standard, where limα→0 ‖Rα‖ =∞ takes
place for the ill-posed case. So we have for (3.2), in the case x̄ = 0, Rαy = (A + αI)−1y
with

‖xα − xδα‖ ≤
δ

α
(3.4)

for all δ ≥ 0 and α > 0 due to (1.15). For nonlinear ill-posed problems, however, the
regularization procedure is in general characterized by a nonlinear mapping yδ 7→ xδα.
Estimates of ‖xα − xδα‖ from above independent of x† are then restricted to classes of
forward operator F with specific nonlinearity properties, and we refer for example to the
discussion in [37] for estimates of the form ‖xα − xδα‖ ≤ cδ√

α
versus ‖xα − xδα‖ ≤ cδ

α
for

the nonlinear Tikhonov regularization (cf. (1.3)). Taking advantage of the monotonicity
of F the situation is simpler for the nonlinear Lavrentiev regularization as the following
lemma shows.

Lemma 3.1. For arbitrary monotone forward operators F and solutions x† ∈ X we have
the uniform propagation error estimate (3.4) for the Lavrentiev regularization with xδα and
xα from (1.9) and (3.1), respectively.

Proof. For xδα−xα = 0, (3.4) is trivially satisfied. As difference of the two equations (1.9)
and (3.1) we have the equation

F (xδα)− F (xα) + α(xδα − xα) = yδ − y

and thus by testing with xδα − xα 6= 0

〈F (xδα)− F (xα), xδα − xα〉+ α ‖xδα − xα‖2 = 〈yδ − y, xδα − xα〉 ≤ ‖xδα − xα‖ δ.

Due to the monotonicity property (1.5) this implies the inequality α ‖xδα − xα‖ ≤ δ and
hence (3.4) which completes the proof.
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Taking into account the bound (3.4) of the noise propagation error, for fixed forward
operator F and fixed solution x† the asymptotics of the total regularization error ‖xδα−x†‖
as δ → 0 of Lavrentiev regularization is essentially influenced by the asymptotics of the
bias (regularization error for noise-free data)

BF
x†(α) := ‖xα − x†‖

as α → 0. From [5, Section 23] we derive the following proposition for the bias of the
Lavrentiev regularization.

Proposition 3.2. Under Assumption 1.2 let x† solve the equation (1.1). Then we have

lim
α→0

BF
x†(α) = 0 (3.5)

if and only if x† = x†mn ∈ X, i.e. x† is the x̄-minimum norm solution to equation (1.1).

Proof. Under the stated assumptions we have from Proposition 2.1 that the nonempty
set L := {x ∈ X : F (x) = y} is closed and convex and hence the projection of x̄ onto this
set is an x̄-minimum norm solution to equation (1.1) and uniquely determined. Then we
have from Theorem 23.44 (i) in [5] that the uniquely determined element xα ∈ X existing
for all α > 0 and x̄ ∈ X, which satisfies the equation

F (xα)− y + α(xα − x̄) = 0,

tends in the norm of X to the projection of x̄ on L. If x† solves the equation (1.1), but
fails to be an x̄-minimum norm solution, then the projection of x̄ on L differs from x† and
(3.5) cannot hold. This proves the proposition.

The asymptotic behaviour of the bias BF
x†(α) → 0 as α → 0 expressing the intrinsic

smoothness of the solution x† with respect to the forward operator F (cf. in a more general
context the ideas in [38, Chapt. 3] and [22]) fully determines the specific error profile for
the solution x†. Therefore the bias was called ‘profile function’ in the former paper [24]
with focus on a general regularization scheme for linear ill-posed problems.

Remark 3.3. For the Lavrentiev regularization (1.17) to linear problems (1.12) with
monotone forward operator A ∈ L(X), Proposition 3.2 applies and based on formula
(1.20) we note that a solution x† to the equation (1.12) is an x̄-minimum solution x†mn if
and only if x† − x̄ is orthogonal to the null-space of the linear operator A, i.e.

x† − x̄ ⊥ N (A). (3.6)

The corresponding bias attains the form

BA
x†(α) = ‖xα − x†‖ = α ‖(A+ αI)−1(x† − x̄)‖ (3.7)

and we have lim
α→0

BA

x†mn
(α) = 0, but BA

x†(α) 6→ 0 as α → 0 when the solution x† to (1.12)
fails to satisfy (3.6).
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The following considerations are only of interest for the ill-posed case, because the
estimate (3.8) below is not helpful for the well-posed case, in which (2.12) directly yields
the linear rate (2.7) for all x† ∈ X. In the ill-posed case, however, the asymptotics of
BA
x†(α) for α → 0 determines, for example by equilibrating the two terms in the right

hand side of the inequality

‖xδα − x†‖ ≤ α ‖(A+ αI)−1(x† − x̄)‖+
δ

α
, (3.8)

the chances and limitations of possible convergence rates of the total regularization error.
This point was intensively analyzed in [40] for fractional power source conditions

x† − x̄ = Apw, w ∈ X, 0 < p ≤ 1, (3.9)

yielding for all 0 < p ≤ 1 the Hölder type convergence rates of the bias

BA
x†(α) = O(αp) as α→ 0. (3.10)

We note that for monotone operators A ∈ L(X) the fractional powers Ap, 0 < p ≤ 1, are
defined via the Balakrishnan calculus as

Ap :=
sin πp

π

∫ ∞
0

sp−1 (A+ sI)−1A ds. (3.11)

Because of the saturation result for the bias presented with the following theorem, we call
the source condition

x† − x̄ = Aw, w ∈ X, (3.12)

benchmark source condition.

Theorem 3.4. With the exception of the singular case x† − x̄ = 0 the benchmark source
condition (3.12) yields with

BA
x†(α) = O(α) as α→ 0 (3.13)

the best possible bias rate, because

BA
x†(α) = o(α) as α→ 0 implies x† − x̄ = 0. (3.14)

Proof. Under the benchmark source condition we have BA
x†(α) = α‖(A + αI)−1Aw‖ ≤

α‖w‖ = O(α) as α → 0 due to (1.14). To prove the implication (3.14) we distinguish
the cases A = 0 and A 6= 0. For A = 0 we have B0

x†(α) = ‖x† − x̄‖, and the implication
(3.14) is evidently true. In the case A 6= 0 we conclude as follows: For all x ∈ X it
holds ‖(A + αI)x‖ ≤ ‖Ax‖ + α‖x‖ ≤ (‖A‖ + α)‖x‖. Moreover, we have ‖x† − x̄‖ ≤
(‖A‖+α)‖(A+αI)−1(x†− x̄)‖ for arbitrary x†− x̄ ∈ X, which is for all α > 0 equivalent
to

‖x† − x̄‖
‖A‖+ α

≤ ‖(A+ αI)−1(x† − x̄)‖. (3.15)

On the other hand, from (3.15) we derive for A 6= 0 the inequality

lim inf
α→0

‖(A+ αI)−1(x† − x̄)‖ ≥ ‖x
† − x̄‖
‖A‖

,
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which for x† − x̄ 6= 0 and ‖x
†−x̄‖
‖A‖ > 0 violates the limit condition

lim
α→0

BA
x†(α)

α
= lim

α→0
‖(A+ αI)−1(x† − x̄)‖ = 0.

This completes the proof.

As already mentioned, the rates of the bias BA
x†(α) for α→ 0 also determine the total

error profile on the basis of the estimate (3.8). In the simplest case of an a priori choice
α = α(δ) ∼ δ

1
p+1 we directly derive for all 0 < p ≤ 1 Hölder convergence rates

‖xδα(δ) − x†‖ = O(δ
p
p+1 ) as δ → 0 (3.16)

from the source conditions (3.9). In the benchmark case p = 1 this gives

‖xδα(δ) − x†‖ = O(δ
1
2 ) as δ → 0, (3.17)

and Plato’s saturation theorem [35, Theorem 5.1] (cf. formula (2.11) of Proposition 2.6)
proves that for the ill-posed situation this is the maximal best possible error rate for
the Lavrentiev regularization in the linear case, since ‖xδ

α(δ,yδ)
− x†‖ = o(δ

1
2 ) implies for

arbitrary a posteriori choices α = α(δ, yδ) of the regularization parameter that x†− x̄ = 0.

Recently, it was shown in [36] that alternative source conditions

x† − x̄ = (A∗)pw, w ∈ X,
which replace the monotone non-selfadjoint operator A with the also monotone adjoint
A∗, can be less efficient with respect to rate results if 1/2 ≤ p ≤ 1. In the worst
case, the best possible bias rate under the adjoint source condition x† − x̄ = A∗w is
BA
x†(α) = O(

√
α). This worst case, for example, takes place with X := L2(0, 1) when

we consider the Riemann-Liouville fractional integral operator A := V studied below in
Example 4.7. This case is connected with a reduced total error rate ‖xδα−x†‖ = O(δ

1
3 ) for

p = 1 in comparison to (3.17). Consequently, the situation of Lavrentiev regularization
differs significantly from the situation of Tikhonov’s regularization method, where just
this adjoint source condition is advantageous (cf. [17, Corollary 3.1.3]).

In Section 4, by exploiting the above mentioned bias studies and by using the method
of approximate source conditions with benchmark condition (3.12), we will extend the
results to general, non-Hölder type, and low order convergence rates occurring in the
context of linear Lavrentiev regularization. We note that the focus is on non-selfadjoint
operators A, where spectral theory fails. Since the solution-independent bound (3.4) for
the noise propagation error is also valid for the Lavrentiev regularization (1.9) applied to
nonlinear equations (1.1), we will show in Section 5 that a bias-based error analysis can
also be successful for classes of monotone forward operators F under specific restrictions
of the nonlinearity structure.

4 General convergence rates for the linear case using
approximate source conditions

Based on the paper [31], for a given selfadjoint non-negative linear operator H ∈ L(X)
with non-closed range R(H) 6= R(H) in the Hilbert space X, it can be shown that for
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every element u ∈ X with u ⊥ N (H) there exist an index function ϕ and a source
element w ∈ X such that a general source condition u = ϕ(H)w holds, where ϕ(H) as
usual is defined by spectral theory such that any spectrum point λ > 0 of H corresponds
to the spectrum point ϕ(λ) of ϕ(H). For a selfadjoint monotone operator A ∈ L(X) with
non-closed range this proves with H := A under (3.6) a source condition

x† − x̄ = ϕ(A)w, w ∈ X. (4.1)

Using spectral properties of A this makes it possible to formulate convergence rates
BA
x†(α) = O(ψ(α)) as α→ 0 for the Lavrentiev regularization bias with some index func-

tion ψ which depends on the index function ϕ, as is similarly done for the Tikhonov regu-
larization bias with H := A∗A (cf., e.g., [2, 14, 31]). Some authors exploit this approach
for the Lavrentiev regularization, partially even in a nonlinear setting, see [4, 30, 32, 39],
but their restriction to selfadjoint monotone operators A ∈ L(X) is rather artificial, be-
cause in particular the case of non-selfadjoint monotone linear operators (see Examples 4.7
and 4.8 below) is of interest. For such operators A, however, spectral theory is not ap-
plicable and the Balakrishnan calculus (cf. (3.11)) only allows us to handle power type
source conditions (3.9) yielding Hölder convergence rates (3.10) for the bias BA

x†(α) as
α → 0 and consequently yielding only Hölder convergence rates ‖xδα − x†‖ = O(δ

p
p+1 ) as

δ → 0 for 0 < p ≤ 1 and noisy data when taking into account the estimates (3.3) and
(3.4).

As already mentioned in [23, Section 4.1], by avoiding expressions ϕ(A) with index
functions ϕ of non-power type and non-selfadjoint monotone linear operators A, the
method of approximate source conditions can help to verify low order convergence rates
of non-Hölder type for the Lavrentiev regularization without self-adjontness assumptions
of the forward operator in the linear case or of its Fréchet derivative at the solution in
the nonlinear case. We will outline details of such an approach for the linear case in this
section and for the nonlinear case in the subsequent section. The method of approximate
source conditions had been developed for linear ill-posed operator equations in Hilbert
spaces in [21] (see also [12]) and was extended to nonlinear equations and a Banach space
setting in [19] and [7] (see also [38]). Associated with the best possible rate (3.13) the
condition (3.12) acts in an optimal manner as benchmark source condition for obtaining
convergence rates if x†− x̄ satisfies (3.6), but violates (3.12). In such case the smoothness
of the element x†− x̄ with respect to the monotone operator A is too small for having the
bias rate (3.13) and one can use the distance function

d(R) = min{‖x† − x̄− Aw‖ : ‖w‖ ≤ R}, 0 ≤ R <∞, (4.2)

to measure for x† − x̄ the degree of violation with respect to the benchmark condition
expressed by the decay rate of d(R)→ 0 as R→∞.

Lemma 4.1. Assume that for the monotone operator A ∈ L(X) the element x† ∈ X fails
the benchmark source condition (3.12), i.e. x† − x̄ /∈ R(A), but satisfies the orthogonality
condition (3.6). Then the distance function d(R) from (4.2) is positive, strictly decreasing
and concave and hence continuous for all 0 ≤ R < ∞ and satisfies the limit condition
lim
R→∞

d(R) = 0.

Proof. The assertion of the lemma follows immediately from [7, Lemma 3.2] if the con-
dition x† − x̄ ∈ R(A) is valid. Since x† − x̄ ⊥ N (A) implies that x† − x̄ ∈ R(A∗)
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(see, e.g., [5, Fact 2.18 (iii)]), this condition however is a consequence of the identity
R(A) = R(A∗) for monotone operators A ∈ L(X) (see, e.g., [5, Proposition 20.17]).

We easily derive that for x† − x̄ from Lemma 4.1 and arbitrary R > 0 there exist
elements wR ∈ X with ‖wR‖ = R and rR ∈ X with ‖rR‖ = d(R) such that an approximate
source condition of the form

x† − x̄ = AwR + rR (4.3)

is valid. Then due to (1.14) we have

BA
x†(α) = α‖(A+ αI)−1(AwR + rR)‖

≤ α‖(A+ αI)−1A‖‖wR‖+ α‖(A+ αI)−1‖‖rR‖ ≤ Rα + d(R),

and equilibrating the last two terms by means of the strictly decreasing auxiliary function

Φ(R) :=
d(R)

R
, 0 < R <∞, lim

R→∞
d(R) = 0, (4.4)

as R := Φ−1(α) we have the assertion of the following proposition.

Proposition 4.2. Under the assumptions of Lemma 4.1 we have the bias estimate

BA
x†(α) ≤ 2d(Φ−1(α)), α > 0, (4.5)

for the Lavrentiev regularization in the linear case, where d(Φ−1(α)) is an index function
with lim

α→0

α
d(Φ−1(α))

= 0. Moreover, for the a priori parameter choice α(δ) := Ψ−1(δ) with

Ψ(α) := α d(Φ−1(α)) we have from (3.3) and (3.4) the estimate

‖xδα(δ) − x†‖ ≤ 3d(Φ−1(Ψ−1(δ))), δ > 0,

for the total regularization error and hence the convergence rate

‖xδα(δ) − x†‖ = O(d(Φ−1(Ψ−1(δ)))) as δ → 0.

We note that the assertion of Proposition 4.2 remains valid if d(R) beginning with
(4.4) is replaced with a concave majorant of the distance function.

Special case 4.3. (Distance functions with power-type decay rate) As a consequence of
the range identity

R(Ap) = R((AA∗)p/2),

proven for all 0 < p ≤ 1 in [36, Lemma 1], and on the basis of the assertion in [12,
Theorem 3.2] we have that for all 0 < p < 1 the fractional power source conditions (3.9)
lead to distance functions (cf. (4.2)) with a power-type decay as

d(R) ≤ C R
p
p−1 , C > 0. (4.6)

The smaller p > 0 the slower is the decay rate of d(R)→ 0 as R →∞ and the higher is
for x† − x̄ the degree of violation with respect to the benchmark source condition (3.12).
Applying Proposition 4.2 this yields with Φ(R) ∼ R

1
p−1 , Ψ(α) ∼ αp+1 and Ψ−1(δ) ∼ δ

1
p+1

the Lavrentiev regularization error convergence rates

BA
x†(α) = O(αp) and ‖xδα(δ) − x†‖ = O(δ

p
p+1 ) if α(δ) ∼ δ

1
p+1 .
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Special case 4.4. (Distance functions with logarithmic decay rate) If for x† − x̄ the
degree of violation with respect to the benchmark source condition (3.12) is so extreme
that the power type decay (4.6) cannot hold for arbitrarily small p > 0, then a very slow
logarithmic decay rate

d(R) ≤ K

(logR)q
, K, q > 0, (4.7)

is still possible for sufficiently large R ≥ R > 0. Then the derived formula

BA
x†(α) ≤ Rα + d(R) (4.8)

applies by setting R := α−κ, 0 < κ < 1, and provides us with the estimate

BA
x†(α) ≤ α1−κ +

K

[log(α−κ)]q
= α1−κ +

K

κq
[
log
(

1
α

)]q
and owing to α1−κ = O

([
log
(

1
α

)]q) as α→ 0 we have

BA
x†(α) = O

([
log

(
1

α

)]q)
as α→ 0. (4.9)

This logarithmic convergence rate for the bias also leads to a logarithmic rate for the noisy
data case of linear Lavrentiev regularization. Namely, we derive from (4.9) in combination
with (3.3) and (3.4) the convergence rate

‖xδα(δ) − x†‖ = O

([
log

(
1

δ

)]q)
as δ → 0 (4.10)

when the regularization parameter is chosen a priori as α(δ) ∼ δζ with exponent 0 <
ζ < 1. The very low logarithmic convergence rates of the form (4.10) are well-known in
regularization theory (see, e.g, [7, 20, 27, 41]) and inevitable if the solution is not smooth
enough with respect to the forward operator.

Remark 4.5. Under the conditions x†−x̄ /∈ R(A) and x†−x̄ ⊥ N (A) the properties of the
distance function d(R) from (4.2) are such that the inequality (4.8) is valid for sufficiently
large R ≥ R > 0. Then the function Φ(R) defined by formula (4.4) is strictly decreasing
for those R and tends to zero as R → ∞. Moreover, the mapping R 7→ α := Φ(R) is
injective (strictly decreasing) and well-defined for R ≤ R < ∞ with α → 0 as R → ∞.
Then it is clear that the function d(Φ−1(α)) is well-defined and strictly increasing for
sufficiently small α > 0 with the limit condition lim

α→0
d(Φ−1(α)) = 0. This, however yields

the bias convergence
lim
α→0

BA
x†(α) = 0

under the above stated conditions on x† − x̄.

Example 4.6. (Multiplication operator) We start this list of examples with the simple
multiplication operator A := M in the real Hilbert space X := L2(0, 1) generated by a
real multiplier function m ∈ L∞(0, 1), which is defined as

[Mx](t) := m(t)x(t), 0 ≤ t ≤ 1, (4.11)
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where we restrict to continuous and strictly increasing functions m with lim
t→0

m(t) = 0

and lim
t→1

m(t) = 1. Then the linear operator M is bounded, injective, non-compact with
continuous spectrum σ(M) = [0, 1], selfadjoint and monotone, i.e. the associated linear
operator equation (1.12) is ill-posed. The smoothness of the solution x† with respect toM
and x̄ and the decay rate of the distance function d(R) if the benchmark source condition is
violated, i.e. if (x†− x̄)/m /∈ L2(0, 1), will be determined by the decay rate of m(t)→ 0 as
t→ 0. For example, in the situation x†−x̄ ≡ 1 we have a logarithmic decay of the distance
function d(R) ≤ K/ log(R) for sufficiently large R and hence logarithmic convergence rates
(4.10) with q = 1 for m(t) = exp(1− 1/

√
t) (see for details [14, Example 3]).

Example 4.7. (Fractional integral operator) As second point in this series we present in
the real Hilbert space X := L2(0, 1) the Riemann-Liouville fractional integral operator
(cf. [15]) A := V , also called Volterra operator (cf. [18]), defined by

[V x](s) :=

s∫
0

x(t)dt, 0 ≤ s ≤ 1. (4.12)

This is an example which helps to distinguish different situations of solution smoothness
with respect to the forward operator. The linear operator V is bounded, injective, com-
pact, non-selfadjoint and monotone with 0 ∈ σ(V ), i.e. the associated linear operator
equation (1.12) is ill-posed. On the hand, we have situations, where x† allows for Hölder
source conditions (3.9) implying Hölder rates (3.10) for the bias of the Lavrentiev reg-
ularization. On the other hand, there exist elements x† with even less smoothness such
that (3.9) fails for arbitrarily small exponents p > 0. Then only lower rates, for example
logarithmic rates (4.9), remain for the bias taking into account (cf. Remark 3.3) that we
have for all x† ∈ X with x† − x̄ ⊥ N (A) the limit condition BA

x†(α) → 0 as α → 0 and
hence a (perhaps very low) well-defined bias rate for that specific x†.

From [15, Theorem 2.1] (see also [16]) we take the explicit structure of the ranges of
the fractional powers of the integral operator (4.12) in terms of fractional order Sobolev-
Hilbert spaces Hp(0, 1) as

R(V p) =


Hp[0, 1] for 0 < p < 1

2

{u ∈ H 1
2 [0, 1] :

1∫
0

|u(t)|2
t
dt <∞} for p = 1

2

{u ∈ Hp[0, 1] : u(0) = 0} for 1
2
< p ≤ 1

(4.13)

Moreover, due to the injectivity of the Volterra operator V in L2(0, 1), the orthogonality
condition x† − x̄ ⊥ N (A) and hence the bias limit BV

x†(α) → 0 as α → 0 are trivially
satisfied. Now, for all 0 < p < 1/2, Hölder source conditions (3.9) hold true for A := V if
and only if x† − x̄ ∈ Hp(0, 1). For 1/2 ≤ p ≤ 1 additional conditions on x† − x̄ have to
be imposed. Then, with that non-selfadjoint monotone forward operator V , a necessary
condition for the situation that a logarithmic bias rate (4.9) is valid, but (3.10) fails for
arbitrarily small p > 0, is

x†, x̄ ∈ L2(0, 1), but x† − x̄ 6∈ Hp(0, 1) for arbitrarily small p > 0.
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Example 4.8. (Cesàro operator) As third example we consider in X := L2(0, 1) the
continuous version of the Cesàro operator A := C (cf. [8, p. 133]) defined as

[Cx](s) :=
1

s

s∫
0

x(t)dt, 0 ≤ s ≤ 1, (4.14)

which is, in contrast to (4.12), an injective, monotone, but non-compact linear operator.
Again we have 0 ∈ σ(C) and hence ill-posedness, but the conditions x† − x̄ ∈ R(Cp) for
exponents 0 < p ≤ 1 are not so easy to check like in Example 4.7 in order to derive Hölder
convergence rates (3.16). This is a good example for proving the capability of distance
functions for that purpose. Evidently, x†− x̄ ≡ 1 satisfies the benchmark source condition
(3.12) with source element w ≡ 1, but the Heaviside-type function

x†(t)− x̄(t) =

{
0 if 0 ≤ t < 1/2
1 if 1/2 ≤ t ≤ 1

(4.15)

fails to satisfy (3.12) for arbitrary w ∈ L2(0, 1). However, as Proposition 4.9 will show,
we have d(R) ≤ K

R
for some constant K > 0 and sufficiently large R > 0, which yields

the inequality (4.6) with p = 1/2 and hence the Hölder rate O(δ1/3) for the Lavrentiev
regularization.

Proposition 4.9. For x†−x̄ from (4.15) we have for some constant K > 0 and sufficiently
large R > 0 the estimate

d(R) = min{‖x† − x̄− Cw‖ : ‖w‖ ≤ R} ≤ K

R
.

Proof. For the function wR(t) =


0 if 0 ≤ t < 1/2
R2 if 1/2 ≤ t ≤ 1/2 + 1/(2R2)
1 if 1/2 + 1/(2R2) < t ≤ 1

we have

‖wR‖ ≤ R and d2(R) ≤
1∫

0

1

s

s∫
0

wR(t)dt− (x†(s)− x̄(s))

2

ds .

Furthermore, because wR and x† − x̄ are identically zero on [0, 1/2) we can estimate as

d2(R) ≤
1∫

0

1

s2

 s∫
0

wR(t)dt− s(x†(s)− x̄(s))

2

ds

≤ 4

1∫
1/2

 s∫
1/2

wR(t)dt− s(x†(s)− x̄(s))


2

ds

= 4

 1/(2R2)∫
0

(
s(R2 − 1)− 1

2

)2

ds+
1

4R4

(
1

2
− 1

2R2

)
= 4

[
(R2 − 1)2

24R6
− R2 − 1

8R4
+

1

8R2
+

1

8R4
− 1

8R6

]
≤ K2 1

R2

for sufficiently large R > 0. This completes the proof.

18



5 Extensions to the nonlinear case under specific con-
ditions on the nonlinearity structure

Now we return to the Lavrentiev regularization for nonlinear operator equations (1.1) with
regularized solutions xδα satisfying for noisy data yδ the singularly perturbed equation (1.9)
and with regularized solutions xα satisfying (3.1) in the noise-free case. We are going to
handle the corresponding nonlinear bias BF

x†(α) := ‖xα−x†‖ in the noise-free case, where
we try to incorporate experiences from the studies of the linear case in Section 4. By
Lemma 3.1 the properties of the bias BF

x†(α) allow us immediately to derive the essential
behaviour of the total error ‖xδα−x†‖ for the Lavrentiev regularization also in the nonlinear
case.

Throughout this section let us suppose that the following assumption holds in addition
to Assumption 1.2.

Assumption 5.1.

(i) Let there exist a ball Br(x†) ⊂ X around a solution x† to equation (1.1) with suffi-
ciently large radius

r > ‖x† − x̄‖ (5.1)

such that F is Fréchet differentiable in the ball with Fréchet derivatives F ′(x) ∈ L(X)
and the mapping x 7→ F ′(x) is continuous at every x ∈ Br(x†).

(ii) Let there exist a constant k0 > 0 and a function g such that, for every x̃, x ∈ Br(x†)
and v ∈ X, there is g(x̃, x, v) ∈ X satisfying the nonlinearity condition

(F ′(x̃)− F ′(x)) v = F ′(x) g(x̃, x, v), ‖g(x̃, x, v)‖ ≤ k0 ‖x̃− x‖ ‖v‖. (5.2)

Item (ii) of Assumption 5.1 occurs in numerous papers on regularization theory in a
more or less modified form, but we follow the ideas of Mahale and Nair presented in [30]
which have filled gaps of the previous literature (see for details [30, p. 195])). Furthermore,
we mention at this point that example classes of nonlinear forward operators F satisfying
the specific nonlinearity condition (5.2) were presented, for example, in [37] and [3, 9].

Since 2000, in a series of papers by Tautenhahn, Nair, Mahale, George and others,
partially written with coauthors, order optimal convergence rates for the Lavrentiev reg-
ularization have been proven for linear as well as for nonlinear equations with monotone
forward operators under a priori and a posteriori choices of the regularization parameter
α > 0. The focus was always on Hölder rates under Hölder-type source conditions. The
papers of these authors on general source conditions exploiting terms of the form ϕ(A) or
ϕ(F ′(x†)) with index functions ϕ of non-power type suffer from the fact that such terms
are only well-defined for selfadjoint monotone operators A and F ′(x†). This drawback is
now compensated by our approximate source condition approach using distance functions.

Now we are ready to formulate the proposition of this section, which assert that under
the assumed nonlinearity conditions and for a sufficiently good reference element x̄ the
bias BF

x†(α) in the nonlinear case is proportional to and hence fully determined by the bias
function BA

x†(α), where A is the monotone operator F ′(x†) ∈ L(X). Thus, convergence as
well as Hölder or logarithmic rates for the noise-free bias BA

x†(α) as α → 0 carry over to
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the same rates for the bias BF
x†(α) with corresponding consequences for the convergence

and for the rates of the total regularization errors ‖xδα − x†‖ as δ → 0.

Theorem 5.2. Under Assumptions 1.2 and 5.1 with the additional condition
k0 ‖x†− x̄‖ < 2 let the operator A := F ′(x†) denote the Fréchet derivative of the monotone
nonlinear operator F at the solution x† to equation (1.1). Then we have, for all α > 0
and associated elements xα solving (3.1), the inequality

BF
x†(α) ≤ ‖x† − x̄‖ (5.3)

and thus from (5.1) the condition xα ∈ Br(x†). Furthermore, we have the estimate

BF
x†(α) ≤ C BA

x†(α), with C =
2 + 2k0 ‖x† − x̄‖
2− k0 ‖x† − x̄‖

. (5.4)

Hence, we have for all α > 0 and δ ≥ 0 the estimate

‖xδα − x†‖ ≤ C BA
x†(α) +

δ

α
(5.5)

for the total regularization error.

Proof. First we quote as result from [40, Proposition 3.1] that the inequality (5.3) and by
(5.1) also xα ∈ Br(x†) are valid for all α > 0. It is well-known that the Fréchet derivatives
A := F ′(x†) and Aα := F ′(xα) are monotone bounded linear operators mapping in X if
the nonlinear operator F is monotone. Now, amending some ideas along the lines of the
proofs of [30, Proposition 2.2] and [40, Proposition 3.3] we derive from (3.1) that

xα − x† = x̄− x† + (Aα + αI)−1[y − F (xα) + Aα(xα − x̄)] = uα + vα + wα,

with the three terms

uα := α(A+ αI)−1(x̄− x†), where ‖uα‖ = BA
x†(α),

vα := (Aα + αI)−1(A− Aα)uα ,

and
wα := (Aα + αI)−1[F (x†)− F (xα) + Aα(xα − x†)] .

The handling of the term vα is based on the nonlinearity condition (5.2), where we have
with (A− Aα)uα = Aα g(x†, xα, uα) the estimate

‖vα‖ = ‖(Aα + αI)−1Aα g(x†, xα, uα‖ ≤ k0 ‖xα − x†‖‖uα‖ .

Owing to the continuous Fréchet differentiability of F in the ball Br(x†) the fundamental
theorem of calculus (mean value theorem in integral form) applies to estimate from above
the norm ‖wα‖ of the third term. Precisely, we have

F (x†)− F (xα)− Aα(x† − xα) =

1∫
0

[F ′(xα + t(x† − xα))− Aα](x† − xα) dt
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= Aα

1∫
0

g(xα + t(x† − xα), xα, x
† − xα) dt

and
‖g(xα + t(x† − xα), xα, x

† − xα)‖ ≤ k0 ‖xα − x†‖2 t .

Then we have due to the second inequality in (1.14)

‖wα‖ = ‖(Aα + αI)−1Aα

1∫
0

g(xα + t(x† − xα), xα, x
† − xα) dt‖ ≤ k0

2
‖xα − x†‖2 .

Summarizing the results for uα, vα and wα we obtain

‖xα − x†‖ ≤
(
1 + k0 ‖xα − x†‖

)
‖uα‖+

k0

2
‖xα − x†‖2

and taking into account (5.3)

‖xα − x†‖ ≤
(
1 + k0 ‖x† − x̄‖

)
‖uα‖+

k0

2
‖x† − x̄‖ ‖xα − x†‖ .

This yields (5.4) as

BF
x†(α) = ‖xα − x†‖ ≤

(
2 + 2k0 ‖x† − x̄‖
2− k0 ‖x† − x̄‖

)
‖uα‖ =

(
2 + 2k0 ‖x† − x̄‖
2− k0 ‖x† − x̄‖

)
BA
x†(α).

The estimate (5.5) is a consequence of Lemma 3.1 (cf. formula (3.4)) in combination with
the triangle inequality (3.3). This completes the proof.

The following corollary from Theorem 5.2 is a counterpart to Proposition 3.2 concern-
ing the convergence of the bias as the regularization parameter α tends to zero.

Corollary 5.3. Under the assumptions of Theorem 5.2 we have

lim
α→0

BF
x†(α) = 0

if
x† − x̄ ⊥ N (F ′(x†)).

Remark 5.4. The very specific nonlinearity condition (5.2) can be avoided if the bench-
mark source condition in the nonlinear case

x† − x̄ = F ′(x†)w, w ∈ X,

applies together with the simpler Lipschitz continuity

‖F ′(x)− F ′(x†)‖ ≤ L ‖x− x†‖ for all x ∈ Br(x†)

as nonlinearity condition for some L > 0. Then we have from [40, Theorem 3.2] the
nonlinear bias estimate

BF
x†(α) ≤

(
‖w‖+

L

2
‖w‖2

)
α,
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which yields together with (3.3) and (3.4) the convergence rate

‖xδα(δ) − x†‖ = O(
√
δ) as δ → 0

for the total regularization error if the regularization parameter is chosen as α(δ) ∼
√
δ.

A convergence rate result similar to that of Proposition 5.2 for the Lavrentiev regu-
larization of nonlinear operator equations was also presented as Theorem 8 in [23]. In
contrast to item (ii) of our Assumption 5.1 a range invariance occurs there as structural
condition of nonlinearity for the forward operator F , which provides the opportunity to
use a monotone operator A ∈ L(X) different from the Fréchet derivative F ′(x†). However,
the cross connections between the linear bias BA

x†(α) and its nonlinear counterpart BF
x†(α)

are not so clear in [23] as they are in Proposition 5.2.
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