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Abstract. We investigate the asymptotic convergence of the trajectories generated by the
second order dynamical system ẍ(t)+γẋ(t)+∇φ(x(t))+β(t)∇ψ(x(t)) = 0, where φ, ψ : H → R
are convex and smooth functions defined on a real Hilbert space H, γ > 0 and β is a function
of time which controls the penalty term. We show weak convergence of the trajectories to a
minimizer of the function φ over the (nonempty) set of minima of ψ as well as convergence
for the objective function values along the trajectories, provided a condition expressed via the
Fenchel conjugate of ψ is fulfilled. When the function φ is assumed to be strongly convex, we can
even show strong convergence of the trajectories. The results can be seen as the second order
counterparts of the ones given by Attouch and Czarnecki (Journal of Differential Equations
248(6), 1315–1344, 2010) for first order dynamical systems associated to constrained variational
inequalities. At the same time we give a positive answer to an open problem posed in [11] by
the same authors.
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1 Introduction

Consider the optimization problem
inf

x∈argminψ
φ(x), (1)

where φ, ψ : H → R ∪ {+∞} are proper, convex and lower semicontinuous functions defined
on a real Hilbert space H endowed with inner product 〈·, ·〉 and associated norm ‖ · ‖=

√
〈·, ·〉.

If ∂φ + Nargminψ is maximally monotone, then determining an optimal solution x ∈ H of (1)
means nothing else than solving the subdifferential inclusion problem

find x ∈ H such that 0 ∈ ∂φ(x) +Nargminψ(x) (2)

or, equivalently, solving the variational inequality

find x ∈ H and p ∈ ∂φ(x) such that 〈p, y − x〉 ≥ 0 ∀y ∈ argminψ. (3)

Here,
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• ∂φ : H ⇒ H is the convex subdifferential of φ: ∂φ(x) = {p ∈ H : φ(y) ≥ φ(x) + 〈p, y −
x〉 ∀y ∈ H} for φ(x) ∈ R and ∂φ(x) = ∅ for φ(x) 6∈ R;

• argminψ denotes the set of minimizers of ψ;

• Nargminψ is the normal cone to the set argminψ: Nargminψ(x) = {p ∈ H : 〈p, y − x〉 ≤
0 ∀y ∈ argminψ} for x ∈ argminψ and Nargminψ(x) = ∅ for x 6∈ argminψ.

Attouch and Czarnecki investigated in [10] the asymptotic behavior of the trajectories of the
nonautonomous first order dynamical system

0 ∈ ẋ(t) + ∂φ(x(t)) + β(t)∂ψ(x(t)) (4)

to a solution of (2), where β : [0,+∞) → (0,+∞) is a function of time assumed to tend to
+∞ as t→ +∞. Several ergodic and nonergodic convergence results have been reported in [10]
under the key assumption

∀p ∈ ranNargminψ

∫ +∞

0
β(t)

[
ψ∗
(

p

β(t)

)
− σargminψ

(
p

β(t)

)]
dt < +∞, (5)

where

• ψ∗ : H → R∪{+∞} is the Fenchel conjugate of ψ: ψ∗(p) = supx∈H{〈p, x〉−ψ(x)} ∀p ∈ H;

• σargminψ : H → R ∪ {+∞} is the support function of the set argminψ: σargminψ(p) =
supx∈argminψ〈p, x〉 for all p ∈ H;

• ranNargminψ is the range of the normal cone Nargminψ: that is p ∈ ranNargminψ if and
only if there exists x ∈ argminψ such that p ∈ Nargminψ(x).

We mention that Nargminψ = ∂δargminψ, where δargminψ : H → R∪{+∞} is the indicator function
of argminψ, which takes the value 0 on the set argminψ and +∞, otherwise. Moreover, for
x ∈ argminψ one has p ∈ Nargminψ(x) if and only if σargminψ(p) = 〈p, x〉.

Let us present a situation where the above condition (5) is fulfilled. According to [10], if we
take ψ(x) = 1

2 infy∈C ‖x−y‖2, for a nonempty, convex and closed set C ⊆ H, then the condition
(5) is fulfilled if and only if ∫ +∞

0

1

β(t)
dt < +∞,

which is trivially satisfied for β(t) = (1 + t)α with α > 1.
The paper of Attouch and Czarnecki [10] was the starting point of a considerable number of

research articles devoted to this subject, including those addressing generalizations to variational
inequalities involving maximal monotone operators (see [8,10,12,13,15,17,20–22,26,27]). In the
literature enumerated above, the monotone inclusions problems have been approached either
through continuous dynamical systems or through their discrete counterparts formulated as
splitting algorithms, both of penalty type. We speak in both cases about methods of penalty
type, as the operator describing the underlying set of the addressed variational inequality is
evaluated as a penalty functional. We refer also to the above-listed references for more general
formulations of the key assumption (5) and for further examples for which these conditions are
satisfied.

In this paper we are concerned with the asymptotic behavior of the second order dynamical
system

ẍ(t) + γẋ(t) +∇φ(x(t)) + β(t)∇ψ(x(t)) = 0, (6)

when the functions φ, ψ : H → R are supposed to be convex and (Fréchet) differentiable with a
Lipschitz continuous gradient.
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We show weak convergence of the trajectories to an optimal solution to (1) as well as con-
vergence for the objective function values along the trajectories to the optimal objective value,
provided (5) is fulfilled and the function β satisfies some mild conditions. In case the function
φ is strongly convex, the trajectories converge even strongly to the unique optimal solution of
(1).

Let us also mention that the solving of (1) has been approached by means of second order
dynamical system also in [15, Section 3] by penalizing the gradient of the objective function with
a vanishing coefficient. Strong asymptotic convergence of the trajectories to an optimal solution
has been proved under the assumption that this gradient is strongly monotone (see also [9]).

During the reviewing process of the initial version of our paper we became aware of a new
preprint by Attouch and Czarnecki [11], where a second order dynamical system connected to
(1) is investigated, by penalizing the objective function of the latter through a nonincreasing
function. On page 11 in [11] the authors leave as an open problem the approach of (1) via
the second order dynamical system (6), which this time penalizes the function describing the
constraint set. The results presented in this paper provide a positive answer to this question.

2 Preliminaries

In this section we present some preliminary results and tools that will be useful throughout the
paper.

The following results can be interpreted as continuous counterparts of the convergence state-
ments for quasi-Fejér monotone sequences. For their proofs we refer the reader to [1, Lemma
5.1] and [3, Lemma 2.2 and 2.3], respectively.

Lemma 1 Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded from
below and that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

Ḟ (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.

Lemma 2 Suppose that F : [0,+∞)→ R is locally absolutely continuous such that F is bounded
from below, Ḟ is locally absolutely continuous and there exist γ > 0 and G ∈ L1([0,+∞)) fulfilling
for almost every t ∈ [0,+∞)

F̈ (t) + γḞ (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.

We are interested in the asymptotic analysis of the following second order nonautonomous
dynamical system: {

ẍ(t) + γẋ(t) +∇φ(x(t)) + β(t)∇ψ(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(7)

where H is a real Hilbert space, γ > 0, u0, v0 ∈ H, β : [0,+∞)→ (0,+∞) is a locally integrable
function and the following conditions hold:

(Hψ) ψ : H → [0,+∞) is convex, (Fréchet) differentiable with Lipschitz continuous gradient

and argminψ = ψ−1(0) 6= ∅;
(Hφ) φ : H → R is convex, (Fréchet) differentiable with Lipschitz continuous gradient,

bounded from below and S := {z ∈ argminψ : φ(z) ≤ φ(x) ∀x ∈ argminψ} 6= ∅.

3



We call x : [0,+∞) → H (strong global) solution of (7) if x and ẋ are locally absolutely
continuous (in other words, absolutely continuous on each interval [0, b] for 0 < b < +∞),
x(0) = u0, ẋ(0) = v0 and ẍ(t)+γẋ(t)+∇φ(x(t))+β(t)∇ψ(x(t)) = 0 for almost every t ∈ [0,+∞).

Due to the Lipschitz continuity of ∇ψ and ∇φ assumed in (Hψ) and (Hφ), respectively, the
existence and uniqueness of (strong global) solutions of (7) is a consequence of the Cauchy-
Lipschitz-Picard Theorem (see for example [5, 15,18,24]).

In the following sections we provide sufficient conditions which guarantee both ergodic and
nonergodic convergence of the trajectory of (7) to an optimal solution of (1).

Remark 3 (a) In case ψ = 0 the dynamical system (7) becomes the second order gradient
system associated to the the heavy ball method (see also [2, 7]):{

ẍ(t) + γẋ(t) +∇φ(x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(8)

In this case argminψ = H and (1) is nothing else than the minimization of the function φ
over H.

(b) It is well known that time discretization of second order dynamical systems leads to it-
erative algorithms involving inertial terms, which basically means that the new iterate
is defined by making use of the previous two iterates (see for example [3, 4]). We refer
the reader to [23] where an inertial algorithm of penalty type has been proposed and
investigated from the point of view of its convergence properties.

3 Convergence of the trajectories and of the objective function
values

In this section we show that we have weak convergence for the trajectory generated by the
dynamical system (7) to an optimal solution of (1) as well as convergence for the objective
function values along the trajectory. To this end, we make use of the following supplementary
assumptions:

(Hβ) β : [0,+∞)→ (0,+∞) is a C1-function and it satisfies the growth condition 0 ≤ β̇ ≤ kβ,
where 0 ≤ k < γ;

(H) ∀p ∈ ranNargminψ

∫ +∞
0 β(t)

[
ψ∗
(

p
β(t)

)
− σargminψ

(
p
β(t)

)]
dt < +∞.

Remark 4 (a) Under (Hψ), due to ψ ≤ δargminψ, we have

ψ∗ ≥ δ∗argminψ = σargminψ.

(b) When ψ = 0 (see Remark 3(a)), it holds Nargminψ(x) = {0} for every x ∈ argminψ = H,
ψ∗ = σargminψ = δ{0} and (H) trivially holds.

We start with the following technical result.

Lemma 5 Assume that (Hψ), (Hφ), (Hβ) and (H) hold and let x : [0,+∞) → H be the
trajectory generated by the dynamical system (7). Then for every z ∈ S the following statements
are true:

(i) x and ẋ are bounded;
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(ii)
∫ +∞
0 β(t)ψ(x(t))dt < +∞;

(iii) ∃ limt→+∞
∫ t
0 〈∇φ(z), x(s)− z〉ds ∈ R;

(iv) ∃ limt→+∞
∫ t
0

(
φ(x(s))− φ(z) +

(
1− k

γ

)
β(s)ψ(x(s))

)
ds ∈ R;

(v) ẋ ∈ L2([0,+∞);H);

(vi) ∃ limt→+∞ ‖x(t)− z‖ ∈ R.

Proof. Take an arbitrary z ∈ S and define

hz(t) =
1

2
‖x(t)− z‖2

and the energy functional

E(t) =
1

2
‖ẋ(t)‖2 + φ(x(t)) + β(t)ψ(x(t)). (9)

It immediately follows that for almost every t ∈ [0,+∞)

ḣz(t) = 〈ẋ(t), x(t)− z〉, (10)

ḧz(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t)− z〉, (11)

hence, due to (7)

ḧz(t) + γḣz(t) = ‖ẋ(t)‖2 + 〈−∇φ(x(t))− β(t)∇ψ(x(t)), x(t)− z〉. (12)

Further, from (7) we obtain for almost every t ∈ [0,+∞)

Ė(t) = 〈ẍ(t), ẋ(t)〉+ 〈ẋ(t),∇φ(x(t))〉+ β(t)〈ẋ(t),∇ψ(x(t))〉+ β̇(t)ψ(x(t))

= 〈ẋ(t), ẍ(t) +∇φ(x(t)) + β(t)∇ψ(x(t))〉+ β̇(t)ψ(x(t))

= −γ‖ẋ(t)‖2 + β̇(t)ψ(x(t)). (13)

By combining (12) and (13) we derive for almost every t ∈ [0,+∞)

ḧz(t) + γḣz(t) +
1

γ
Ė(t)− β̇(t)

γ
ψ(x(t)) = 〈−∇φ(x(t))− β(t)∇ψ(x(t)), x(t)− z〉. (14)

The convexity of the functions φ and ψ, the fact that z ∈ argminψ (hence ψ(z) = 0) and the
non-negativity of β and ψ yield

〈−∇φ(x(t))− β(t)∇ψ(x(t)), x(t)− z〉 ≤ φ(z)− φ(x(t))− β(t)ψ(x(t)).

This inequality in combination with (14) implies

ḧz(t) + γḣz(t) +
1

γ
Ė(t)− β̇(t)

γ
ψ(x(t)) ≤ φ(z)− φ(x(t))− β(t)ψ(x(t)) (15)

for almost every t ∈ [0,+∞). By using now the growth condition for β we get

ḧz(t) + γḣz(t) +
1

γ
Ė(t) + φ(x(t))− φ(z) + β̃(t)ψ(x(t)) ≤ 0 for almost every t ∈ [0,+∞), (16)
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where

β̃(t) :=

(
1− k

γ

)
β(t). (17)

Since z is an optimal solution for (1), the first order optimality condition delivers us

0 ∈ ∂(φ+ δargminψ)(z) = ∇φ(z) +Nargminψ(z), (18)

hence
−∇φ(z) ∈ Nargminψ(z) ⊆ ranNargminψ. (19)

By using this fact and the Young-Fenchel inequality we obtain for every t ∈ [0,+∞)

β̃(t)ψ(x(t)) + 〈∇φ(z), x(t)− z〉 = β̃(t)

(
ψ(x(t)) +

〈
∇φ(z)

β̃(t)
, x(t)− z

〉)

= β̃(t)

(
ψ(x(t))−

〈
−∇φ(z)

β̃(t)
, x(t)

〉
+ σargminψ

(
−∇φ(z)

β̃(t)

))

≥ β̃(t)

(
−ψ∗

(
−∇φ(z)

β̃(t)

)
+ σargminψ

(
−∇φ(z)

β̃(t)

))
. (20)

Furthermore,
φ(x(t))− φ(z) ≥ 〈∇φ(z), x(t)− z〉 ∀t ∈ [0,+∞). (21)

Finally, from (16), (20) and (21) we obtain for almost every t ∈ [0,+∞)

ḧz(t) + γḣz(t) +
1

γ
Ė(t) + β̃(t)

(
−ψ∗

(
−∇φ(z)

β̃(t)

)
+ σargminψ

(
−∇φ(z)

β̃(t)

))
≤ ḧz(t) + γḣz(t) +

1

γ
Ė(t) + β̃(t)ψ(x(t)) + 〈∇φ(z), x(t)− z〉

≤ ḧz(t) + γḣz(t) +
1

γ
Ė(t) + φ(x(t))− φ(z) + β̃(t)ψ(x(t))

≤ 0. (22)

Thus

ḧz(t) + γḣz(t) ≤ −
1

γ
Ė(t) + β̃(t)

(
ψ∗

(
−∇φ(z)

β̃(t)

)
− σargminψ

(
−∇φ(z)

β̃(t)

))
(23)

for almost every t ∈ [0,+∞).
(i) From (22) we have for almost every t ∈ [0,+∞)

ḧz(t) + γḣz(t) +
1

γ
Ė(t) ≤ β̃(t)

(
ψ∗

(
−∇φ(z)

β̃(t)

)
− σargminψ

(
−∇φ(z)

β̃(t)

))
.

By integrating this inequality from 0 to T (T > 0) and by taking into account (H), (9) and the
fact that φ and ψ are bounded from below, it yields that there exists M > 0 such that

ḣz(T ) + γhz(T ) +
1

2γ
‖ẋ(T )‖2 ≤M ∀T ≥ 0. (24)

We derive
ḣz(T ) + γhz(T ) ≤M ∀T ≥ 0.
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By multiplying this inequality with exp(γT ) and then integrating from 0 to s, where s > 0, one
easily obtains

hz(s) ≤ hz(0) exp(−γs) +
M

γ
(1− exp(−γs)) ∀s > 0.

Thus hz is bounded, hence x is bounded.
Further, (24) implies

ḣz(T ) +
1

2γ
‖ẋ(T )‖2 ≤M ∀T ≥ 0.

Since t 7→ x(t) is bounded, we deduce from the above inequality and (10) that ẋ is bounded
as well.

(ii) Let F : [0,+∞)→ R be defined by

F (t) =

∫ t

0

(
−β̃(s)ψ(x(s))− 〈∇φ(z), x(s)− z〉

)
ds ∀t ≥ 0.

Making again use of (22) we have for almost every t ∈ [0,+∞)

ḧz(t) + γḣz(t) +
1

γ
Ė(t) ≤ −β̃(t)ψ(x(t))− 〈∇φ(z), x(t)− z〉.

Since hz and E are bounded from below and ḣz is bounded, by integrating the last inequality we
derive that F is bounded from below. Moreover, from (20) we have for almost every t ∈ [0,+∞)

Ḟ (t) ≤ β̃(t)

(
ψ∗

(
−∇φ(z)

β̃(t)

)
− σargminψ

(
−∇φ(z)

β̃(t)

))
.

Since according to (H), the function on the right-hand side of this inequality is L1-integrable on
[0,+∞), a direct application of Lemma 1 yields that limt→+∞ F (t) exists and is a real number.
Hence

∃ lim
t→+∞

∫ t

0

(
β̃(s)ψ(s) + 〈∇φ(z), x(s)− z〉

)
ds ∈ R (25)

Since ψ ≥ 0, we obtain for every t ∈ [0,+∞)

β̃(t)ψ(x(t)) + 〈∇φ(z), x(t)− z〉 ≥ β̃(t)

2
ψ(x(t)) + 〈∇φ(z), x(t)− z〉

and from here, similarly to (20),

β̃(t)

2
ψ(x(t)) + 〈∇φ(z), x(t)− z〉 ≥ β̃(t)

2

(
−ψ∗

(
−2∇φ(z)

β̃(t)

)
+ σargminψ

(
−2∇φ(z)

β̃(t)

))
.

Thus, for almost every t ∈ [0,+∞) it holds

ḧz(t) + γḣz(t) +
1

γ
Ė(t) +

β̃(t)

2

(
−ψ∗

(
−2∇φ(z)

β̃(t)

)
+ σargminψ

(
−2∇φ(z)

β̃(t)

))

≤ ḧz(t) + γḣz(t) +
1

γ
Ė(t) +

β̃(t)

2
ψ(x(t)) + 〈∇φ(z), x(t)− z〉

≤ ḧz(t) + γḣz(t) +
1

γ
Ė(t) + β̃(t)ψ(x(t)) + 〈∇φ(z), x(t)− z〉

≤ 0.
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By using the same arguments as in the proof of (25) it yields that

∃ lim
t→+∞

∫ t

0

(
β̃(s)

2
ψ(s) + 〈∇φ(z), x(s)− z〉

)
ds ∈ R. (26)

Finally, from (25), (26) and (17) we obtain (ii).
(iii) Follows from (ii), (25) and (17).
(iv) Follows from (22) and (20), by using the same arguments as for proving statement (25).
(v) From (13) and (Hβ) we derive for almost every t ≥ 0

Ė(t) + γ‖ẋ(t)‖2 ≤ kβ(t)ψ(x(t)). (27)

Since E is bounded from below, integrating the last inequality and taking into account (ii) we
conclude that ẋ ∈ L2([0,+∞);H).

(vi) Combining (23) with (13) we obtain

ḧz(t) + γḣz(t) +
β̇(t)

γ
ψ(x(t)) ≤ ‖ẋ(t)‖2 + β̃(t)

(
ψ∗

(
−∇φ(z)

β̃(t)

)
− σargminψ

(
−∇φ(z)

β̃(t)

))
(28)

for almost every t ∈ [0,+∞). Notice that β̇(t) ≥ 0, hence

ḧz(t) + γḣz(t) ≤ ‖ẋ(t)‖2 + β̃(t)

(
ψ∗

(
−∇φ(z)

β̃(t)

)
− σargminψ

(
−∇φ(z)

β̃(t)

))
(29)

for almost every t ∈ [0,+∞).
According to (v), (H), (19), (17) and the fact that ranNargminψ is a cone, the function on

the right-hand side of the above inequality is L1-integrable on [0,+∞). Applying now Lemma
2 we deduce that (i) holds. �

Remark 6 The assumption β̇ ≥ 0 has been used in the above proof only for showing statement
(vi).

For the main result of the paper concerning the weak asymptotic convergence of the trajectory
generated by the dynamical system (7), that we formulate and prove afterwards, we will make
use of the continuous version of the Opial Lemma.

Lemma 7 Let S be a nonempty subset of the real Hilbert space H and x : [0,+∞)→ H a given
function. Assume that

(i) limt→+∞ ‖x(t)− z‖ exists for every z ∈ S;

(ii) every weak limit point of x belongs to S.

Then there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.

We can state now the main theorem of the paper.

Theorem 8 Assume that (Hψ), (Hφ), (Hβ) and (H) hold under the supplementary condition
limt→+∞ β(t) = +∞ and let x : [0,+∞) → H be the trajectory generated by the dynamical
system (7). Then the following statements are true:

(i) φ(x(t)) converges to the optimal objective value of (1) as t→ +∞;

(ii) limt→+∞ β(t)ψ(x(t)) = limt→+∞ ψ(x(t)) = 0;
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(iii)
∫ +∞
0 β(t)ψ(x(t))dt < +∞;

(iv)
∫ +∞
0 ‖ẋ(t)‖2dt < +∞;

(v) limt→+∞ ẋ(t) = 0;

(vi) there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.

Proof. Consider again the energy functional defined in (9). Taking into account that E is
bounded from below, from (27), Lemma 5(ii) and Lemma 1 we derive that

∃ lim
t→+∞

E(t) ∈ R. (30)

We claim that
lim

t→+∞
ψ(x(t)) = 0. (31)

Indeed, notice that
E(t)

β(t)
=
‖ẋ(t)‖2

2β(t)
+
φ(x(t))

β(t)
+ ψ(x(t)). (32)

Let z ∈ S be arbitrary. Since φ is bounded from below and by taking into account the inequality

φ(x(t)) ≤ φ(z) + 〈∇φ(x(t)), x(t)− z〉∀t ∈ [0,+∞),

that x is bounded, ∇φ is Lipschitz continuous and limt→+∞ β(t) = +∞, we can easily conclude

that limt→+∞
φ(x(t))
β(t) = 0. Furthermore, since ẋ is bounded, by using (30), we easily derive (31)

by passing to the limit as t→ +∞ in (32).
Now we invoke [10, Lemma 3.4] for the relation

lim inf
t→+∞

φ(x(t)) ≥ φ(z). (33)

Indeed, this was stated in [10, Lemma 3.4] for the first order companion of the dynamical system
(7). The result remains true for (7), too, since a careful look at the proof of Lemma 3.4 in [10]
reveals that ingredients which lead to the conclusion are the statements in Lemma 5(iii), the
fact that the trajectory x is bounded, the weak lower semicontinuity of ψ, equation (31), the
inequality (21) and the relation (19).

Since E(t) ≥ φ(x(t)), from (33) we have limt→+∞E(t) ≥ φ(z). We claim that

lim
t→+∞

E(t) = φ(z). (34)

Let us assume that limt→+∞E(t) > φ(z). Then there exist θ > 0 and t0 ≥ 0 such that for
every t ≥ t0 we have

φ(x(t)) + β(t)ψ(x(t)) +
1

2
‖ẋ(t)‖2 > φ(z) + θ. (35)

Hence for every t ≥ t0

θ < φ(x(t))− φ(z) +

(
1− k

γ

)
β(t)ψ(x(t)) +

k

γ
β(t)ψ(x(t)) +

1

2
‖ẋ(t)‖2. (36)

Integrating the last inequality and taking into account Lemma 5(ii), (iv) and (v) we obtain a
contradiction. Hence (34) holds.

Since φ(x(t)) ≤ E(t) we derive from (34) that lim supt→+∞ φ(x(t)) ≤ φ(z), which combined
with (33) imply (i).
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Further, notice that due to limt→+∞E(t) = limt→+∞ φ(x(t)) = φ(z), from (9) we obtain

lim
t→+∞

(
β(t)ψ(x(t)) +

1

2
‖ẋ(t)‖2

)
= 0,

hence
lim

t→+∞
β(t)ψ(x(t)) = 0 (37)

and
lim

t→+∞
‖ẋ(t)‖ = 0.

Thus (ii) and (v) hold. The statements (iii) and (iv) have been proved in Lemma 5.
Statement (vi) will be a consequence of the Opial Lemma. Since according to Lemma 5(vi),

the first condition in the Opial Lemma is fulfilled, it remains to show that every weak limit point
of x(t) as t→ +∞ belongs to S.

Let (tn)n∈N be a sequence of positive numbers such that limn→+∞ tn = +∞ and x(tn)
converges weakly to x∞ as n → +∞. By using the weak lower semicontinuity of ψ and (ii) we
obtain

0 ≤ ψ(x∞) ≤ lim inf
n→+∞

ψ(x(tn)) = 0,

hence x∞ ∈ argminψ. Moreover, the weak lower semicontinuity of φ and (i) yield

φ(x∞) ≤ lim inf
n→+∞

φ(x(tn)) = φ(z),

thus x∞ ∈ S. �

We show in the following that if the objective function of (1) is strongly convex, then the
trajectory generated by (7) converges strongly to the unique optimal solution of (1).

Theorem 9 Assume that (Hψ), (Hφ), (Hβ) and (H) hold and let x : [0,+∞) → H be the
trajectory generated by the dynamical system (7). If φ is strongly convex, then x(t) converges
strongly to the unique optimal solution of (1) as t→ +∞.

Proof. Let γ > 0 be such that φ is γ-strongly convex. It is a well-known fact that in case the
optimization problem (1) has a unique optimal solution, which we denote by z.

By combining (20) with the stronger inequality

φ(x(t))− φ(z) ≥ 〈∇φ(z), x(t)− z〉+
γ

2
‖x(t)− z‖2 ∀t ∈ [0,+∞), (38)

we obtain this time (see the proof of Lemma 5) for almost every t ∈ [0,+∞)

ḧz(t) + γḣz(t) +
γ

2
‖x(t)− z‖2 +

1

γ
Ė(t) + β̃(t)

(
−ψ∗

(
−∇φ(z)

β̃(t)

)
+ σargminψ

(
−∇φ(z)

β̃(t)

))
≤ ḧz(t) + γḣz(t) +

γ

2
‖x(t)− z‖2 +

1

γ
Ė(t) + β̃(t)ψ(x(t)) + 〈∇φ(z), x(t)− z〉

≤ ḧz(t) + γḣz(t) +
1

γ
Ė(t) + φ(x(t))− φ(z) + β̃(t)ψ(x(t))

≤ 0.

Taking into account (H) and that E and hz are bounded from below, by integration of the
above inequality we obtain that there exists a constant L ∈ R such that

ḣz(T ) +
γ

2

∫ T

0
‖x(t)− z‖2dt ≤ L ∀T > 0.

10



Notice that due to Lemma 5(i) the function T 7→ ḣz(T ) is bounded, hence∫ +∞

0
‖x(t)− z‖2dt < +∞.

Since according to Lemma 5(vi) limt→+∞ ‖x(t)−z‖ exists, we conclude that ‖x(t)−z‖ converges
to 0 as t→ +∞ and the proof is complete. �

Remark 10 The results presented in this paper remain true even if the assumed growth con-
dition is satisfied starting with a t0 ≥ 0, that is, if there exists t0 ≥ 0 such that

0 ≤ β̇(t) ≤ kβ(t) ∀t ≥ t0.
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