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Abstract. In this paper we propose two proximal gradient algorithms for fractional
programming problems in real Hilbert spaces, where the numerator is a proper, convex and
lower semicontinuous function and the denominator is a smooth function, either concave
or convex. In the iterative schemes, we perform a proximal step with respect to the
nonsmooth numerator and a gradient step with respect to the smooth denominator. The
algorithm in case of a concave denominator has the particularity that it generates sequences
which approach both the (global) optimal solutions set and the optimal objective value
of the underlying fractional programming problem. In case of a convex denominator the
numerical scheme approaches the set of critical points of the objective function, provided
the latter satisfies the Kurdyka-Łojasiewicz property.
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1 Introduction and preliminaries
Consider the fractional programming problem

θ := inf
x∈S

f(x)
g(x) , (1)

where S is a nonempty subset of a real Hilbert space H, the function f is nonnegative and
the function g is positive on S. One of the classical methods to handle (1) is Dinkelbach’s
procedure (see [13,14]) which relates it to the following optimization problem

inf
x∈S
{f(x)− θg(x)}. (2)

If (1) has an optimal solution x̄ ∈ S, then this is also an optimal solution to (2) and the
optimal objective value of the latter is equal to zero. Vice-versa, if (2) has x̄ ∈ S as an
optimal solution and its optimal objective value is equal to zero, then x̄ is an optimal
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solution to (1), too. This shows that finding an optimal solution to (1) can be approached
by algorithms which solve (2). However, one drawback of this procedure is that this can
be done in the very restrictive case when the optimal objective value of (1) is known.

One can find in the literature (see [13,14,16,17,23]) an iterative scheme which, in the
attempt to overcome this drawback in finite-dimensional spaces, requires the solving in
each iteration k ≥ 0 of the optimization problem

inf
x∈S
{f(x)− θkg(x)}, (3)

while θk is updated by θk+1 := f(xk)
g(xk) , where x

k is an optimal solution of (3). However,
solving in each iteration an optimization problem of type (3) can be as expensive and
difficult as solving the fractional programming problem (1).

The aim of this note is to propose an alternative to this approach. Namely, we formu-
late two iterative schemes for solving (1), where f : H → R is proper, convex and lower
semicontinuous and g : H → R is differentiable with Lipschitz continuous gradient and
either concave or convex. Instead of solving in each iteration (3), the proposed iterative
methods perform a gradient step with respect to g and a proximal step with respect to f .
In this way, the functions f and g are processed separately in each iteration. A further
advantage of the algorithm investigated in case g is concave comes from the fact that it
generates sequences that concomitantly approach the set of optimal solutions and the op-
timal objective value of (1). The second numerical scheme, proposed in case g is convex,
has the particularity that it approaches the set of critical points of the objective function
of (1), provided the latter satisfies the Kurdyka-Łojasiewicz property.

For the notations used in this paper we refer the reader to [4,9,15,24]. Let H be a real
Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖ =

√
〈·, ·〉. The symbols

⇀ and → denote weak and strong convergence, respectively.
For a function f : H → R, where R := R∪{±∞} is the extended real line, we denote by

dom f = {x ∈ H : f(x) < +∞} its effective domain and say that f is proper if dom f 6= ∅
and f(x) 6= −∞ for all x ∈ H. The subdifferential of f at x ∈ H, with f(x) ∈ R, is the set
∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y−x〉 ∀y ∈ H}. We take by convention ∂f(x) := ∅, if
f(x) ∈ {±∞}. Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R,
is the function which takes the value 0 on S and +∞ otherwise.

An efficient tool for proving weak convergence of a sequence in Hilbert spaces (without
a priori knowledge of its limit) is the Opial Lemma, which we recall in the following.

Lemma 1 (Opial) Let C be a nonempty set of H and (xk)k≥0 be a sequence in H such
that the following two conditions hold:

(a) for every x ∈ C, limk→+∞ ‖xk − x‖ exists;

(b) every weak sequential cluster point of (xk)k≥0 is in C;

Then (xk)k≥0 converges weakly to an element in C.

When proving the first part of the Opial Lemma one usually tries to show that for
every x ∈ C the sequence (‖xk − x‖)k≥0 fulfills a Fejér-type inequality. In this sense the
following result is very useful.
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Lemma 2 Let (ak)k≥0, (bk)k≥0 and (εk)k≥0 be real sequences. Assume that (ak)k≥0 is
bounded from below, (bk)k≥0 is nonnegative, (εk)k≥0 ∈ `1 and ak+1−ak+bk ≤ εk for every
k ≥ 0. Then (ak)k≥0 is convergent and (bk)k≥0 ∈ `1.

The following summability result will be useful in Subsection 2.2.

Lemma 3 Let (ak)k≥0 and (εk)k≥0 be nonnegative real sequences, such that
∑
k≥0 εk <

+∞ and ak+1 ≤ a · ak + εk for every k ≥ 0, where a ∈ R, a < 1. Then
∑
k≥0 ak < +∞.

Finally, the descent lemma which we recall next is a helpful tool in the convergence
analysis of the algorithms proposed in this manuscript.

Lemma 4 (see [21, Lemma 1.2.3]) Let g : H → R be (Fréchet) differentiable with L-
Lipschitz continuous gradient. Then

g(y) ≤ g(x) + 〈∇g(x), y − x〉+ L

2 ‖y − x‖
2 ∀x, y ∈ H.

2 Two proximal-gradient algorithms
In this section we propose two proximal-gradient algorithms for solving (1) and investigate
their convergence properties. We treat the situations when g is either a convex or a concave
function separately.

2.1 Concave denominator

The problem that we investigate throughout this subsection has the following formulation.

Problem 5 We are interested in solving the fractional programming problem

θ := inf
x∈S

f(x)
g(x) (4)

where H is a real Hilbert space, S is a nonempty, convex and closed subset of H, C :={
x ∈ S : θ = f(x)

g(x)

}
6= ∅ and the following conditions hold:

(Hf ) f : H → R is proper, convex, lower semicontinuous such that domf ∩ S 6= ∅ and
f(x) ≥ 0 ∀x ∈ S;

(Hg) g : H → R is concave, (Fréchet) differentiable with L-Lipschitz continuous gradient,
and there exists M > 0 such that 0 < g(x) ≤M ∀x ∈ S.

To this aim we propose the following algorithm.

Algorithm 6
Initialization: Choose x0 ∈ S ∩ dom f and set θ1 := f(x0)

g(x0) ;
For k ≥ 1: If θk = 0, then xk−1 ∈ C : STOP;

ηk := 1
2Lθk

;

xk := argminx∈S
[
f(x) + 1

2ηk

∥∥∥x− (xk−1 + θkηk∇g(xk−1))
∥∥∥2
]
;

θk+1 := f(xk)
g(xk) .
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We are now in position to present the convergence statement of this algorithm. To
this end we assume that the algorithm does not stop after finitely many iterations.

Theorem 7 In the setting of Problem 5, consider the sequences generated by Algorithm
6. The following statements hold:

(i) The sequence (θk)k≥1 is nonincreasing and limk→+∞ θk = θ. Moreover,

0 ≤ θk+1 − θ ≤
θ1(M + L‖x− x0‖2)

kg(x) ∀x ∈ C ∀k ≥ 1. (5)

(ii) Additionally, assume that infx∈S f(x)
g(x) > 0. Then the sequence (xk)k≥0 converges

weakly to an element in C.

Proof. According to the first order optimality conditions we have

0 ∈ ∂(f + δS)(xk) + 1
ηk

(
xk − xk−1 − θkηk∇g(xk−1)

)
∀k ≥ 1. (6)

A direct consequence of the definition of the convex subdifferential is the inequality

f(x)− f(xk) ≥
〈 1
ηk

(xk−1 − xk) + θk∇g(xk−1), x− xk
〉

= 1
2ηk

(
‖xk−1 − xk‖2 + ‖x− xk‖2 − ‖x− xk−1‖2

)
+ θk〈∇g(xk−1), x− xk〉 ∀x ∈ S ∀k ≥ 1. (7)

Invoking the concavity of g and using that θk ≥ 0, we have

− θkg(x) + θkg(xk−1) ≥ θk〈∇g(xk−1), xk−1 − x〉 ∀x ∈ S ∀k ≥ 1. (8)

Combining (7) and (8), we obtain

f(x)− θkg(x) ≥ 1
2ηk

(
‖xk−1 − xk‖2 + ‖x− xk‖2 − ‖x− xk−1‖2

)
+ f(xk)− θkg(xk−1) + θk〈∇g(xk−1), xk−1 − xk〉 ∀x ∈ S ∀k ≥ 1. (9)

Lemma 4 applied to the function −g yields the inequality

−θkg(xk−1) + θk〈∇g(xk−1), xk−1 − xk〉 ≥ −θkg(xk)− Lθk
2 ‖x

k − xk−1‖2 ∀k ≥ 1,

hence from (9) we derive

f(x)− θkg(x) ≥ 1
2ηk

(
‖xk−1 − xk‖2 + ‖x− xk‖2 − ‖x− xk−1‖2

)
+ f(xk)− θkg(xk)− Lθk

2 ‖x
k − xk−1‖2 ∀x ∈ S ∀k ≥ 1.

Taking into account the relation f(xk) = θk+1g(xk) and the way ηk is defined, we obtain
for every x ∈ S and k ≥ 1 the inequality

f(x)−θkg(x) ≥ (θk+1−θk)g(xk)+Lθk
2 ‖x

k−xk−1‖2+Lθk‖x−xk‖2−Lθk‖x−xk−1‖2. (10)
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(i) Taking x := xk−1 in (10) we get

(θk+1 − θk)g(xk) + 3Lθk
2 ‖xk − xk−1‖2 ≤ 0 ∀k ≥ 1. (11)

This further implies that (θk)k≥1 is a nonincreasing sequence, hence convergent, since it
is bounded from below by 0.

Consider now an arbitrary x ∈ C and take x := x in (10). We derive

Lθk
2 ‖x

k − xk−1‖2 + Lθk‖x− xk‖2 − Lθk‖x− xk−1‖2 ≤ (θk − θk+1)M + f(x)− θkg(x)

= (θk − θk+1)M + (θ − θk)g(x)
≤ (θk − θk+1)M ∀k ≥ 1. (12)

This yields the inequality

Lθk
2 ‖x

k − xk−1‖2 + Lθk+1‖x− xk‖2 − Lθk‖x− xk−1‖2 ≤ (θk − θk+1)M ∀k ≥ 1. (13)

Since (θk)k≥1 is bounded from below by 0, the sequence on the right-hand side of inequality
(13) belongs to `1. We derive from Lemma 2 that∑

k≥1
θk‖xk − xk−1‖2 < +∞ (14)

and
(θk+1‖x− xk‖2)k≥0 is convergent. (15)

Coming back to (12) and using θk ≥ θk+1, we obtain

(θ−θk)g(x) ≥ (θk+1−θk)M+Lθk
2 ‖x

k−xk−1‖2 +Lθk+1‖x−xk‖2−Lθk‖x−xk−1‖2 ∀k ≥ 1.
(16)

Relying on (14) and (15) and the convergence of the sequence (θk)k≥1, the right-hand side
of the above inequality is a sequence which converges to 0 as k → +∞. Invoking also the
fact that (θk)k≥1 is bounded from below by θ, we conclude that limk→+∞ θk = θ.

Let us prove now the convergence rate result stated in (5). Let x ∈ C and n ≥ 1 be
arbitrary. From (11) we obtain

n∑
k=1

(k − 1)(θk − θk+1)g(xk) ≥ 3
2L

n∑
k=1

(k − 1)θk‖xk − xk−1‖2,

hence
n∑
k=1

(
(k − 1)θk − kθk+1 + θk+1

)
=

n∑
k=1

(k − 1)(θk − θk+1)

≥ 3L
2M

n∑
k=1

(k − 1)θk‖xk − xk−1‖2.

Noticing the telescoping sum in the left-hand side of the previous inequality, we obtain

− nθn+1 +
n∑
k=1

θk+1 ≥
3L
2M

n∑
k=1

(k − 1)θk‖xk − xk−1‖2. (17)
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Summing up the inequalities in (16) for k from 1 to n+ 1 we obtain(
(n+ 1)θ −

n+1∑
k=1

θk

)
g(x) ≥

(θn+2 − θ1)M + L

2

n+1∑
k=1

θk‖xk − xk−1‖2 + Lθn+2‖x− xn+2‖2 − Lθ1‖x− x0‖2,

hence

(n+ 1)θ −
n∑
k=1

θk+1 − θ1 ≥

1
g(x)

[
(θn+2 − θ1)M + L

2

n+1∑
k=1

θk‖xk − xk−1‖2 + Lθn+2‖x− xn+2‖2 − Lθ1‖x− x0‖2
]
.

(18)

Summing up the inequalities (17) and (18) and discarding the nonnegative terms on
the right-hand side we derive

n(θ − θn+1) + θ − θ1 ≥ −
θ1M

g(x) −
Lθ1
g(x)‖x− x

0‖2.

Noticing that θ1 ≥ θ, the last inequality implies (5) after rearranging the terms.
(ii) For the remaining of the proof we assume that infx∈S f(x)

g(x) > 0. In this situation,
limk→+∞ θk = θ > 0 and from (14) and (15) we derive

lim
k→+∞

(xk − xk−1) = 0 (19)

and
(‖x− xk‖)k≥1 is convergent ∀x ∈ C. (20)

Thus the first condition in the Opial Lemma is fulfilled.
Consider now a subsequence (xkl)l≥0 of (xk)k≥0 that weakly converges to x as l→ +∞.

From (6) we deduce

1
ηkl

(xkl−1 − xkl) + θkl
∇g(xkl−1) ∈ ∂(f + δS)(xkl),

hence
1
ηkl

(xkl−1 − xkl) + θkl
∇g(xkl−1)− θ∇g(xkl) ∈ ∂(f + δS − θg)(xkl) ∀l ≥ 1, (21)

due to the concavity of g and θ > 0. Since for every l ≥ 1 we have

‖θkl
∇g(xkl−1)− θ∇g(xkl)‖ ≤ |θkl

− θ|‖∇g(xkl−1)‖+ θ‖∇g(xkl−1)−∇g(xkl)‖
≤L|θkl

− θ|‖xkl−1 − x0‖+|θkl
− θ|‖∇g(x0)‖+θL‖xkl−1 − xkl‖,

from (i), (19) and the fact that (xkl)l≥0 is bounded, we conclude that

1
ηkl

(xkl−1 − xkl) + θkl
∇g(xkl−1)− θ∇g(xkl)→ 0 as l→ +∞.
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Since (xkl)l≥0 weakly converges to x as l → +∞, from (21) and the fact that the graph
of the convex subdifferential of a proper, convex and lower semicontinuous function is
sequentially closed with respect to the weak-norm topology (see [4, Proposition 20.33]),
we derive that

0 ∈ ∂(f + δS − θg)(x),

hence x ∈ dom f ∩ S. The definition of the convex subdifferential yields the inequality

f(y)− θg(y) ≥ f(x)− θg(x) ∀y ∈ S.

From here, by choosing y ∈ C, we get

0 ≥ f(x)− θg(x),

hence
θ ≥ f(x)

g(x) . (22)

Relation (22) implies now that x ∈ C. Thus the second condition in the Opial Lemma is
also fulfilled. The conclusion follows now from Lemma 1. �

2.2 Convex denominator

In this subsection we consider the case when g is a convex function.

Problem 8 We are interested in solving the fractional programming problem

inf
x∈S

f(x)
g(x) (23)

where H is a real Hilbert space, S is a nonempty, convex and closed subset of H, and the
following conditions hold:

(Hf ) f : H → R is proper, convex, lower semicontinuous such that domf ∩ S 6= ∅ and
f(x) ≥ 0 ∀x ∈ S;

(H̃g) g : H → R is convex, continuously (Fréchet) differentiable and there exists M > 0
such that 0 < g(x) ≤M ∀x ∈ S.

The algorithm we propose in this context has the following formulation.

Algorithm 9
Initialization: Choose x0 ∈ S ∩ dom f and set θ1 := f(x0)

g(x0) ;
For k ≥ 1: Choose ηk > 0;

xk := argminx∈S
[
f(x) + 1

2ηk

∥∥∥x− (xk−1 + θkηk∇g(xk−1))
∥∥∥2
]
;

θk+1 := f(xk)
g(xk) .

The proof of the first result in this subsection reveals the fact that when g is convex
one cannot expect convergence of the whole sequence (xk)k≥0. Furthermore, if this is the
case, then the limit is not necessarily an optimal solution of (23), but a critical point of
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the objective function f+δS
g in the sense of the limiting subdifferential. In order to explain

this notion, we need some prerequisites of nonsmooth analysis.
For the following generalized subdifferential notions and their basic properties we refer

to [20, 22]. Let h : H → R ∪ {+∞} be a proper and lower semicontinuous function. If
x ∈ dom h, we consider the Fréchet (viscosity) subdifferential of h at x as being the set

∂̂h(x) :=
{
v ∈ H : lim inf

y→x
h(y)− h(x)− 〈v, y − x〉

‖y − x‖
≥ 0

}
.

For x /∈ dom h we set ∂̂h(x) := ∅. The limiting (Mordukhovich) subdifferential is defined
at x ∈ dom h by

∂Lh(x) := {v ∈ H : ∃xk → x, h(xk)→ h(x) and ∃vk ∈ ∂̂h(xk), vk ⇀ v as k → +∞},

while for x /∈ dom h, one takes ∂Lh(x) := ∅. Therefore ∂̂h(x) ⊆ ∂Lh(x) for each x ∈ H.
When h is continuously differentiable around x ∈ H we have ∂Lh(x) = {∇h(x)}.

Notice that in case h is convex, these two subdifferential notions coincide with the convex
subdifferential, thus ∂̂h(x) = ∂Lh(x) = {v ∈ H : h(y) ≥ h(x) + 〈v, y − x〉 ∀y ∈ H} for all
x ∈ H.

The Fermat rule reads in this nonsmooth setting: if x ∈ H is a local minimizer of h,
then 0 ∈ ∂Lh(x). An element x ∈ dom h fulfilling this inclusion relation is called critical
point of the function h. The set of all critical points of h is denoted by crit(h).

The convergence of Algorithm (9) is stated in the following theorem.

Theorem 10 In the setting of Problem 8, consider the sequences generated by Algorithm
9 such that the additional condition lim infk→+∞ ηk > 0 is satisfied. The following state-
ments hold:

(i) The sequence (θk)k≥1 is nonincreasing, hence convergent. Moreover,∑
k≥1

1
ηk
‖xk − xk−1‖2 < +∞.

(ii) For every (strong) limit point x of (xk)k≥0, it holds x ∈ dom f∩S and limk→+∞ θk =
f(x)
g(x) . If we additionally have that x ∈ int(dom f ∩ S), then 0 ∈ ∂L

(
f+δS
g

)
(x).

Proof. As already seen in the proof of Theorem 7, we have

1
ηk

(xk−1 − xk) + θk∇g(xk−1) ∈ ∂(f + δS)(xk) ∀k ≥ 1, (24)

and

f(x)− f(xk) ≥ 1
2ηk

(
‖xk−1 − xk‖2 + ‖x− xk‖2 − ‖x− xk−1‖2

)
+ θk〈∇g(xk−1), x− xk〉 ∀x ∈ S ∀k ≥ 1. (25)

By choosing x := xk−1 in (25) we obtain

f(xk−1)− f(xk) ≥ 1
ηk
‖xk−1 − xk‖2 + θk〈∇g(xk−1), xk−1 − xk〉 ∀k ≥ 1.
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Further, by combining this with

θk
(
g(xk)− g(xk−1)

)
≥ θk〈∇g(xk−1), xk − xk−1〉,

we obtain

0 = f(xk−1)− θkg(xk−1) ≥ f(xk)− θkg(xk) + 1
ηk
‖xk−1 − xk‖2

= (θk+1 − θk)g(xk) + 1
ηk
‖xk−1 − xk‖2 ∀k ≥ 1. (26)

(i) From (26) we obtain that (θk)k≥1 is nonincreasing, hence convergent, since it is bounded
from below by 0. Moreover, from (26) we obtain

1
ηk
‖xk−1 − xk‖2 ≤ (θk − θk+1)M ∀k ≥ 1,

hence
∑
k≥1

1
ηk
‖xk − xk−1‖2 < +∞.

(ii) Without losing the generality, we assume that xk → x as k → +∞. Since S is
closed, we have x ∈ S. By choosing x := x in (25), we obtain

f(x)− f(xk) ≥ 1
2ηk

(
‖xk−1 − xk‖2 + ‖x− xk‖2 − ‖x− xk−1‖2

)
+ θk〈∇g(xk−1), x− xk〉 ∀k ≥ 1.

By using (i), one can see that the right-hand side of the above inequality converges to 0 as
k → +∞. Hence, lim supk→+∞ f(xk) ≤ f(x). Since f is lower semicontinuous, the reverse
inequality is also true, thus

lim
k→+∞

f(xk) = f(x).

Furthermore, due to the continuity of g, we have
lim

k→+∞
g(xk) = g(x).

Let us denote by θ the limit of the sequence (θk)k≥1. Passing to the limit as k → +∞ in
the relation which defines θk+1 in Algorithm 9, we obtain

θ = f(x)
g(x) . (27)

By using again the closedness property of the graph of the convex subdifferential, from
(24) and (i) we obtain

θ∇g(x) ∈ ∂(f + δS)(x), (28)
hence x ∈ dom f ∩ S.

Assume now that x ∈ int(dom f ∩ S). In this situation f + δS is Lipschitz continuous
around x (see [4, Theorem 8.29]). From (27) and (28) we obtain

0 ∈ −(f + δS)(x)
g2(x) ∇g(x) + 1

g(x)∂(f + δS)(x)

= (f + δS)(x)∇
(1
g

)
(x) + ∂

( 1
g(x)(f + δS)

)
(x)

= (f + δS)(x)∇
(1
g

)
(x) + ∂L

( 1
g(x)(f + δS)

)
(x)

= ∂L

(1
g
· (f + δS)

)
(x),
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where the last equality makes use of [20, Corollary 1.111(i)]. �

Remark 11 (a) The main ingredient in the proof of the second statement of the above
theorem is the rule for the limiting subdifferential of the product (or quotient) of locally
Lipschitz continuous functions. We notice that similar rules are valid also for the Clarke
subdifferential (see [12, Exercise 10.21]).

(b) Whenever f+δS
g is a convex function, we obtain in the hypotheses of the above

theorem that x is a global optimal solution of (23) and limk→+∞ θk = f(x)
g(x) = infx∈S f(x)

g(x) .

In the remaining of this subsection we address the question whether one can guarantee
the convergence of the whole sequence (xk)k≥0 generated in Algorithm 9. We will see that
this is ensured whenever the objective function of (23) satisfies the Kurdyka-Łojasiewicz
property. To this end we recall some notations and definitions related to the latter.

For the remaining of this section we suppose that H is finite dimensional. For η ∈
(0,+∞], we denote by Θη the class of concave and continuous functions ϕ : [0, η) →
[0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η), continuous at 0 and
ϕ′(s) > 0 for all s ∈ (0, η). In the following definition (see [2, 8]) we use also the distance
function to a set, defined for A ⊆ H as dist(x,A) = infy∈A ‖x− y‖ for all x ∈ H.

Definition 1 (Kurdyka-Łojasiewicz property) Let h : H → R be a proper and lower
semicontinuous function. We say that h satisfies the Kurdyka-Łojasiewicz (KL) property
at x ∈ dom ∂Lh = {x ∈ H : ∂Lh(x) 6= ∅} if there exists η ∈ (0,+∞], a neighborhood U of
x and a function ϕ ∈ Θη such that for all x in the intersection

U ∩ {x ∈ H : h(x) < h(x) < h(x) + η}

the following inequality holds

ϕ′(h(x)− h(x)) dist(0, ∂Lh(x)) ≥ 1.

If h satisfies the KL property at each point in dom ∂h, then h is called a KL function.

The origins of this notion go back to the pioneering work of Łojasiewicz [19], where it
is proved that for a real-analytic function h : H → R and a critical point x ∈ H (that is
∇h(x) = 0), there exists θ ∈ [1/2, 1) such that the function |h−h(x)|θ‖∇h‖−1 is bounded
around x. This corresponds to the situation when ϕ(s) = Cs1−θ, where C > 0. The
result of Łojasiewicz allows the interpretation of the KL property as a re-parametrization
of the function values in order to avoid flatness around the critical points. Kurdyka [18]
extended this property to differentiable functions definable in an o-minimal structure.
Further extensions to the nonsmooth setting can be found in [2, 5–7].

One of the remarkable properties of KL functions is their ubiquity in applications,
according to [8]. To this class of functions belong semi-algebraic, real sub-analytic, semi-
convex, uniformly convex and convex functions satisfying a growth condition. We refer
the reader to [1–3,5–8] and the references therein for more details regarding KL functions
and illustrating examples.

An important role in our convergence analysis will be played by the following uni-
formized KL property given in [8, Lemma 6].
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Lemma 12 Let Ω ⊆ H be a compact and connected set and let h : H → R be a proper
and lower semicontinuous function. Assume that h is constant on Ω and h satisfies the
KL property at each point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη such that for all
x ∈ Ω and for all x in the intersection

{x ∈ H : dist(x,Ω) < ε} ∩ {x ∈ H : h(x) < h(x) < h(x) + η} (29)

the following inequality holds

ϕ′(h(x)− h(x)) dist(0, ∂Lh(x)) ≥ 1. (30)

The techniques used below are well-known in the community dealing with algorithms
for optimization problems involving functions with the Kurdyka-Łojasiewicz property (see
[3, 8, 10, 11]). We show that this approach can be used also for fractional programming
problems.

In the following we denote by ω((xk)k≥0) the set of cluster points of the sequence
(xk)k≥0. The first statement in the next result is a direct consequence of Theorem 10,
while the other statements can be proved similar to [8, Lemma 5], where it is noticed that
(b) and (c) are generic for sequences satisfying the relation limk→+∞(xk − xk−1) = 0.

Lemma 13 In the setting of Problem 8, let H be finite dimensional and consider the
sequences generated by Algorithm 9 such that the additional condition

0 < lim inf
k→+∞

ηk ≤ lim sup
k→+∞

ηk < +∞

is satisfied. Assume that (xk)k≥0 is bounded. The following statements hold:

(a) ω((xk)k≥0) ∩ int(dom f ∩ S) ⊆ crit
(
f+δS
g

)
;

(b) limk→∞ dist
(
xk, ω((xk)k≥0)

)
= 0;

(c) ω((xk)k≥0) is nonempty, compact and connected;

(d) f+δS
g is finite and constant on ω((xk)k≥0).

Remark 14 Suppose that f+δS
g is coercive, that is

lim
‖u‖→+∞

(
f + δS
g

)
(u) = +∞.

Then the sequence (xk)k≥0 generated by Algorithm 9 is bounded. Indeed, this follows
from the fact that (θk)k≥1 is nonincreasing and the lower level sets of f+δS

g are bounded.

We give now the main result concerning the convergence of the whole sequence (xk)k≥0.

Theorem 15 In the setting of Problem 8, let H be finite dimensional, ∇g be L-Lipschitz
continuous, and consider the sequences generated by Algorithm 9 under the additional
conditions lim infk→+∞ ηk > 0, η1θ1 <

1
L and (ηk)k≥1 nonincreasing. Assume that f+δS

g

is a KL function. Moreover, suppose that (xk)k≥0 is bounded and there exists k0 ≥ 0 such
that xk ∈ int(dom f ∩ S) for all k ≥ k0. Then the following statements are true:

11



(a)
∑
k≥0 ‖xk+1 − xk‖ < +∞;

(b) there exists x∞ ∈ dom f ∩ S such that limk→+∞ x
k = x∞. If additionally x∞ ∈

int(dom f ∩ S), then 0 ∈ ∂L
(
f+δS
g

)
(x∞).

Proof. (a) Consider the sequences generated by Algorithm 9. According to Lemma 13
we can choose an element x ∈ ω((xk)k≥0). By Theorem 10(ii), we have x ∈ dom f ∩S and
limk→+∞ θk = f(x)

g(x) . We separately treat the following two cases.
I. There exists k ≥ 1 such that θk = f(x)

g(x) . Since (θk)k≥1 is nonincreasing, we have
θk = f(x)

g(x) for every k ≥ k. By using (26), we deduce that the sequence (xk)k≥k is constant.
From here the conclusion follows automatically.

II. For all k ≥ 1 it holds θk > f(x)
g(x) . Take Ω := ω((xk)k≥0).

In virtue of Lemma 13(c) and (d) and Lemma 12, the KL property of f+δS
g leads to

the existence of positive numbers ε and η and a concave function ϕ ∈ Φη such that for all

x ∈ {u ∈ H : dist(u,Ω) < ε} ∩
{
u ∈ dom f ∩ S : f(x)

g(x) <
f(u)
g(u) <

f(x)
g(x) + η

}
(31)

one has
ϕ′
(
f(x)
g(x) −

f(x)
g(x)

)
dist

(
0, ∂L

(
f + δS
g

)
(x)
)
≥ 1. (32)

Let k1 ≥ 0 be such that θk < f(x)
g(x) + η for all k ≥ k1. According to Lemma 13(b), there

exists k2 ≥ 0 such that dist(xk,Ω) < ε for all k ≥ k2.
Hence the sequence (xk)k≥k, where k = max{k1, k2}, belongs to the intersection (31).

So we have (see (32))

ϕ′
(
f(xk)
g(xk) −

f(x)
g(x)

)
‖x∗‖ ≥ 1 ∀x∗ ∈ ∂L

(
f + δS
g

)
(xk) ∀k ≥ k. (33)

Since ϕ is concave, it holds for all x∗ ∈ ∂L
(
f+δS
g

)
(xk) and for all k ≥ k

εk := ϕ

(
f(xk)
g(xk) −

f(x)
g(x)

)
− ϕ

(
f(xk+1)
g(xk+1) −

f(x)
g(x)

)
(34)

≥ ϕ′
(
f(xk)
g(xk) −

f(x)
g(x)

)
·
(
f(xk)
g(xk) −

f(xk+1)
g(xk+1)

)

= ϕ′
(
f(xk)
g(xk) −

f(x)
g(x)

)
· (θk+1 − θk+2)

≥ 1
‖x∗‖

· (θk+1 − θk+2)

≥ 1
‖x∗‖

· 1
ηk+1g(xk+1)‖x

k+1 − xk‖2, (35)

where the last inequality follows from (26).
Further, by using (24) and [20, Corollary 1.111(i)], we have that for every k ≥ k0

x∗k := −∇g(xk)
g2(xk) (f + δS)(xk) + 1

g(xk)

[ 1
ηk

(xk−1 − xk) + θk∇g(xk−1)
]
∈ ∂L

(
f + δS
g

)
(xk).
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Furthermore, notice that

x∗k = 1
g(xk)

[
−θk+1∇g(xk) + θk∇g(xk−1) + 1

ηk
(xk−1 − xk)

]
and relying on the Lipschitz continuity of the gradient we derive

‖x∗k‖ ≤
1

g(xk)

[( 1
ηk

+ θkL

)
‖xk − xk−1‖+ (θk − θk+1)‖∇g(xk)‖

]
.

Altogether, from (35) we obtain for every k ≥ max{k, k0}

εk ≥
g(xk)
g(xk+1) ·

1
ηk+1
‖xk+1 − xk‖2(

1
ηk

+ θkL
)
‖xk − xk−1‖+ (θk − θk+1)‖∇g(xk)‖

and from here

‖xk+1 − xk‖ ≤
√
ηk+1

[( 1
ηk

+ θkL

)
‖xk − xk−1‖+ (θk − θk+1)‖∇g(xk)‖

]
g(xk+1)
g(xk) εk

≤ ηk+1
2

[( 1
ηk

+ θkL

)
‖xk − xk−1‖+ (θk − θk+1)‖∇g(xk)‖

]
+ g(xk+1)

2g(xk) εk.

(36)
Further, we observe that

ηk+1
2

( 1
ηk

+ θkL

)
≤ ηk

2

( 1
ηk

+ θkL

)
= 1

2 + ηkθkL

2 ≤ 1
2 + η1θ1L

2 ∀k ≥ 1.

Moreover, (∇g(xk))k≥0 is bounded and lim supk→+∞
g(xk+1)
g(xk) < +∞, due to g(xk+1) ≤ M

(M > 0) and lim infk→+∞ g(xk) > 0, which follows from the continuity of g, the fact
that (xk)k≥0 is bounded and Theorem 10(ii). Thus there exist some positive constants
C1, C2 > 0 and k′ ≥ 0 such that

‖xk+1 − xk‖ ≤
(1

2 + η1θ1L

2

)
‖xk − xk−1‖+ C1(θk − θk+1) + C2εk ∀k ≥ k′.

The conclusion follows from Lemma 3 by noticing that (θk)k≥1 and ϕ are bounded
from below.

(b) It follows from (a) that (xk)k≥0 is a Cauchy sequence, hence it is convergent. The
conclusion follows from Theorem 10. �

3 Future work
We point out some open questions to be followed in the future related to the solving of
the fractional programming problem under investigation:

1. Is it possible to evaluate in each iteration the functions f and δS separately, which
would actually mean that the set S is addressed in the algorithm by means of its
projection operator?

2. How to incorporate in Algorithm 6 some extrapolation terms in the sense of Nesterov
in order to improve its speed of convergence?

3. Can one consider also other situations, for instance when f is smooth and g is
nonsmooth, or even the more general case where both functions are nonsmooth?

13
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