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Abstract. In connection with the optimization problem

inf
x∈argmin Ψ

{Φ(x) + Θ(x)},

where Φ is a proper, convex and lower semicontinuous function and Θ and Ψ are convex and
smooth functions defined on a real Hilbert space, we investigate the asymptotic behavior of the
trajectories of the nonautonomous Levenberg-Marquardt dynamical system{

v(t) ∈ ∂Φ(x(t))
λ(t)ẋ(t) + v̇(t) + v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)) = 0,

where λ and β are functions of time controlling the velocity and the penalty term, respectively.
We show weak convergence of the generated trajectory to an optimal solution as well as con-
vergence of the objective function values along the trajectories, provided λ is monotonically
decreasing, β satisfies a growth condition and a relation expressed via the Fenchel conjugate of
Ψ is fulfilled. When the objective function is assumed to be strongly convex, we can even show
strong convergence of the trajectories.

Key Words. nonautonomous systems, Levenberg-Marquardt dynamics, regularized Newton-
like dynamics, Lyapunov analysis, convex optimization, variational inequalities, penalization
techniques
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1 Introduction

Throughout this manuscript H is assumed to be a real Hilbert space endowed with inner product
〈·, ·〉 and associated norm ‖ · ‖=

√
〈·, ·〉. When T : H → H is a C1 operator with derivative T ′,

the solving of the equation
find x ∈ H such that Tx = 0

can be approached by the classical Newton method, which generates an approximating sequence
(xn)n≥0 of a solution of the operator equation through

T (xn) + T ′(xn)(xn+1 − xn) = 0 ∀n ≥ 0.
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In order to overcome the fact that the classical Newton method assumes the solving of an
equation which is in general not well-posed, one can use instead the Levenberg-Marquardt
method

T (xn) +
(
λn Id +T ′(xn)

)(xn+1 − xn
∆tn

)
= 0 ∀n ≥ 0,

where Id : H → H denotes the identity operator on H, λn a regularizing parameter and ∆tn > 0
the step size.

When T : H ⇒ H is a (set-valued) maximally monotone operator, Attouch and Svaiter
showed in [13] that the above Levenberg-Marquardt algorithm can be seen as a time discretiza-
tion of the dynamical system {

v(t) ∈ T (x(t))
λ(t)ẋ(t) + v̇(t) + v(t) = 0

(1)

for approaching the inclusion problem

find x ∈ H such that 0 ∈ Tx. (2)

This includes as a special instance the problem of minimizing a proper, convex and lower semi-
continuous function, when T is taken as its convex subdifferential. Later on, this investigation
has been continued in [2] in the context of minimizing the sum of a proper, convex and lower
semicontinuous function with a convex and smooth one.

In the spirit of [13], we approach in this paper the optimization problem

inf
x∈argmin Ψ

{Φ(x) + Θ(x)}, (3)

where Φ : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function and Ψ,Θ :
H → R are convex and smooth functions, via the Levenberg-Marquardt dynamical system{

v(t) ∈ ∂Φ(x(t))
λ(t)ẋ(t) + v̇(t) + v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)) = 0,

(4)

where λ and β are functions of time controlling the velocity and the penalty term, respectively.
If ∂Φ + Nargmin Ψ is maximally monotone, then determining an optimal solution x ∈ H of

(3) means nothing else than solving the subdifferential inclusion problem

find x ∈ H such that 0 ∈ ∂Φ(x) +∇Θ(x) +Nargmin Ψ(x) (5)

or, equivalently, solving the variational inequality

find x ∈ argmin Ψ and v ∈ ∂Φ(x) such that 〈v +∇Θ(x), y − x〉 ≥ 0 ∀y ∈ argmin Ψ. (6)

We show weak convergence of the trajectory x(·) generated by (4) to an optimal solution of
(3) as well as convergence of the objective function values along the trajectory to the optimal
objective value, provided the assumption

∀p ∈ ranNargmin Ψ

∫ +∞

0
β(t)

[
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

)]
dt < +∞ (7)

is fulfilled and the functions λ, β satisfy some mild conditions. If the objective function of (3)
is strongly convex, the trajectory x(·) converges even strongly to the unique optimal solution of
(3).
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The condition (7) has its origins in the paper of Attouch and Czarnecki [7], where the solving
of

inf
x∈argmin Ψ

Φ(x), (8)

for Φ,Ψ : H → R ∪ {+∞} proper, convex and lower semicontinuous functions, is approached
through the nonautonomous first order dynamical system

0 ∈ ẋ(t) + ∂Φ(x(t)) + β(t)∂Ψ(x(t)), (9)

by assuming that the penalizing function β : [0,+∞) → (0,+∞) tend to +∞ as t → +∞.
Several ergodic and nonergodic convergence results have been reported in [7] under the key
assumption (7).

The paper of Attouch and Czarnecki [7] was the starting point of a remarkable number of
research articles devoted to penalization techniques for solving optimization problems of type (3),
but also generalizations of the latter in form of variational inequalities expressed with maximal
monotone operators (see [5,7,9,10,12,15,17,19–21,26,27]). In the literature enumerated above,
the monotone inclusions problems have been approached either through continuous dynamical
systems or through their discrete counterparts formulated as splitting algorithms. We speak
in both cases about methods of penalty type, which means in this context that the operator
describing the underlying set of the variational inequality under investigation is evaluated as
a penalty functional. In the above-listed references one can find more general formulations of
the key assumption (7), but also further examples for which these conditions are satisfied. In
Remark 5 and Remark 6 we provide more insights into the relations of the dynamical system
(14) to other continuous systems (and their discrete counterparts) from the literature.

The results we obtain in this paper are in the spirit of Attouch-Czarnecki [7]. However, since
the dynamical system we focus on is a combination of two different types of dynamical systems,
the the asymptotic analysis is more involved, in the sense that one has to take into consideration
the particularities of both continuous systems.

2 Preliminaries

In this section we present some preliminary definitions, results and tools that will be useful
throughout the paper. We consider the following definition of an absolutely continuous function.

Definition 1 (see, for instance, [2, 13]) A function x : [0, b] → H (where b > 0) is said to be
absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function y : [0, b]→ H such that

x(t) = x(0) +

∫ t

0
y(s)ds ∀t ∈ [0, b];

(ii) x is continuous and its distributional derivative is Lebesgue integrable on [0, b];

(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik = (ak, bk) ⊆
[0, b] we have the implication(

Ik ∩ Ij = ∅ and
∑
k

|bk − ak| < η

)
=⇒

∑
k

‖x(bk)− x(ak)‖ < ε.

A function x : [0,+∞) → H (where b > 0) is said to be locally absolutely continuous if it is
absolutely continuous on each interval [0, b] for 0 < b < +∞.
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Remark 1 (a) It follows from the definition that an absolutely continuous function is dif-
ferentiable almost everywhere, its derivative coincides with its distributional derivative
almost everywhere and one can recover the function from its derivative ẋ = y by the
integration formula (i).

(b) If x : [0, b]→ H, where b > 0, is absolutely continuous and B : H → H is L-Lipschitz con-
tinuous for L ≥ 0, then the function z = B ◦ x is absolutely continuous, too. This can be
easily seen by using the characterization of absolute continuity in Definition 1(iii). More-
over, z is differentiable almost everywhere on [0, b] and the inequality ‖ż(t)‖ ≤ L‖ẋ(t)‖
holds for almost every t ∈ [0, b].

The following results, which can be interpreted as continuous counterparts of the quasi-
Fejér monotonicity for sequences, will play an important role in the asymptotic analysis of the
trajectories of the dynamical system investigated in this paper. For the proof of Lemma 2
we refer the reader to [2, Lemma 5.1]. Lemma 3 follows by using similar arguments as used
in [2, Lemma 5.2].

Lemma 2 Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded from
below and that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→+∞ F (t) ∈ R.

Lemma 3 If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is locally absolutely continuous,
F ∈ Lp([0,+∞)) ∩ L∞([0,+∞)), G1, G2 : [0,+∞) → R, G1 ∈ L1([0,+∞)), G2 ∈ Lr([0,+∞))
and for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G1(t) +G2(t), (10)

then limt→+∞ F (t) = 0.

Proof. In case r = 1 this follows from Lemma 2 and the fact that F ∈ Lp([0,+∞)).
Assume now that r > 1 and define q := 1 + p

(
1− 1

r

)
> 1, which fulfills the relation

q − 1

p
+

1

r
= 1. (11)

Further, from (10) we derive for almost every t ∈ [0,+∞)

d

dt
(F (t))q ≤ q(F (t))q−1G1(t) + q(F (t))q−1G2(t). (12)

Since F ∈ L∞([0,+∞)) and G1 ∈ L1([0,+∞)), the function t→ (F (t))q−1G1(t) is L1-integrable

on [0,+∞). Moreover, due to F q−1 ∈ L
p
q−1 ([0,+∞)), G2 ∈ Lr([0,+∞)) and (11), the function

t → (F (t))q−1G2(t) is also L1-integrable on [0,+∞). We conclude that the function on the
right-hand side of inequality (12) belongs to L1([0,+∞)). Applying now Lemma 2 we obtain
that there exists limt→+∞ F (t) ∈ R, which combined again with F ∈ Lp([0,+∞)) delivers the
conclusion. �

The next result which we recall here is the continuous version of the Opial Lemma.

Lemma 4 Let S ⊆ H be a nonempty set and x : [0,+∞)→ H a given function. Assume that
(i) for every x∗ ∈ S, limt→+∞ ‖x(t)− x∗‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then there exists x∞ ∈ S such that x(t) converges weakly to x∞ as t→ +∞.
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3 A Levenberg-Marquardt dynamical system: existence and
uniqueness of the trajectories

Consider the optimization problem

inf
x∈argmin Ψ

{Φ(x) + Θ(x)}, (13)

where H is a real Hilbert space and the following conditions hold:

(HΨ) Ψ : H → [0,+∞) is convex, (Fréchet) differentiable with Lipschitz continuous gradient

and argmin Ψ = Ψ−1(0) 6= ∅;
(HΘ) Θ : H → R is convex, (Fréchet) differentiable with Lipschitz continuous gradient;

(HΦ) Φ : H → R ∪ {+∞} is convex, lower semicontinuous and fulfills the relation

S := {z ∈ argmin Ψ ∩ dom Φ : Φ(z) + Θ(z) ≤ Φ(x) + Θ(x) ∀x ∈ argmin Ψ} 6= ∅.

Here, dom Φ = {x ∈ H : Φ(x) < +∞} denotes the effective domain of the function Φ.
In connection with (13), we investigate the nonautonomous dynamical system

v(t) ∈ ∂Φ(x(t))
λ(t)ẋ(t) + v̇(t) + v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)) = 0
x(0) = x0, v(0) = v0 ∈ ∂Φ(x0),

(14)

where x0, v0 ∈ H and

∂Φ : H⇒ H, ∂Φ(x) := {p ∈ H : Φ(y) ≥ Φ(x) + 〈p, y − x〉 ∀y ∈ H},

for Φ(x) ∈ R and ∂Φ(x) := ∅ for Φ(x) 6∈ R, denotes the convex subdifferential of Φ. We denote
by dom ∂Φ = {x ∈ H : ∂Φ(x) 6= ∅} the domain of the operator ∂Φ.

Furthermore, we make the following assumptions regarding the functions of time controlling
the velocity and the penalty:

(H1
λ) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous;

(H1
β) β : [0,+∞)→ [0,+∞) is locally integrable.

Let us mention that due to (H1
λ), λ̇(t) exists for almost every t ≥ 0.

Remark 5 (a) In case Φ(x) = 0 for all x ∈ H, the dynamical system (14) becomes{
λ(t)ẋ(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)) = 0
x(0) = x0,

(15)

The asymptotic convergence of the trajectories generated by (15) has been investigated in [7]
under the assumption λ(t) = 1 for all t ≥ 0, for Θ and Ψ nonsmooth functions, by replacing their
gradients with convex subdifferentials and, consequently, by treating the differential equation as
a monotone inclusion (see (9)).

(b) In case Ψ(x) = 0 for all x ∈ H, the dynamical system
v(t) ∈ ∂Φ(x(t))
λ(t)ẋ(t) + v̇(t) + v(t) +∇Θ(x(t)) = 0
x(0) = x0, v(0) = v0 ∈ ∂Φ(x0),

(16)

has been investigated in [2] (see, also, [13], for the situation when Θ(x) = 0 for all x ∈ H).
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(c) In case Θ(x) = 0 and Ψ(x) = 1
2‖x‖

2 for all x ∈ H and λ(t) = λ ∈ R for every t ∈ [0,+∞),
the Levenberg-Marquardt dynamical system (14) becomes

v(t) ∈ ∂Φ(x(t))
λẋ(t) + v̇(t) + v(t) + β(t)x(t) = 0
x(0) = x0, v(0) = v0 ∈ ∂Φ(x0).

(17)

The dynamical system (17) has been considered in [1] in connection with the problem of finding
the minimal norm elements among the minima of Φ, namely, (see also [6] and [12, Section 3])

inf
x∈argmin Φ

‖x‖2. (18)

In contrast to (14), where the function describing the constrained set of (13) is penalized, in
(17) the objective function of (18) is penalized via a vanishing penalization function (see [1]).

In the following we specify what we understand under a solution of the dynamical system
(14).

Definition 2 We say that the pair (x, v) is a strong global solution of (14), if the following
properties are satisfied:

(i) x, v : [0,+∞)→ H are locally absolutely continuous functions;

(ii) v(t) ∈ ∂Φ(x(t)) for every t ∈ [0,+∞);

(iii) λ(t)ẋ(t) + v̇(t) + v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)) = 0 for almost every t ∈ [0,+∞);

(iv) x(0) = x0, v(0) = v0.

Similarly to the techniques used in [13], we will show the existence and uniqueness of the
trajectories generated by (14) by converting it to an equivalent first order differential equation
with respect to z(·), defined by

z(t) = x(t) + µ(t)v(t), (19)

where

µ(t) =
1

λ(t)
∀t ≥ 0.

To this end we will make use of the resolvent and Yosida approximation of the convex subdif-
ferential of Ψ. For γ > 0, we denote by

Jγ∂Φ = (Id +γ∂Φ)−1

the resolvent of γ∂Φ. Due to the maximal monotonicity of ∂Φ, the resolvent Jγ∂Φ : H → H is a
single-valued operator with full-domain, which is, furthermore, nonexpansive, that is 1-Lipschitz
continuous. Let us notice that the resolvent of the convex subdifferential is nothing else than
the the proximal point operator and for all x ∈ H we have

Jγ∂Φ(x) = proxγΦ(x) = argmin
u∈H

{
Φ(u) +

1

2γ
‖u− x‖2

}
.

The Yosida regularization of ∂Φ is defined by

(∂Φ)γ =
1

γ
(Id−Jγ∂Φ)
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and it is γ−1-Lipschitz continuous. For more properties of these operators we refer the reader
to [14].

Assume now that (x, v) is a strong global solution of (14). From (19) we have for every
t ∈ [0,+∞)

v(t) ∈ ∂Φ(x(t))⇔ z(t) ∈ x(t) + µ(t)∂Φ(x(t)) = (Id +µ(t)∂Φ)(x(t)),

thus, from the definition of the resolvent we derive that relation (ii) in Definition 2 is equivalent
to

x(t) = Jµ(t)∂Φ(z(t)). (20)

From (19), (20) and the definition of the Yosida regularization we obtain

v(t) = (∂Φ)µ(t)(z(t)). (21)

Further, by differentiating (19) and taking into account (iii) in Definition 2, we get for almost
every t ∈ [0,+∞)

ż(t) = ẋ(t) + µ̇(t)v(t) + µ(t)v̇(t) = µ̇(t)v(t)− µ(t)v(t)− µ(t)∇Θ(x(t))− β(t)µ(t)∇Ψ(x(t)).
(22)

Taking into account (20), (21) and (22) we conclude that z defined in (19) is a strong global
solution of the dynamical system{
ż(t) +

(
µ(t)− µ̇(t)

)
(∂Φ)µ(t)(z(t)) + µ(t)∇Θ

(
Jµ(t)∂Φ(z(t))

)
+ β(t)µ(t)∇Ψ

(
Jµ(t)∂Φ(z(t))

)
=0

z(0) = x0 + µ(0)v0.
(23)

Vice versa, if z is a strong global solution of (23), then one obtains via (20) and (21) a strong
global solution of (14).

Remark 6 By considering the time discretization ż(t) ≈ zn+1−zn
hn

of the above dynamical system
and by taking µ constant, from (20) and (23) we obtain the iterative scheme

(∀n ≥ 0)

{
xn = proxµΦ(zn)

zn+1 = (1− hn)zn + hn
(
xn − µ∇Θ(xn)− µβn∇Ψ(xn)

)
,

(24)

which for hn = 1 yields the following algorithm

(∀n ≥ 0) xn+1 = proxµΦ

(
xn − µ∇Θ(xn)− µβn∇Ψ(xn)

)
. (25)

The convergence of the above algorithm has been investigated in [20] in the more general
framework of monotone inclusion problems, under the use of variable step sizes (µn)n≥0 and by
assuming that

∀p ∈ ranNargmin Ψ

∑
n∈N

µnβn

[
Ψ∗
(
p

βn

)
− σargmin Ψ

(
p

βn

)]
< +∞,

which is a condition that can be seen as a discretized version of the one stated in (7). The case
Θ(x) = 0 for all x ∈ H has been treated in [10] (see also the references therein).

Next we show that, given x0, v0 ∈ H and by assuming (H1
λ) and (H1

β), there exists a unique
strong global solution of the dynamical system (23). This will be done in the framework of the
Cauchy-Lipschitz Theorem for absolutely continuous trajectories (see for example [25, Proposi-
tion 6.2.1], [28, Theorem 54]). To this end we will make use of the following Lipschitz property
of the resolvent operator as a function of the step size, which actually is a consequence of the
classical results [24, Proposition 2.6] and [14, Proposition 23.28] (see also [13, Proposition 2.3]
and [2, Proposition 3.1]).
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Proposition 7 Assume that (HΦ) holds, x ∈ H and 0 < δ < +∞. Then the mapping τ 7→
Jτ∂Φx is Lipschitz continuous on [δ,+∞). More precisely, for any λ1, λ2 ∈ [δ,+∞) the following
inequality holds:

‖Jλ1∂Φx− Jλ2∂Φx‖ ≤ |λ1 − λ2| · ‖(∂Φ)δx‖. (26)

Furthermore, the function λ 7→ ‖(∂Φ)λx‖ is nonincreasing.

Notice that the dynamical system (23) can be written as{
ż(t) = f(t, z(t))
z(0) = z0,

(27)

where z0 = x0 + µ(0)v0 and f : [0,+∞)×H → H is defined by

f(t, w) =
(
µ̇(t)− µ(t)

)
(∂Φ)µ(t)(w)− µ(t)∇Θ

(
Jµ(t)∂Φ(w)

)
− β(t)µ(t)∇Ψ

(
Jµ(t)∂Φ(w)

)
. (28)

In the following we denote by L∇Φ and L∇Ψ the Lipschitz constants of ∇Φ and ∇Ψ, respec-
tively.

(a) Notice that for every t ≥ 0 and every w1, w2 ∈ H we have

‖f(t, w1)− f(t, w2)‖ ≤

(
1 +
|λ̇(t)|
λ(t)

+
L∇Θ

λ(t)
+ L∇Ψ

β(t)

λ(t)

)
‖w1 − w2‖. (29)

Indeed, this follows (28), the Lipschitz properties of the operators involved and the definition of
µ(t). Further, notice that due to (H1

λ) and (H1
β),

Lf : [0,+∞)→ R, Lf (t) = 1 +
|λ̇(t)|
λ(t)

+
L∇Θ

λ(t)
+ L∇Ψ

β(t)

λ(t)
,

which is for every t ≥ 0 equal to the Lipschitz-constant of f(t, ·), satisfies

Lf (·) ∈ L1([0, b]) for any 0 < b < +∞.

(b) We show now that

∀w ∈ H, ∀b > 0, f(·, w) ∈ L1([0, b],H). (30)

We fix w ∈ H and b > 0. Due to (H1
λ), there exist λmin, λmax > 0 such that

0 < λmin ≤ λ(t) ≤ λmax ∀t ∈ [0, b],

hence

0 <
1

λmax
≤ µ(t) ≤ 1

λmin
∀t ∈ [0, b].

Relying on Proposition 7 we obtain for all t ∈ [0, b] the following chain of inequalities:

‖f(t, w)‖ ≤ |µ̇(t)− µ(t)| · ‖(∂Φ) 1
λmax

(w)‖

+ µ(t)‖∇Θ(Jµ(t)∂Φ(w))−∇Θ(J 1
λmax

∂Φ(w))‖+ µ(t)‖∇Θ(J 1
λmax

∂Φ(w))‖

+ β(t)µ(t)‖∇Ψ(Jµ(t)∂Φ(w))−∇Ψ(J 1
λmax

∂Φ(w))‖+ β(t)µ(t)‖∇Ψ(J 1
λmax

∂Φ(w))‖

≤ |µ̇(t)− µ(t)| · ‖(∂Φ) 1
λmax

(w)‖

+ L∇Θµ(t)

(
µ(t)− 1

λmax

)
· ‖∇Θ(J 1

λmax
∂Φ(w))‖+ µ(t)‖∇Θ(J 1

λmax
∂Φ(w))‖

+ L∇Ψβ(t)µ(t)

(
µ(t)− 1

λmax

)
· ‖∇Ψ(J 1

λmax
∂Φ(w))‖+ β(t)µ(t)‖∇Ψ(J 1

λmax
∂Φ(w))‖.
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Now (30) follows from the properties of the functions µ and β, and the fact that

|µ̇(t)− µ(t)| ≤ 1

λmin

(
1 +
|λ̇(t)|
λmin

)
for almost every t ≥ 0.

In the light of the statements proven in (a) and (b), the existence and uniqueness of a
strong global solution of the dynamical system (23) follow from [25, Proposition 6.2.1] (see
also [28, Theorem 54]).

Finally, similarly to the proof of [13, Theorem 2.4(ii)], one can guarantee the existence and
uniqueness of the trajectories generated by (14) by relying on the properties of the dynamical
system (23) and on (20) and (21). The details are left to the reader.

4 Convergence of the trajectories and of the objective function
values

In this section we prove weak convergence for the trajectory generated by the dynamical system
(14) to an optimal solution of (13) as well as convergence for the objective function values of
the latter along the trajectory. Some techniques from [7] and [13] will be useful in this context.

To this end we will make the following supplementary assumptions:

(H2
λ) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous and λ̇(t) ≤ 0 for almost every

t ∈ [0,+∞);

(H2
β) β : [0,+∞)→ (0,+∞) is measurable and bounded from above on each interval [0, b],

0 < b < +∞;

(H) ∀p ∈ ranNargmin Ψ

∫ +∞

0
β(t)

[
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

)]
dt < +∞;

(H̃) ∂(Φ + Θ + δargmin Ψ) = ∂Φ +∇Θ +Nargmin Ψ,

where

• Nargmin Ψ is the normal cone to the set argmin Ψ: Nargmin Ψ(x) = {p ∈ H : 〈p, y − x〉 ≤
0 ∀y ∈ argmin Ψ} for x ∈ argmin Ψ and Nargmin Ψ(x) = ∅ for x 6∈ argmin Ψ;

• ranNargmin Ψ is the range of the normal cone Nargmin Ψ: p ∈ ranNargminψ if and only if
there exists x ∈ argmin Ψ such that p ∈ Nargmin Ψ(x);

• Ψ∗ : H → R∪{+∞} is the Fenchel conjugate of Ψ: Ψ∗(p) = supx∈H{〈p, x〉−Ψ(x)} ∀p ∈ H;

• σargmin Ψ : H → R ∪ {+∞} is the support function of the set argmin Ψ: σargmin Ψ(p) =
supx∈argmin Ψ〈p, x〉 for all p ∈ H;

• δargmin Ψ : H → R ∪ {+∞} is the indicator function of argmin Ψ: it takes the value 0 on
the set argmin Ψ and +∞, otherwise.

We have Nargmin Ψ = ∂δargmin Ψ. Moreover, p ∈ Nargmin Ψ(x) if and only if x ∈ argmin Ψ and
σargmin Ψ(p) = 〈p, x〉.

Remark 8 (a) The condition λ̇(t) ≤ 0 for almost every t ∈ [0,+∞) has been used in [13] in
the study of the asymptotic convergence of the dynamical system (1), when approaching
the monotone inclusion problem (2).

(b) Under (HΨ), due to Ψ ≤ δargmin Ψ, we have Ψ∗ ≥ δ∗argmin Ψ = σargmin Ψ.
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(c) When Ψ = 0 (see Remark 5(b)), it holds Nargmin Ψ(x) = {0} for every x ∈ argmin Ψ = H,
Ψ∗ = σargmin Ψ = δ{0}, which shows that in this case (H) trivially holds.

(d) A nontrivial situation in which condition (H) is fulfilled is when ψ(x) = 1
2 infy∈C ‖x− y‖2,

for a nonempty, convex and closed set C ⊆ H (see [7]). Then (7) holds if and only if∫ +∞

0

1

β(t)
dt < +∞,

which is trivially satisfied for β(t) = (1 + t)α with α > 1.

(e) Due to the continuity of Θ, the condition (H̃) is equivalent to

∂(Φ + δargmin Ψ) = ∂Φ +Nargmin Ψ,

which holds when 0 ∈ sqri(dom Φ−argmin Ψ), a condition that is fulfilled, if Φ is continuous
at a point in dom Φ ∩ argmin Ψ or int(argmin Ψ) ∩ dom Φ 6= ∅ (we invite the reader to
consult also [14], [16] and [29] for other sufficient conditions for the above subdifferential
sum formula). Here, for M ⊆ H a convex set,

sqriM := {x ∈M : ∪λ>0λ(M − x) is a closed linear subspace of H}

denotes its strong quasi-relative interior. We always have intM ⊆ sqriM (in general this
inclusion may be strict). If H is finite-dimensional, then sqriM coincides with riM , the
relative interior of M , which is the interior of M with respect to its affine hull.

The following differentiability result of the composition of convex functions with absolutely
continuous trajectories that is due to Brézis (see [24, Lemme 4, p. 73] and also [7, Lemma 3.2])
will play an important role in our analysis.

Lemma 9 Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function.
Let x ∈ L2([0, T ],H) be absolutely continuous such that ẋ ∈ L2([0, T ],H) and x(t) ∈ dom f for
almost every t ∈ [0, T ]. Assume that there exists ξ ∈ L2([0, T ],H) such that ξ(t) ∈ ∂f(x(t)) for
almost every t ∈ [0, T ]. Then the function t 7→ f(x(t)) is absolutely continuous and for every t
such that x(t) ∈ dom ∂f we have

d

dt
f(x(t)) = 〈ẋ(t), h〉 ∀h ∈ ∂f(x(t)).

We start our convergence analysis with the following technical result.

Lemma 10 Assume that (HΨ), (HΘ), (HΦ), (H1
λ) and (H2

β) hold and let (x, v) : [0,+∞) →
H×H be a strong stable solution of the dynamical system (14). Then the following statements
are true:

(i) 〈ẋ(t), v̇(t)〉 ≥ 0 for almost every t ∈ [0,+∞);

(ii) d
dtΦ(x(t)) = 〈ẋ(t), v(t)〉 for almost every t ∈ [0,+∞).

Proof. (i) See [13, Proposition 3.1]. The proof relies on the first relation in (14) and the
monotonicity of the convex subdifferential.

(ii) The proof makes use of Lemma 9. Let T > 0 be fixed. Due to the continuity of x and v
we obviously have

x, v ∈ L2([0, T ],H).
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The only condition which has to be checked is ẋ ∈ L2([0, T ],H). By considering the second
relation in (14) and by inner multiplying it with ẋ(t), we derive for almost every t ∈ [0, T ]

λ(t)‖ẋ(t)‖2 + 〈ẋ(t), v̇(t)〉+ 〈ẋ(t), v(t)〉+ 〈ẋ(t),∇Θ(x(t))〉+ β(t)〈ẋ(t),∇Ψ(x(t))〉 = 0.

Using (i) we obtain for almost every t ∈ [0, T ]

λ(t)‖ẋ(t)‖2 + 〈ẋ(t), v(t)〉+ 〈ẋ(t),∇Θ(x(t))〉+ β(t)〈ẋ(t),∇Ψ(x(t))〉 ≤ 0. (31)

Since x, v are continuous on [0, T ], they are bounded on [0, T ], a property which is shared also
by t 7→ β(t)∇Ψ(x(t)), due to (H2

β) and (HΨ), and by t 7→ ∇Θ(x(t)), due to (HΘ). Since λ is
bounded from below by a positive constant on [0, T ], from (31) one easily obtains that

ẋ ∈ L2([0, T ],H)

and the conclusion follows by applying Lemma 9. �

Lemma 11 Assume that (HΨ), (HΘ), (HΦ), (H2
λ), (H2

β), (H) and (H̃) hold and let (x, v) :
[0,+∞) → H × H be a strong stable solution of the dynamical system (14). Choose arbitrary
z ∈ S and p ∈ Nargmin Ψ(z) such that −p −∇Θ(z) ∈ ∂Φ(z). Define gz, hz : [0,+∞) → [0,+∞)
as

gz(t) = Φ(z)− Φ(x(t)) + 〈v(t), x(t)− z〉

and
hz(t) = Θ(z)−Θ(x(t)) + 〈∇Θ(x(t)), x(t)− z〉.

The following statements are true:

(i) ∃ limt→+∞

(
λ(t)

2 ‖x(t)− z‖2 + gz(t)
)
∈ [0,+∞);

(ii)
∫ +∞

0 β(t)Ψ(x(t))dt < +∞;

(iii) ∃ limt→+∞
∫ t

0 〈p, x(s)− z〉ds ∈ R;

(iv) ∃ limt→+∞
∫ t

0

(
(Φ + Θ)(x(s))− (Φ + Θ)(z) + β(s)Ψ(x(s))

)
ds ∈ R;

(v) ∃ limt→+∞
∫ t

0

(
〈v(s), x(s)− z〉+ 〈∇Θ(x(s)), x(s)− z〉+ β(s)Ψ(x(s)

)
ds ∈ R;

(vi) ∃ limt→+∞
∫ t

0

(
(Φ + Θ)(x(s))− (Φ + Θ)(z)

)
ds ∈ R;

(vii) ∃ limt→+∞
∫ t

0

(
〈v(s), x(s)− z〉+ 〈∇Θ(x(s)), x(s)− z〉

)
ds ∈ R;

(viii) gz ∈ L1([0,+∞)) ∩ L∞([0,+∞)) and hz ∈ L1([0,+∞)).

Proof. For the beginning, we notice that from the definition of S and (H̃) we have

0 ∈ ∂(Φ + Θ + δargmin Ψ)(z) = ∂Φ(z) +∇Θ(z) +Nargmin Ψ(z),

hence there exists
p ∈ Nargmin Ψ(z) (32)

such that
−p−∇Θ(z) ∈ ∂Φ(z). (33)
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For almost every t ≥ 0 it holds according to (14)

d

dt

(
λ(t)

2
‖x(t)− z‖2

)
=

λ̇(t)

2
‖x(t)− z‖2 + λ(t)〈ẋ(t), x(t)− z〉

=
λ̇(t)

2
‖x(t)− z‖2 − 〈v̇(t), x(t)− z〉 − 〈v(t), x(t)− z〉

− 〈∇Θ(x(t)), x(t)− z〉 − β(t)〈∇Ψ(x(t)), x(t)− z〉. (34)

From (14) and the convexity of Φ,Θ and Ψ we have for every t ∈ [0,+∞)

Φ(z) ≥ Φ(x(t)) + 〈v(t), z − x(t)〉 (35)

Θ(z) ≥ Θ(x(t)) + 〈∇Θ(x(t)), z − x(t)〉 (36)

and
0 = Ψ(z) ≥ Ψ(x(t)) + 〈∇Ψ(x(t)), z − x(t)〉. (37)

From (33) and the convexity Φ and Θ we obtain for every t ∈ [0,+∞)

Φ(x(t)) ≥ Φ(z) + 〈−p−∇Θ(z), x(t)− z〉 (38)

and
Θ(x(t)) ≥ Θ(z) + 〈∇Θ(z), x(t)− z〉. (39)

Further, due to Lemma 10(ii) it holds for almost every t ∈ [0,+∞)

d

dt
gz(t) = − 〈ẋ(t), v(t)〉+ 〈v̇(t), x(t)− z〉+ 〈v(t), ẋ(t)〉

= 〈v̇(t), x(t)− z〉. (40)

On the other hand, using (32) and the Young-Fenchel inequality we obtain for every t ∈
[0,+∞)

β(t)Ψ(x(t)) + 〈−p, x(t)− z〉 = β(t)

(
Ψ(x(t)) +

〈
−p
β(t)

, x(t)− z
〉)

= β(t)

(
Ψ(x(t))−

〈
p

β(t)
, x(t)

〉
+ σargmin Ψ

(
p

β(t)

))
≥ β(t)

(
−Ψ∗

(
p

β(t)

)
+ σargmin Ψ

(
p

β(t)

))
. (41)

Finally, we obtain for almost every t ∈ [0,+∞)

d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+ β(t)

(
−Ψ∗

(
p

β(t)

)
+ σargmin Ψ

(
p

β(t)

))
≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+ β(t)Ψ(x(t)) + 〈−p, x(t)− z〉

≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+ (Φ + Θ)(x(t))− (Φ + Θ)(z) + β(t)Ψ(x(t))

≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+ 〈v(t), x(t)− z〉+ 〈∇Θ(x(t)), x(t)− z〉+ β(t)Ψ(x(t))

≤ 0, (42)

where the first inequality follows from (41), the second one from (38) and (39), the next one
from (35) and (36), and the last one from (H2

λ), (34), (40) and (37).
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(i) Since for almost every t ∈ [0,+∞) we have (see (42))

d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
≤ β(t)

(
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

))
,

the conclusion follows from Lemma 2, (H) and the fact that gz(t) ≥ 0 for every t ≥ 0.
(ii) Let F : [0,+∞)→ R be defined by

F (t) =

∫ t

0

(
− β(s)Ψ(x(s)) + 〈p, x(s)− z〉

)
ds ∀t ∈ [0,+∞).

From (42) we have for almost every s ∈ [0,+∞)

−β(s)Ψ(x(s)) + 〈p, x(s)− z〉 ≥ d

ds

(
λ(s)

2
‖x(s)− z‖2 + gz(s)

)
.

By integration we obtain for every t ∈ [0,+∞)

F (t) ≥ λ(t)

2
‖x(t)− z‖2 + gz(t)−

λ(0)

2
‖x0 − z‖2 − gz(0)

≥ − λ(0)

2
‖x0 − z‖2 − gz(0),

hence F is bounded from below. Furthermore, from (41) we derive for every t ∈ [0,+∞)

d

dt
F (t) = − β(t)Ψ(x(t)) + 〈p, x(t)− z〉

≤ β(t)

(
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

))
.

From (H) and Lemma 2 it follows that limt→+∞ F (t) exists and it is a real number. Hence

∃ lim
t→+∞

∫ t

0

(
β(s)Ψ(s) + 〈−p, x(s)− z〉

)
ds ∈ R. (43)

Further, since ψ ≥ 0, we obtain for every t ∈ [0,+∞)

β(t)Ψ(x(t)) + 〈−p, x(t)− z〉 ≥ β(t)

2
Ψ(x(t)) + 〈−p, x(t)− z〉.

Similarly to (41)one can show that for every t ∈ [0,+∞)

β(t)

2
Ψ(x(t)) + 〈−p, x(t)− z〉 ≥ β(t)

2

(
−Ψ∗

(
2p

β(t)

)
+ σargmin Ψ

(
2p

β(t)

))
,

while from (42) we obtain that for almost every t ∈ [0,+∞) it holds

d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+
β(t)

2

(
−Ψ∗

(
2p

β(t)

)
+ σargmin Ψ

(
2p

β(t)

))
≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+
β(t)

2
Ψ(x(t)) + 〈−p, x(t)− z〉

≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+ β(t)Ψ(x(t)) + 〈−p, x(t)− z〉

≤ 0
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By using the same arguments as used in the proof of (43) it yields that

∃ lim
t→+∞

∫ t

0

(
β(s)

2
Ψ(s) + 〈−p, x(s)− z〉

)
ds ∈ R. (44)

Finally, from (43) and (44) we obtain (ii).
(iii) Follows from (43) and (ii).
(iv)-(v) These statements follow from (42) and (41), by using similar arguments as used for

proving (43).
(vi)-(vii) These statements are direct consequences of (iv), (v) and (ii).
(viii) Combining (vi) and (vii) with gz, hz ≥ 0, we easily derive that

gz + hz ∈ L1([0,+∞)).

Since
0 ≤ gz ≤ gz + hz,

we deduce that gz ∈ L1([0,+∞)) and hz ∈ L1([0,+∞)). Finally, notice that due to (i) there
exists T > 0 such that gz is bounded on [T,+∞). The boundedness of gz on [0, T ] follows from
(38) and the continuity of x and v. Thus, gz ∈ L∞([0,+∞)). �

In order to proceed with the asymptotic analysis of the dynamical system (14), we make the
following more involved assumptions on the functions λ and β, respectively:

(H3
λ) λ : [0,+∞)→ (0,+∞) is locally absolutely continuous, λ̇(t) ≤ 0 for almost every

t ∈ [0,+∞) and lim
t→+∞

λ(t) > 0;

(H3
β) β : [0,+∞)→ (0,+∞) is locally absolutely continuous, it satisfies for some k ≥ 0 the

growth condition 0 ≤ β̇(t) ≤ kβ(t) for almost every t ∈ [0,+∞) and lim
t→+∞

β(t) = +∞.

Lemma 12 Assume that (HΨ), (HΘ), (HΦ), (H3
λ), (H3

β), (H) and (H̃) hold and let (x, v) :
[0,+∞) → H × H be a strong stable solution of the dynamical system (14). The following
statements are true:

(i) x is bounded;

(ii) limt→+∞Ψ(x(t)) = 0.

Proof. Take an arbitrary z ∈ S and (according to (H̃)) p ∈ Nargmin Ψ(z) such that −p −
∇Θ(z) ∈ ∂Φ(z) and consider the functions gz, hz defined in Lemma 11.

(i) According to Lemma 11(i), since gz ≥ 0, we have that t 7→ λ(t)‖x(t) − z‖2 is bounded,
which combined with limt→+∞ λ(t) > 0 implies that x is bounded.

(ii) Consider the function E1 : [0,+∞)→ R defined for every t ∈ [0,+∞) by

E1(t) =
(Φ + Θ)(x(t))

β(t)
+ Ψ(x(t)).
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Using Lemma 10 and (14) we obtain for almost every t ∈ [0,+∞)

Ė1(t) =
1

β(t)

(
〈v(t), ẋ(t)〉+ 〈∇Θ(x(t)), ẋ(t)〉

)
− β̇(t)

β2(t)
(Φ + Θ)(x(t)) + 〈∇Ψ(x(t)), ẋ(t)〉

=
1

β(t)
〈v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)), ẋ(t)〉 − β̇(t)

β2(t)
(Φ + Θ)(x(t))

=
1

β(t)
〈−λ(t)ẋ(t)− v̇(t), ẋ(t)〉 − β̇(t)

β2(t)
(Φ + Θ)(x(t))

= − λ(t)

β(t)
‖ẋ(t)‖2 − 1

β(t)
〈v̇(t), ẋ(t)〉 − β̇(t)

β2(t)
(Φ + Θ)(x(t))

≤ − β̇(t)

β2(t)
inf
t≥0

(Φ + Θ)(x(t)), (45)

where we used that, according to (38), (39) and (i), (Φ + Θ)(x(t)) is bounded from below. From
(45) and Lemma 2 it follows that there exists limt→+∞E1(t) ∈ R.

Using now Lemma 11(iv) we get

lim inf
t→+∞

(
(Φ + Θ)(x(t))− (Φ + Θ)(z) + β(t)Ψ(x(t))

)
≤ 0 (46)

and, since (Φ+Θ)(x(t)) is bounded from below, this limes inferior is a real number. Let (tn)n∈N
be a sequence with limn→+∞ tn = +∞ such that

lim
n→+∞

(
(Φ + Θ)(x(tn))− (Φ + Θ)(z) + β(tn)Ψ(x(tn))

)
=

lim inf
t→+∞

(
(Φ + Θ)(x(t))− (Φ + Θ)(z) + β(t)Ψ(x(t))

)
∈ R.

Since

E1(tn) =
1

β(tn)

(
(Φ + Θ)(x(tn))− (Φ + Θ)(z) + β(tn)Ψ(x(tn))

)
+

(Φ + Θ)(z)

β(tn)
∀n ∈ N

and limn→+∞ β(tn) = +∞, it yields that limn→+∞E1(tn) = 0. Thus, since limt→+∞E1(t)
exists,

lim
t→+∞

E1(t) = 0.

The statement follows by taking into consideration that for every t ∈ [0,+∞)

0 ≤ Ψ(x(t)) ≤ Ψ(x(t))+
1

β(t)

(
(Φ+Θ)(x(t))− inf

s≥0
(Φ+Θ)(x(s))

)
= E1(t)− 1

β(t)
inf
s≥0

(Φ+Θ)(x(s))

in combination with limt→+∞ β(t) = +∞. �

Lemma 13 Assume that (HΨ), (HΘ), (HΦ), (H3
λ), (H3

β), (H) and (H̃) hold and let (x, v) :
[0,+∞)→ H×H be a strong stable solution of the dynamical system (14). Then

lim inf
t→+∞

(Φ + Θ)(x(t)) ≥ (Φ + Θ)(z) ∀z ∈ S.

Proof. Take an arbitrary z ∈ S. From (H̃) there exists p ∈ Nargmin Ψ(z) such that −p −
∇Θ(z) ∈ ∂Φ(z). From Lemma 11(iii) we get

lim inf
t→+∞

〈−p, x(t)− z〉 ≤ 0. (47)

15



We claim that
lim inf
t→+∞

〈−p, x(t)− z〉 = 0. (48)

Since according to the previous lemma x is bounded, this limit inferior is a real number. Let
(tn)n∈N be a sequence with limn→+∞ tn = +∞ such that

lim
n→+∞

〈−p, x(tn)− z〉=lim inf
t→+∞

〈−p, x(t)− z〉 ∈ R. (49)

Using again that x is bounded, there exists x ∈ H and a subsequence (x(tnk)) such that
(x(tnk))k≥0 converges weakly to x as k → +∞. From (49) we derive

lim inf
t→+∞

〈−p, x(t)− z〉 = 〈−p, x− z〉. (50)

Since Ψ is weak lower semicontinuous, from Lemma 12(ii) we get

0 ≤ Ψ(x) ≤ lim inf
k→+∞

Ψ(x(tnk)) = 0,

hence x ∈ argmin Ψ. Combining this with p ∈ Nargmin Ψ(z) we derive 〈−p, x− z〉 ≥ 0. From (50)
and (47) we conclude that (48) is true. Moreover, due to −p − ∇Θ(z) ∈ ∂Φ(z), (38) and (39)
we obtain

(Φ + Θ)(x(t)) ≥ (Φ + Θ)(z) + 〈−p, x(t)− z〉

and the conclusion follows from (48). �

Remark 14 One can notice that the condition β̇ ≤ kβ has not been used in the proofs of
Lemma 12 and Lemma 13.

We come now to the main results of the paper.

Theorem 15 Assume that (HΨ), (HΘ), (HΦ), (H3
λ), (H3

β), (H) and (H̃) hold and let (x, v) :
[0,+∞) → H × H be a strong stable solution of the dynamical system (14). The following
statements are true:

(i)
∫ +∞

0 β(t)Ψ(x(t))dt < +∞;

(ii) ẋ ∈ L2([0,+∞);H);

(iii) 〈ẋ, v̇〉 ∈ L1([0,+∞));

(iv) (Φ + Θ)(x(t)) converges to the optimal objective value of (13) as t→ +∞;

(v) limt→+∞Ψ(x(t)) = limt→+∞ β(t)Ψ(x(t)) = 0;

(vi) x(t) converges weakly to an optimal solution of (13) as t→ +∞.

Proof. Take an arbitrary z ∈ S. From (H̃) there exists p ∈ Nargmin Ψ(z) such that −p −
∇Θ(z) ∈ ∂Φ(z). Consider again the functions gz, hz defined in Lemma 11.

Notice that statement (i) has been already proved in Lemma 11.
Further, consider the function E2 : [0,+∞)→ R defined for every t ∈ [0,+∞) as

E2(t) = (Φ + Θ)(x(t)) + β(t)Ψ(x(t)).
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By using Lemma 10, relation (14) and (H3
β) we derive for almost every t ∈ [0,+∞)

Ė2(t) = 〈v(t), ẋ(t)〉+ 〈∇Θ(x(t)), ẋ(t)〉+ β(t)〈∇Ψ(x(t)), ẋ(t)〉+ β̇(t)Ψ(x(t))

= 〈v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)), ẋ(t)〉+ β̇(t)Ψ(x(t))

= 〈−λ(t)ẋ(t)− v̇(t), ẋ(t)〉+ β̇(t)Ψ(x(t))

≤ − λ(t)‖ẋ(t)‖2 − 〈ẋ(t), v̇(t)〉+ kβ(t)Ψ(x(t)). (51)

Since E2 is bounded from below, a simple integration procedure in (51) combined with (i),
Lemma 10(i) and Lemma 2 yields

∃ lim
t→+∞

E2(t) ∈ R, (52)∫ +∞

0
λ(t)‖ẋ(t)‖2dt < +∞

and ∫ +∞

0
〈ẋ(t), v̇(t)〉dt < +∞,

which is statement (iii). Statement (ii) follows by taking into account that lim inft→+∞ λ(t) > 0.
Further, since β(t)Ψ(x(t)) ≥ 0, from (46) and Lemma 13 we get that

lim inf
t→+∞

(
(Φ + Θ)(x(t))− (Φ + Θ)(z) + β(t)Ψ(x(t))

)
= 0. (53)

Taking into account the definition of E2 and the fact that limt→+∞E2(t) ∈ R, we conclude that

lim
t→+∞

E2(t) = (Φ + Θ)(z). (54)

Further, we have

lim sup
t→+∞

(Φ + Θ)(x(t)) ≤ lim sup
t→+∞

(
(Φ + Θ)(x(t)) + β(t)Ψ(x(t))

)
= lim

t→+∞
E2(t) = (Φ + Θ)(z),

which combined with Lemma 13 yields

lim
t→+∞

(Φ + Θ)(x(t)) = (Φ + Θ)(z), (55)

hence (iv) holds.
The statement (v) is a consequence of Lemma 12(ii), (54), (55) and the definition of E2.
In order to prove statement (vi), we will make use of the Opial Lemma 4. From (42) we have

for almost every t ∈ [0,+∞)

λ̇(t)

2
‖x(t)− z‖2 + λ(t)〈ẋ(t), x(t)− z〉+

d

dt
gz(t) ≤ β(t)

(
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

))
,

hence

d

dt
gz(t) ≤ β(t)

(
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

))
− λ̇(t)

2
‖x(t)− z‖2 + λ(t)‖ẋ(t)‖ · ‖x(t)− z‖

= G1(t) +G2(t), (56)

where

G1(t) = β(t)

(
Ψ∗
(

p

β(t)

)
− σargmin Ψ

(
p

β(t)

))
− λ̇(t)

2
‖x(t)− z‖2

17



and
G2(t) = λ(t)‖ẋ(t)‖ · ‖x(t)− z‖.

Now using that x is bounded, from (ii) and (H) we derive that

G1 ∈ L1([0,+∞))

and
G2 ∈ L2([0,+∞)).

From (56), a direct application of Lemma 3 and Lemma 11(viii) yields

lim
t→+∞

gz(t) = 0.

By combining this with Lemma 11(i) and the fact that limt→+∞ λ(t) > 0, we conclude that
there exists limt→+∞ ‖x(t) − z‖ ∈ R. Since z ∈ S has been chose arbitrary, the first condition
of the Opial Lemma is fulfilled.

Let (tn)n∈N be a sequence of positive numbers such that limn→+∞ tn = +∞ and x(tn)
converges weakly to x∞ as n→ +∞. By using the weak lower semicontinuity of Ψ and Lemma
12(ii) we obtain

0 ≤ Ψ(x∞) ≤ lim inf
n→+∞

Ψ(x(tn)) = 0,

hence x∞ ∈ argmin Ψ. Moreover, the weak lower semicontinuity of Φ + Θ and (55) yield

(Φ + Θ)(x∞) ≤ lim inf
n→+∞

(Φ + Θ)(x(tn)) = (Φ + Θ)(z),

thus x∞ ∈ S. �

Remark 16 An anonymous reviewer raised the question whether the trajectories generated by
(14) diverge in norm in case the optimization problem (13) has no solution. In the following we
give a positive answer to this question.

We assume that dom Φ ∩ argmin Ψ 6= ∅ (otherwise the optimization problem (13) is degen-
erate). We suppose that all the hypotheses of Theorem 15, excepting the assumption that the
set of optimal solutions S is nonemtpy, hold.

Let (x, v) : [0. +∞) → H × H be a strong stable solution of (14) and assume that x is
bounded. In other words, there exists M > 0 such that

‖x(t)‖ ≤M ∀t ≥ 0. (57)

Take z ∈ dom Φ ∩ argmin Ψ and r > 0 such that

r > max{‖z‖,M}. (58)

In the following we denote by B(0, r) the closed ball centered at origin with radius r. We will
use at follows several times the fact that the normal cone to a set at an element belonging to
the interior of this set reduces to {0}. Due to (58), we consequently have

∂
(

Φ + δB(0,r)

)
(x(t)) = ∂Φ(x(t)) +NB(0,r)(x(t)) = ∂Φ(x(t)) ∀t ≥ 0.

This means that (x, v) is a strong global solution of the system{
v(t) ∈ ∂

(
Φ + δB(0,r)

)
(x(t))

λ(t)ẋ(t) + v̇(t) + v(t) +∇Θ(x(t)) + β(t)∇Ψ(x(t)) = 0
(59)
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too.
This continuous system can be associated to the optimization problem

inf
x∈argmin Ψ

{Φ(x) + δB(0,r)(x) + Θ(x)}. (60)

Notice that the set of optimal solutions to (60) is nonempty, since its objective function is
coercive. Further, by combining (H̃) with (58), we obtain:

∂
(

Φ + δB(0,r) + Θ + δargmin Ψ

)
= ∂

(
Φ + δB(0,r)

)
+∇Θ +Nargmin Ψ. (61)

By applying Theorem 15 to the optimization problem (60) and the continuous system (59), it
follows that there exists an optimal splution u to (60) such that x(t) converges weakly to u as
t → +∞. Due to the weak-lower semicontinuity of the norm function, from (57) and (58) it
follows that u belongs to the interior of the closed ball B(0, r). Thus, from (61), (58) and (H̃)
we derive

0 ∈ ∂
(

Φ + δB(0,r) + Θ + δargmin Ψ

)
(u) = ∂ (Φ + Θ + δargmin Ψ) (u).

The later implies that the set of optimal solutions to (13) is nonempty, which contradicts the
assumption we made. In this way, our claim is proved.

In the last result we show that if the objective function of (13) is strongly convex, then the
trajectory x(·) generated by (14) converges strongly to the unique optimal solution of (13).

Theorem 17 Assume that (HΨ), (HΘ), (HΦ), (H3
λ), (H3

β), (H) and (H̃) hold and let (x, v) :
[0,+∞)→ H×H be a strong stable solution of the dynamical system (14). If Φ + Θ is strongly
convex, then x(t) converges strongly to the unique optimal solution of (13) as t→ +∞.

Proof. Let γ > 0 be such that Φ + Θ is γ-strongly convex. It is a well-known fact that in case
the optimization problem (13) has a unique optimal solution, which we denote by z. From (H̃)
there exists p ∈ Nargmin Ψ(z) such that −p−∇Θ(z) ∈ ∂Φ(z). Consider again the functions gz, hz
defined in Lemma 11.

By combining (41) with the stronger inequality

(Φ + Θ)(x(t))− (Φ + Θ)(z) ≥ 〈−p, x(t)− z〉+
γ

2
‖x(t)− z‖2 ∀t ∈ [0,+∞), (62)

we obtain this time (see the proof of Lemma 11) for almost every t ∈ [0,+∞)

d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+
γ

2
‖x(t)− z‖2 + β(t)

(
−Ψ∗

(
p

β(t)

)
+ σargmin Ψ

(
p

β(t)

))
≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+
γ

2
‖x(t)− z‖2 + β(t)Ψ(x(t)) + 〈−p, x(t)− z〉

≤ d

dt

(
λ(t)

2
‖x(t)− z‖2 + gz(t)

)
+ (Φ + Θ)(x(t))− (Φ + Θ)(z) + β(t)Ψ(x(t))

≤ 0. (63)

Taking into account (H), by integration of the above inequality we obtain∫ +∞

0
‖x(t)− z‖2dt < +∞.

Since according to the proof of Theorem 15, limt→+∞ ‖x(t)−z‖ exists, we conclude that ‖x(t)−z‖
converges to 0 as t→ +∞ and the proof is complete. �
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Remark 18 The results presented in this paper remain true even if the assumed growth con-
dition is satisfied starting with a t0 ≥ 0, that is, if there exists t0 ≥ 0 such that

0 ≤ β̇(t) ≤ kβ(t) for almost every t ∈ [t0,+∞).
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