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Abstract. We investigate the convergence rates of the trajectories generated by implicit
first and second-order dynamical systems associated to the determination of the zeros of
the sum of a maximally monotone operator and a monotone and Lipschitz continuous one
in a real Hilbert space. We show that these trajectories strongly converge with exponential
rate to a zero of the sum, provided the latter is strongly monotone. We derive from here
convergence rates for the trajectories generated by dynamical systems associated to the
minimization of the sum of a proper, convex and lower semicontinuous function with a
smooth convex one provided the objective function fulfills a strong convexity assumption.
In the particular case of minimizing a smooth and strongly convex function, we prove that
its values converge along the trajectory to its minimum value with exponential rate, too.
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1 Introduction and preliminaries

The main topic of this paper is the investigation of convergence rates for implicit dynamical
systems associated with monotone inclusion problems of the form

find z* € H such that 0 € Az* + Bx™, (1)

where H is a real Hilbert space, A : H = H is a maximally monotone operator, B : H — H
is a monotone and i-Lipschitz continuous operator for 3 > 0 and A + B is p-strongly
monotone for p > 0. Dynamical systems of implicit type have been already considered in
the literature in [1,2,7,9,13,15-18].

We deal in a first instance with the first-order dynamical system with variable relax-
ation parameters

{ #(t) = A(t) [JnA (a:(t) - nB(:c(t))) - w(t>] (2)
z(0) = xo,
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where zg € H, X : [0,4+00) — [0,00) is a Lebesgue measurable function and J,4 denotes
the resolvent of the operator nA for n > 0.

We notice that Abbas and Attouch considered in [1, Section 5.2] the dynamical system
of same type

{ #(t) + 2(t) = prox,q (¢(t) — uB(a(1))) 5
x(0) = xo

in connection to the determination of the zeros of 9® + B, where ® : H — R U {400} is
a proper, convex and lower semicontinuous function, B : H — H is a cocoercive operator,
0% denotes the convex subdifferential of ® and prox,,q denotes the proximal point operator
of ud.

Before that, Antipin in [7] and Bolte in [15] studied the convergence of the trajectories
generated by

x(0) = xo

to a minimizer of the smooth and convex function g : H — R over the nonempty, convex
and closed set C' C ‘H, where p > 0 and Pg denotes the projection operator on the set C.

In the second part of the paper we approach the monotone inclusion (1) via the second-
order dynamical system with variable damping and relaxation parameters

{ #(t) + /(D) + A1) [2(t) = Jya (2() = nB(2(1)) | = 0 )
z(0) = ug, 2(0) = vy,

{ (t) + 2(t) = Po(z(t) — pVg(z(1))) (4)

where ug,vg € H, X : [0, +00) — [0,00) and v : [0,4+00) — [0, 00) are Lebesgue measurable
functions, and 1 > 0.
Second-order dynamical systems of the form

{ E(t) +yi(t) + =(t) — Tx(t) =0 (6)
z(0) = ug, 2(0) = vo,

for v > 0 and T : H — H a nonexpansive operator, have been treated by Attouch and
Alvarez in [8] in connection to the problem of approaching the fixed points of T, see
also [12].

For the minimization of the smooth and convex function g : H — R over the nonempty,
convex and closed set C' C H, a continuous in time second-order gradient-projection
approach has been considered in [7, 8], having as starting point the dynamical system

{ B(t) +va(t) + 2(t) — Po(x(t) —nVg(z(t)) =0 (7)
x(0) = g, £(0) = vy,

with constant damping parameter v > 0 and constant step size n > 0.

For an exhaustive asymptotic analysis of the first and second-order dynamical systems
(2) and (5), in case B is cocoercive, we refer the reader to [16] and [18], respectively.
According to the above-named works, one can expect under mild assumptions on the
relaxation and, in the second-order setting, on the damping functions, that the generated
trajectories converge to a zero of A + B. The main scope of this paper is to show that
when weakening the assumptions on B to monotonicity and Lipschitz continuity, however,
provided that A+ B is strongly monotone, the trajectories converge strongly to the unique
zero of A+ B with an exponential rate. Exponential convergence rates have been obtained



also by Antipin in [7] for the dynamical systems (4) and (7), by imposing for the smooth
function g supplementary strong convexity assumptions.
We transfer the results obtained for both first and second-order dynamical systems to
optimization problems of the form
min f(z)+ g(x), 8
min (2) + 9() (5)
where f : H — RU{+oc} is a proper, convex and lower semicontinuous function, g : H — R
is a convex and (Fréchet) differentiable function with %—Lipschitz continuous gradient for
B > 0and f+ g is p-strongly convex for p > 0, by taking into consideration that its set of
minimizers coincides with the solution set of the monotone inclusion problem

find 2* € H such that 0 € df(z*) + Vg(z*).

When further particularizing this context to the one of solving minimization problems like

min g(z), (9)
where g : H — R is a p-strongly convex and (Fréchet) differentiable function with %—
Lipschitz continuous gradient for p > 0 and S > 0, we show that the values of g converge
along the trajectories generated by the corresponding first and second-order dynamical
systems to its minimum value also with exponential rate.

Dynamical systems approaching monotone inclusions and optimization problems en-
joy much attention since the seventies of the last century, not only due to their intrinsic
importance in areas like differential equations and applied functional analysis, but also be-
cause they have been recognized as a valuable tool for discovering and studying numerical
algorithms for optimization problems obtained by time discretization of the continuous
dynamics. The dynamic approach to iterative methods in optimization can furnish deep
insights into the expected behaviour of the method and the techniques used in the con-
tinuous case can be adapted to obtain results for the discrete algorithm. For instance,
Theorem 11 in this paper can be seen as the continuous counterpart of [21, Theorem 4],
where recently a linear rate of convergence for the values of a convex and smooth function
on a sequence iteratively generated by an inertial gradient-type algorithm has been pro-
vided. We also notice that the relaxation function A : [0,4+00) — [0,00) in the considered
first- and second-order systems can be seen as the continuous counterpart of the sequences
of relaxation parameters in the corresponding discrete forward-backward schemes.

The rest of this section is devoted to some notations and definitions used in the paper.
We denote by H a real Hilbert space with inner product (-,-) and corresponding norm
|- || = /(). For an arbitrary set-valued operator A : H = H we denote by Gr A =
{(z,u) € H x H :u € Az} its graph. We use also the notation zer A = {z € H : 0 € Az}
for the set of zeros of A. We say that A is monotone, if (x —y,u —v) > 0 for all
(z,u),(y,v) € Gr A. A monotone operator A is said to be maximally monotone, if there
exists no proper monotone extension of the graph of A on H x H. The resolvent of A,
Ja : H = H, is defined by J4 = (Id+A)~!, where Id : H — H denotes the identity
operator on H. If A is maximally monotone, then J4 : ‘H — H is single-valued and
maximally monotone (see [14, Proposition 23.7 and Corollary 23.10]). For an arbitrary
v > 0 we have (see [14, Proposition 23.2])

p € Jyax if and only if (p,y '(z — p)) € Gr A. (10)



The operator A is said to be p-strongly monotone for p > 0, if
(& —y,u—v) > pllz —y|* V(z,u), (y,v) € Gr A. (11)
As in [2,13], we consider the following definition of an absolutely continuous function.

Definition 1 (see, for instance, [2,13]) A function z : [0,b] — H (where b > 0) is said to
be absolutely continuous if one of the following equivalent properties holds:
(i) there exists an integrable function y : [0,b] — H such that

z(t) = z(0) +/0 y(s)ds VYt € [0,b];

(ii) « is continuous and its distributional derivative is Lebesgue integrable on [0, b];
(iii) for every € > 0, there exists 7 > 0 such that for any finite family of intervals
I, = (ag, b)) C [0,b] we have the implication

(Ik NI=0and Y b —axl < n) — > fla(br) — x(ay)l| <e.

k k

2 Converges rates for first-order dynamical systems

The starting point of the investigations we carry out in this section is the first-order
dynamical system (2) that we formulated in relation to the monotone inclusion problem
(1). We say that = : [0,400) — H is a strong global solution of (2), if the following
properties are satisfied:

(i) z : [0, 400) — H is locally absolutely continuous, that is, absolutely continuous on
each interval [0,b] for 0 < b < +o00;

(ii) For almost every t € [0, +00) it holds &(t) = A(t) [JnA (:c(t) - nB(x(t))) - :U(t)];

(iii) x(0) = xo.

In case X is locally integrable, the existence and uniqueness of strong global solutions
of the system (2) follow from the Cauchy-Lipschitz-Picard Theorem, by noticing that the
operator T' = Jy4 o (Id —nB) — Id is Lipschitz continuous (see also [16, Section 2]).

The following result can bee seen as the continuous counterpart of [14, Proposition
25.9], where it is shown that the sequence iteratively generated by the forward-backward
algorithm linearly converges to the unique solution of (1), provided that one of the two
involved operators is strongly monotone.

Theorem 1 Let A:H = H be a mazimally monotone operator, B : H — H a monotone
and %—Lz’pschz’tz continuous operator for B > 0 such that A+ B is p-strongly monotone for
p >0 and x* be the unique point in zer(A + B). Let A : [0,+00) — [0,400) be a Lebesgue
measurable function such that there exist real numbers X\ and \ fulfilling

0 <A <infA(t) <supA(t) < .
t20 t>0

Chose o > 0 and n > 0 such that
TN 1
a < 2p6°N and = + — < p+ ~.
B 2a n
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If xo € H and x : [0,400) — H is the unique strong global solution of the dynamical
system (2), then for every t € [0,+00) one has

l2(t) = 2*|]* < ||lzo — 2*||* exp(=Ct),
2pA— 2

772 5.

where C = 5 +7

Proof. Notice that B is a maximally monotone operator (see [14, Corollary 20.25]) and,
since B has full domain, A + B is maximally monotone, too (see [14, Corollary 24.4]).
Therefore, due to the strong monotonicity of A + B, zer(A + B) is a singleton (see [14,
Corollary 23.37]).

A direct consequence of (2) and of the definition of the resolvent is the inclusion

1 . 1 1
_nT(t)x(t) — B(x(t)) + B (A(t):c(t) + x(t)) € (A+B) (/\(t)x(t) + x(t)> ,

which holds for almost every ¢ € [0,+00). Combining it with 0 € (A + B)(z*) and the
strong monotonicity of A + B, it yields for almost every ¢ € [0, +00)

2
<

<ib“”+““‘““wiw““ (;' ))>

By using the notation h(t) = %|lz(t) — 2*|| for t € 0 00), the Cauchy-Schwarz

inequality, the Lipschitz property of B and the fact that h(t) = (z(t) — a*, &(t)), we
deduce that for almost every ¢ € [0, +00)

p”iﬁﬂﬂ+ﬂ0—x*

o |50+ ot - < SO + 5 (0B (550 + 2(0)) = Ba(o))
—niﬂMﬂ+<ﬂw—xﬁB(ibﬂﬂ+x@>—Bmﬁ»>
< — g [HOI + s 1B = )
+ Sa e =)
< — O + 5 1O = st
+ O+ s O
As
P H)\(lt)j;(t) Fa(t) — 2 T A;Et) 2(t)|? + )?(%h(t) +2ph(t),

we obtain for almost every t € [0, 4+00) the inequality

|
<A2(’;) + %) h(t) + (2p - 522‘@)) h(t)+
P 1 1 1 .
<A2<t> T ) 2a>\(t)> l&@I* <o.




However, the way in which the involved parameters were chosen imply for almost every

t € [0, +00) that
2o LY a
<A(t) i nA(t)> o) + (2’0 ,82A(t)> i) <0 (12)

or, equivalently,

This further implies

h(t) + Ch(t) <0
for almost every ¢ € [0, +00). By multiplying this inequality with exp(Ct) and integrating
from O to T', where T' > 0, one easily obtains the conclusion. |

Remark 2
(a) By time rescaling arguments one could consider A(t) = 1 for every ¢ > 0 and,
consequently, investigate the asymptotic properties of the system

R

where M : H — H is defined by M =1d —J,4 o (Id —nB). In the hypotheses of Theorem
1 the operator M satisfies the following inequality for all x € H:

1 . o - 111 )
(204 2) iz =) 2 (o= 5 =P+ (o4 = 5= L) asal. (1)

This follows by using the same arguments as used in the proof of Theorem 1, namely
the definition of the resolvent operator, the inclusion 0 € (A + B)(z*) and the strong
monotonicity of A+ B. Coming back to the system (13), the exponential convergence rate
for the trajectory is further obtained by applying the Gronwall Lemma in the inequality

(204 2) G020~ %) + (0= 535 ) latt) ~ "1 <

which is nothing else than relation (12) in the proof of Theorem 1.
(b) Notice that by chosing the involved parameters as in Theorem 1, relation (14)
yields the inequality

1 % « * (12
(2,0—1—7]) (Mx,x —x*) > (p—252> | —z*||* Vo € H,

where Mx* = 0. Thus the operator M satisfies a strong monotone property in the sense
of Pazy (see relation (11.2) in Theorem 11.2 in [23]). However, the hypotheses of Theorem
1 do not imply in general the strong monotonicity of the operator M in the sense of (11),
thus the result presented in Theorem 1 does not fall into the framework of the classical
result concerning exponential convergence rates for the semigroup generated by a strongly
monotone operator as presented in [20, Theorem 3.9].

Further, we discuss some situations when the operator M is strongly monotone in the
classical sense (see (11)). We start with two trivial cases. The first one is Az = 0 for



every x € H and B is strongly monotone. The second one is Bx = 0 for every x € H and
A is strongly monotone, in which case J; 4 is a contraction (see [14, Proposition 23.11]),
hence M = Id —J, 4 is strongly monotone. Other situations follow in the framework of [14,
Proposition 25.9]: 1) if A is strongly monotone, B is S-cocoercive (that is (x—y, Bx—By) >
B||Bx—Byl|? for all 2,y € H) and n < 23; ii) if B is §-strongly monotone and 3~ !-Lipschitz
continuous, #8 < 1 and n < 205°.

We come now to the convex optimization problem (8) and notice that, since argmin( f+
g) = zer(O(f + g)) = zer(Of + Vg), one can approach this set by means of the trajectories
of the dynamical system (2) written for A = df and B = Vg. Here, 0f : H = H, defined
by
Of(w) = {u e H: fy) > [(x) + (uy —2) Yy € H),

if f(z) € R and 9f(x) = 0, otherwise, denotes the convex subdifferential of f, which is a
maximally monotone operator, provided that f is proper, convex and lower semicontinuous
(see [25]). We notice that, for n > 0, the resolvent of ndf is given by J,g; = prox,;
(see [14]), where prox, ;: H — H,

: 1 2
prox, ((z) = argmin< f(y) + —|ly — « }, 15
oy(o) = avgin { (0) + 5y =] (15)
denotes the prozimal point operator of nf. This being said, the dynamical system (2)
becomes
i(t) = M®) [prox,; (#(t) = nVg(a(t))) = (1) 16)
z(0) = xo.

The following result is a direct consequence of Theorem 1. Let us also notice that f + ¢
is said to be p-strongly convex for p > 0, if f + g — 5| - ||* is a convex function. In
this situation d(f + g) = 0f + Vg is a p-strongly monotone operator (see [14, Example
22.3(iv)].)

Theorem 3 Let f : H — R U {400} be a proper, convex and lower semicontinuous
function, g : H — R be a convex and (Fréchet) differentiable function with %—Lipschitz
continuous gradient for B > 0 such that f + g is p-strongly convex for p > 0 and z* be the
unique minimizer of f + g over H. Let X\ : [0,4+00) — [0, +00) be a Lebesgue measurable
function such that there exist real numbers A and X fulfilling

0 <A <infA(t) <supA(t) < A\
t>0 t>0

Chose a > 0 and n > 0 such that
1A 1
a <2062\ and = + — < p+ —.
B 2a 7

If xo € H and x : [0,4+00) — H is the unique strong global solution of the dynamical
system (16), then for every t € [0. 4 0o) one has

lz(t) = 2*|* < |20 — 2*||* exp(~C1),




Remark 4 The explicit discretization of (16) with respect to the time variable ¢, with
step size h, > 0 and initial point o € H, yields the following iterative scheme:

%7_% = [proxnf (a:n — WVgxn> — :Un] Vn > 0.
n

For h,, = 1 this becomes
Tpt1 = Tn + Ap [prOch (xn - ’Yv9$n) - xn] vn > 0, (17)

which is the classical forward-backward algorithm with relaxation parameters (A, )n>0 for
finding the minimizers of f + g (see [14]). For this iterative scheme it is known, at least
in the situation A, = 1 for all n > 0, that linear convergence is achieved in case at least
one of the functions f and g satisfies a strong convexity assumption.

In the last part of this section we approach the convex minimization problem (9) via
the first-order dynamical system

{ iéé))iéc(;)vg(x(t)) =0 (18)

The following result quantifies the rate of convergence of ¢ to its minimum value along
the trajectories generated by (18).

Theorem 5 Let g : H — R be a p-strongly convex and (Fréchet) differentiable function
with %—Lipschz’tz continuous gradient for p > 0 and § > 0 and x* be the unique minimizer
of g over H. Let X\ : [0,+00) — [0,400) be a Lebesgue measurable and locally integrable
function such that there exists a real number A € R fulfilling

0 < A <inf A(¢).
>0

Chose o« > 0 such that
a < 2\Bp%.

If xo € H and x : [0,400) — H is the unique strong global solution of the dynamical
system (18), then for every t € [0,+00) one has

P 1
0 < Slla(t) =2 < g(a(t) — g(2") < (g(wo) —g(z")) exp(—at) < %vao —a*|* exp(—at).
Proof. The second inequality is a consequence of the strong convexity of the function
g. Further, we recall that according to the descent lemma, which is valid for an arbitrary
differentiable function with Lipschitz continuous gradient (see [22, Lemma 1.2.3]), we have

9(u) < g(v) + (Vg(v),u— v) + 21B\|u o2 Yu,v € K.

By setting in the previous relation, for every t € [0, +00), u := z(t) and v := z* and by
taking into account that Vg(z*) = 0, we obtain

g(x(t)) — g(a") < ;an(t) — a2 (19)

8



From here, the last inequality in the conclusion follows automatically.
Using the strong convexity of g we have for every ¢ € [0, 4+00) that

pllz(t) — 2*|? < (x(t) — 2%, Vg(a(t)) < |=(t) — 2*[[[[Vg(z(®))]l,
thus
plla(t) — 2™ < [[Vg(z ()]l (20)

Finally, from the first equation in (18), (19), (20) and using the way in which o was chosen,
we obtain for almost every ¢ € [0, 400)

%(g(x(t)) —9(=")) + alg(a(t) — g(=")) = (@(t), Vg(x(t)) + alg(z(t)) — g(z"))

<= A0 Val®)]® + %Hx(t) —z*|?

) Vg @)

(0}

20p*

< (—A(t) +
<0.

By multiplying this inequality with exp(at) and integrating from 0 to 7', where T' > 0,
one easily obtains also the third inequality. ]

3 Converges rates for second-order dynamical systems

The starting point of the investigations we go through in this section is again the monotone
inclusion problem (1), however, this time approached via the second-order dynamical
system (5). We say that = : [0,400) — H is a strong global solution of (5), if the following
properties are satisfied:

(i) z,2 : [0,400) — H are locally absolutely continuous;

(ii) For almost every t € [0, +00) it holds

(1) + (0)i(t) + A1) [2() = Tya (w() = nB(o(t))) | =0

(iii) (0) = up, £(0) = vo.

By assuming that A,y are locally integrable, the existence and uniqueness of strong
global solutions of the system (5) follow from the Cauchy-Lipschitz-Picard Theorem ap-
plied in a product space (see also [18]).

The following result will be useful when deriving the convergence rates.

Lemma 6 Let h,v,b1,b2,b3,u : [0, +00) — R be given functions such that h,v,ba,u are
locally absolutely continuous and h is locally absolutely continuous, too. Assume that

h(t),ba(t),u(t) > 0 Vvt € [0, +00)
and that there exists v > 1 such that
Y(t) >y > 1Vt e [0,400).
Further, assume that for almost every t € [0,+00) one has

v(t) +4(t) < bi(t) + 1, (21)



ba(t) + ba(t) < b3(t)

and
h(t) +y(@)h(t) + bi(t)h(t) + ba(t)iu(t) + bs(t)u(t) < 0.
Then there exists M > 0 such that the following statements hold:

(i) if 1 < <2, then for almost every t € [0, +00)

0 < h(t) < (h(@) + 2M

-

) exp(— (3 — 1)0);

(ii) if 2 < v, then for almost every t € [0, +o0)

0 < h(t) < h(0) exp(—(y — 1)t) + 2L

(iii) if v = 2, then for almost every t € [0, +o0)

0 < h(t) < (h(0) + Mt) exp(—t).

Proof. We multiply the inequality (23) with exp(¢) and use the identities

exp(t)h(1) = - (exp(t)h(1) — exp(t)h (1)
exp(t)i(t) = - (exp(t)u(t)) — exp(t)u(r)
exp(t)h(t) = - (exp(t)h(1)) — exp(t)h()

in order to derive for almost every ¢ € [0, +00) the inequality
d ~ d
S (exp()h(0)) + (v(2) = 1) 2 (exp()h()+

exp(H)h(t)(bi(t) +1 — (1)) + bQ(t)%(exp(t)u(t)) + (b3 (t) — ba(t)) exp(t)u(t) < 0.

By using also

(1) = 1) (explt)h(1) = & ((+(6) = 1) exp(t)h(1) ) — (1) exp(t) (1)
ba(t) S (exp(t)u(t)) = < (balt) exp(t)u(t)) — ba(t) expl(tyu)

we obtain for almost every t € [0, +00)

d . d d

& (ep(0)h(t) + 5 (10 = Vexp(t)h(t)) + 2 (ba(t) exp(tyue) +
(b1(t) + 1 =(t) = 5(1)) exp(D)h(t) + (ba(t) — ba(t) — ba(t)) exp(t)u(t) < 0.
The hypotheses regarding the parameters involved imply that the function

t — exp(t)h(t) + (7(t) — 1) exp(t)h(t) + ba(t) exp(t)u(t)

10

5 exp(—t) < <h(0) + ’y]\—42> exp(—t);



is monotonically decreasing, hence there exists M > 0 such that

exp(t)h(t) + (y(t) — 1) exp(t)h(t) + ba(t) exp(t)u(t) < M.
Since u(t), ba(t) > 0 we get
h(t) + (7(t) = Dh(t) < M exp(—t),
hence .
h(t) + (y = 1)h(t) < M exp(—t)
for every t € [0, +00). This implies that

d

7 (exp((y = DDA()) < Mexp((y - 2)t),

for every t € [0, +00), from which the conclusion follows easily by integration. |
We come now to the first main result of this section.

Theorem 7 Let A:H = H be a maximally monotone operator, B : H — H a monotone
and %—Lipschz’tz continuous operator for 5 > 0 such that A+ B is p-strongly monotone for
p >0 and x* be the unique point in zer(A + B). Chose o, 6 € (0,1) and n > 0 such that
0Bp <1 and%: <%—|—4pﬁ%a>%—p>0.

Let A : [0,+00) — [0,+00) be a locally absolutely continuous function fulfilling for
every t € [0,400)

1 1 1
) P+ (B + 4p,6’2a) 5

0(t) = At) T

1 1
5 4pf2a

2p(1 — 2p(1 —
< A(t) f( ?) +A2(1) ? ? 1
P+(B+m>s P+(B+m>3

and such that there exists a real number A with the property that

[y

0 < A <inf\(t)

and

2<0:=)\
< -1

Further, let v : [0,400) — [0, 4+00) be a locally absolutely continuous function fulfilling

1 1+4 -
1+ 46() <A(t) <14 A(¢) 2p(1 = @) for every t € [0,400) (24)
2 p+(;+4;7>;
B " 4pBia ) b
and
A(t) <0 and (0 < 0 for almost every t € [0, +00). (25)
- dt \\(t) ) — ’

11



Let ug,vg € H and z : [0,4+00) — H be the unique strong global solution of the dynamical

system (5).
Then ~v(t) >

for every t € |0,

v = 1+V21+49 > 2 for every t € [0,400) and there exists M > 0 such that
+00)

M
5 exp(—t)

0 < [|lz(t) = a"|* < |luo — 2"[|* exp(~(y — 1)¢) +

M
< — |+ —— —t).
< (o= + 25 Y exp(-o

Proof. From the definition of the resolvent we have for almost every t € [0, +00)

B (A(lt)&%(t) + 189’0(“ + :c(t)> — B(z(t)) — 77/\1(t)ié(t) — 77;2)33@) c

(A+B) (}\(1t)5n'(t) + :(Egﬂb(t) + :U(t)) . (26)

We combine this with 0 € (A + B)x™*, the strong monotonicity of A + B, the Lipschitz
continuity of B and, by also using the Cauchy-Schwartz inequality, we get for almost every
t € [0,+00)

P &t) + y(Oa0)|” + i (@(t) — 2, E(E) + AOF) + plla(t) — 2

X () A
| st >+A§§w< ) 4at) |
<1t i(t) + —x(t +x(t) — 2", B (Agt)( )+ 18 (t )—i—:U(t)) — B(:c(t))>
<A i + zggf(t) +at)—a", )\l(t)i(t) 4 777;2)55(15)>
:A(lt) <55(t) +A(8)E(t), B <)\gt)j}(t) + Z\ng(t) 4 x(t)) _ B(x(t))>
+ <x(t) ey (A(lt)fc‘(t) + 1855@) + x(t)) _ Bx(t)
Ai( () +A0R0)I? = e ((0) = 2", (1) + (1) (1)
< 1O+ A OROI = s () + 20O
+ T O + YOOI + palle(t) = a” [~ s (2(0) = 0" 30) + A(D(e).

Using again the notation h(t) = %|lz(t) — 2*|?, we have for almost every ¢ € [0, +00)

() + BB = (O + @B + () - (||a:( ) (27)

and

(w(t) —a*, @ (t) + 7 ()2(t) = h(t) + v (Oh(t) — &)

12



Therefore, we obtain for almost every t € [0, +00)

i L L 1 )
(x\z(t) + nA2(t) B BAZ(1) o 4p52a/\2(t)> Hx(t)H2

P 1 1 1 2P 1 .
’ [”2“) (v(t) e T B 4p5w<t>> N0 W)} (o))
p 1 1 1 d
40 (55 + o~ 39~ e ) (1O

The hypotheses imply that

p n 11 1 1 n 1 1 1 -0
2@ Tew e e o\ T8 Bpa) T
hence the first term in the left hand side of the above inequality can be neglected and we
obtain for almost every ¢ € [0, +0c0) that

. . d .
Mﬂ+%ﬂMﬂ+h®Mﬂ+®@5#Wﬁw%+%@deFé& (28)
where 01
m@y:A®Ji£¥9>o
2[) + E
p 11 1 1_1_ _1
bo(t) = ~(t) ) Toem T Bem  Bpren®m YW P TR T T 5% >0
2(t) =7 2 ¢ 1 Y0) 20+ 1
At) nA(t) n
and
2
v (1) (vﬁﬁt) +xm B 4p52clw\2(t)) =35~ PO
bs(t) == il .

2p 4 1

NOIREDYG
This shows that (23) in Lemma 6 for u := ||:(+)||? is fulfilled. In order to apply Lemma 6,
we have only to prove that (21) and (22) are satisfied, as every other assumption in this

statement is obviously guaranteed.
A simple calculation shows that

2p 1
=K + R
A A
ba(t) = ba(t) <= ¥>(t) — y(t) = — — (ti 1 (t)_ . =0(t), (29)
N0 T ogNEIE) T BAZ(E)  4pBPai(t)

which is true according to (24), thus b3(t) > ba(t) for every t € [0,+00). On the other
hand (see (25)), '
ba(t) <0

for almost every t € [0, 400), from which (22) follows.
Further, again by using (24), observe that

2p(1 — a)
1 1 1
p+ (B + 4p62a> 5

1+01(t) =1+ A1) > (1)

13



for every t € [0, +00), which, combined with
Y(t) <0

for almost every t € [0,400), shows that (21) is also fulfilled.
The conclusion follows from Lemma 6(ii), by noticing that v > 2, as § > 2. |

Remark 8 One can notice that when §(¢) < 0 for almost every ¢ € [0,400), the second
assumption in (25) is fulfilled provided that A(t) > 0 for almost every ¢ € [0, +00).

Further, we would like to point out that one can oviously chose \(t) = A and 7(t) = ~v
for every t € [0, +00), where

1 1 1
0 p+ (E + 4pﬁ2a) K

2<0:= A
=1 _ 1 1
1-9 BT Tpma
2
S emmy R e et
P+<B+@Ea)s P+<B+aﬁa>s
and
1++/1446 2p(1 —
%évﬁl-kﬁ 'f( CI) .
p+(ﬁ+4pﬂ2a)3

When considering the convex optimization problem (8), the second-order dynamical
system (5) written for A = 0f and B = Vg becomes

{fw+wwmm+w@ﬂﬂo—pm%f@@%wﬁ@@mn}=o (30)
x(0) = ug, £(0) = vo.

Theorem 7 gives rise to the following result.

Theorem 9 Let f : H — R U {400} be a proper, convexr and lower semicontinuous
function, g : H — R be a convexr and (Fréchet) differentiable function with %—Lipschitz
continuous gradient for B > 0 such that f + g is p-strongly convex for p > 0 and x* be the
unique minimizer of f + g over H. Chose o, € (0,1) and n > 0 such that 68p < 1 and
Lo (34 k) b —p>0.

Let A : [0,+00) — [0,+00) be a locally absolutely continuous function fulfilling for
every t € [0,400)

1 1 1
) P+ (B + 4p,6’2a) 5

0(t) := A(1) N
1-9 BT p7a
2
2p(1 — « 20(1 — «
= )\(t) 1( 1) 1 )\2(t) 1( 1) 1
p+<B+@EE>3 P+(B+@ﬁ@)3

and such that there exists a real number A with the property that

0 < A <infA(%)
>0

14



and

p+ l'f'#za i
2<9::A155 (ﬁ toh )‘5.

5+ T

Further, let 7 : [0, +00) — [0, +00) be a locally absolutely continuous function fulfilling
(24) and (25), up,vo € H and z : [0,+00) — H be the unique strong global solution of the
dynamical system (30).

Then v(t) >~ := @ > 2 for every t € [0,400) and there exists M > 0 such that
for every t € [0, +00)

0 < [lz(t) = 2"|I* < [lup — 2"|[* exp(—(y = 1)t) + —— exp(~1)

M
< — |+ —— —t).
< (o= a1+ 25 Y exp(-o

Remark 10 The explicit discretization of (30) with respect to the time variable ¢, with
step size h, > 0, relaxation variable A\, > 0, damping variable 7, > 0 and initial points
o :=ug € H and x1 := vg € H, yields the following iterative scheme

Tntl — 2Ty + Tp—1 ~ In+l — Tn \
n = An
02 T

[proxnf (l‘n — an(:L"n)) — xn} Vn > 1.

For h,, = 1 this becomes

An An An
Tpy1 = (1 17 %> Tn + 7 T, POy (rvn - an(a:n)> +i o (T — p_1) Y0 > 1,
(31)

which is the forward-backward algorithm for minimizing f + ¢ with relaxation variables
and inertial effects. The suitable control of the inertial term by means of the variable
parameters A, and 7, can increase the speed of convergence of the algorithm (31). Thus,
the function A\ used in the dynamical system gives rise to the sequence of relaxation
variables (Ap)p>1 in (31), which have been considered in the literature in order to gain
more freedom in the choice of the parameters involved in the numerical scheme and to
accelerate the algorithm.

Finally, we approach the convex minimization problem (9) via the second-order dy-
namical system
E(t) +y(8)E(t) + A(t)Vg(x(t)) =0
: (32)
z(0) = ugp, £(0) = vo

and provide an exponential rate of convergence of g to its minimum value along the
generated trajectories. The following result can be seen as the continuous counterpart
of [21, Theorem 4|, where recently a linear rate of convergence for the values of g on a
sequence iteratively generated by an inertial-type algorithm has been obtained.

Theorem 11 Let g : H — R be a p-strongly convex and (Fréchet) differentiable function
with %—Lipschitz continuous gradient for p > 0 and § > 0 and x* be the unique minimizer
of g over H.

15



Let o : [0,400) — R be a Lebesque measurable function such that there exists o > 1

with )
. S 2
%gga(t) > max {a, 72,7 1} (33)

and X : [0,+00) — [0,400) be a locally absolutely continuous function fulfilling for every
t € [0,400)

a(t) B 2
B2 < A@t) < 5(0‘@) +a’(t)). (34)
Further, let v : [0, +00) — [0, +00) be a locally absolutely continuous function fulfilling
1+ /14820
————— <(t) <1+ «ft) for every t € [0,+00) (35)

2
and (25).
Let ug,vg € H and x : [0,400) — H be the unique strong global solution of the
dynamical system (32).

1+, /148
Then y(t) > v := fﬁw > 2 and there exists M > 0 such that for every t €
[0, +00)

0< gl\l‘(t) = a'[* < g(2 (1)) — g(2") < (9(uo) — 9(2")) exp(—(y = V)t) + —— exp(~1)

M 1 , M
< (ot0) = o0 + 255 Jespl=0)= (g5 o = a* P + 25 sl
Proof. One has for almost every t € [0, 4+00)
S a(e(t) = (#(0), Vg(a(1)
and (see [16, Remark 1(b)])
d? . o d . L.
g 9(@(t) = (2(t), Vg(x(1)) + <~”C(t)’ dtVQ(w(t))> < (i(t), Vg(z(1))) + EHfﬂ(t)HQ'

Further, by using (19), (20) and the first equation in (32), we derive for almost every
t € [0,+00)

2
L (alal®) - a(e") + () (a(a(t)) — 9(a)) + a(8) (a(x(0)) — (o))
a L.
< AOITg)? + S5 Vo) + (0]
= — o 180+ 121 = 21T + LI Talal) + Sl
Taking into account (27) we obtain for almost every ¢ € [0, +00)
2
% (9(x(t)) — g(z")) + ’Y(t)%(g(ﬁ(t)) —g(@")) +a(t)(g(=(t) — g(=))
V() d v .




According to the choice of the parameters involved, we have

At al)

>0
2 28p 77

thus, for almost every ¢ € [0, 4+00),

-5 (9(x(1) —g(") + v(t)% (9(=(t)) — g(™)) + a(t) (9((t)) — g(z™))
2
+ 2O L1 + (58 - 5 ) el <o.

This shows that (23) in Lemma 6 for u := ||3(-)||?,
bi(t) == a(t),
ba(t) == 27)\(?)

and Q(t) 1

v
B0 o5

is fulfilled. By combining (35) and the first condition in (25) one obtains (21), while, by
combining (35) and the second condition in (25) one obtains (22).
Furthermore, by taking into account the Lipschitz property of Vg and the strong
convexity of g, it yields
pB < 1.

From (34), (33) and a > 1 we obtain

A(t) 1
—~ >a——= > 1 for every t € [0, +00),
B B2p? [ )
which combined with (35) leads to v > 2.
The conclusion follows from Lemma 6(ii), the strong convexity of g and (19). [ |

Remark 12 In Theorem 11 one can obviously chose a(t) = «, where o = Bgipz — 1, if
Bp <1,or a=1+¢, with € > 0, otherwise, A(t) = A and ~(t) = 7 for every t € [0, +00),
where 5

<A< S(ata?)

@

Bp?

A

1+,/1+83
2
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