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Abstract. We consider the problem of minimizing a smooth convex objective function subject
to the set of minima of another differentiable convex function. In order to solve this problem,
we propose an algorithm which combines the gradient method with a penalization technique.
Moreover, we insert in our algorithm an inertial term, which is able to take advantage of the
history of the iterates. We show weak convergence of the generated sequence of iterates to an
optimal solution of the optimization problem, provided a condition expressed via the Fenchel
conjugate of the constraint function is fulfilled. We also prove convergence for the objective
function values to the optimal objective value. The convergence analysis carried out in this
paper relies on the celebrated Opial Lemma and generalized Fejér monotonicity techniques.
We illustrate the functionality of the method via a numerical experiment addressing image
classification via support vector machines.
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1 Introduction and preliminaries

Let H be a real Hilbert space with the norm and inner product given by ‖ · ‖ and 〈·, ·〉,
respectively, and f and g be convex functions acting on H, which we assume for simplicity
to be everywhere defined and (Fréchet) differentiable. The object of our investigation is the
optimization problem

min
x∈argmin g

f(x). (1)
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We assume that
S := argmin {f(x) : x ∈ argmin g} 6= ∅

and that the gradients ∇f and ∇g are Lipschitz continuous operators with constants Lf and
Lg, respectively.

The work [5] of Attouch and Czarnecki has attracted since its appearance a huge interest
from the research community, since it undertakes a qualitative analysis of the optimal solutions
of (1) from the perspective of a penalty-term based dynamical system. This represented the
starting point for the design and development of numerical algorithms for solving the mini-
mization problem (1), several variants of it involving also nonsmooth data up to monotone
inclusions that are related to optimality systems of constrained optimization problems. We
refer the reader to [4–8,10,13–15,20–23,33,35] and the references therein for more insights into
this research topic.

A key assumption used in this context in order to guarantee the convergence properties of
the numerical algorithms is the condition

∞∑
n=1

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
< +∞ ∀p ∈ ran(Nargmin g),

where {λn}∞n=1 and {βn}∞n=1 are positive sequences, g∗ : H → R∪{+∞} is the Fenchel conjugate
of g:

g∗(p) = sup
x∈H
{〈p, x〉 − g(x)} ∀p ∈ H;

σargmin g : H → R ∪ {+∞} is the support function of the set argmin g:

σargmin g(p) = sup
x∈argmin g

〈p, x〉 ∀p ∈ H;

and Nargmin g is the normal cone to the set argmin g, defined by

Nargmin g(x) = {p ∈ H : 〈p, y − x〉 ≤ 0 ∀y ∈ argmin g}

for x ∈ argmin g and Nargmin g(x) = ∅ for x 6∈ argmin g. Finally, ran(Nargmin g) denotes the range
of the normal cone Nargmin g, that is, p ∈ ran(Nargmin g) if and only if there exists x ∈ argmin g
such that p ∈ Nargmin g(x). Let us notice that for x ∈ argmin g one has p ∈ Nargmin g(x) if and
only if σargmin g(p) = 〈p, x〉. We also assume without loss of generality that min g = 0.

In this paper we propose a numerical algorithm for solving (1) that combines the gradient
method with penalization strategies also by employing inertial and memory effects. Algorithms
of inertial type result from the time discretization of differential inclusions of second order type
(see [1, 3]) and were first investigated in the context of the minimization of a differentiable
function by Polyak in [36] and Bertsekas in [12]. The resulting iterative schemes share the
feature that the next iterate is defined by means of the last two iterates, a fact which induces
the inertial effect in the algorithm. Since the works [1,3], one can notice an increasing number
of research efforts dedicated to algorithms of inertial type (see [1–3,9,16–19,24–28,30–32,34]).

In this paper we consider the following inertial algorithm for solving (1):

Algorithm 1 Initialization: Choose the positive sequences {λn}∞n=1 and {βn}∞n=1, and a positive
constant parameter α ∈ (0, 1). Take arbitrary x0, x1 ∈ H.

Iterative step: For given current iterates xn−1, xn ∈ H (n ≥ 1), define xn+1 ∈ H by

xn+1 := xn + α(xn − xn−1)− λn∇f(xn)− λnβn∇g(xn).
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We notice that in the above iterative scheme {λn}∞n=1 represents the sequence of step sizes,
{βn}∞n=1 the sequence of penalty parameters, while α controls the influence of the inertial term.

For every n ≥ 1 we denote by Ωn := f+βng, which is also a (Fréchet) differentiable function,
and notice that ∇Ωn is Ln := Lf + βnLg-Lipschitz continuous.

In case α = 0, Algorithm 1 collapses in the algorithm considered in [35] for solving (1).
We prove weak convergence for the generated iterates to an optimal solution of (1), by making
use of generalized Fejér monotonicity techniques and the Opial Lemma and by imposing the
key assumption mentioned above as well as some mild conditions on the involved parameters.
Moreover, the performed analysis allows us also to show the convergence of the objective func-
tion values to the optimal objective value of (1). As an illustration of the theoretical results,
we present in the last section an application addressing image classification via support vector
machines.

2 Convergence analysis

This section is devoted to the asymptotic analysis of Algorithm 1.

Assumption 2 Assume that the following statements hold:
(I) The function f is bounded from below;
(II) There exist positive constants c > 1 and K > 0 such that Ln

2
+ α−1

λn
≤ − (c+ (1 + α)K)

and βn+1 − βn ≤ Kλn+1βn+1 for all n ≥ 1;

(III) For every p ∈ ran(Nargmin g), we have
∑∞

n=1 λnβn

[
g∗
(

p
βn

)
− σargmin g

(
p
βn

)]
< +∞;

(IV) lim infn→+∞ λnβn > 0,
(

1
λn+1
− 1

λn

)
≤ 2

α
for all n ≥ 1 and

∑∞
n=1 λn = +∞.

We would like to mention that in [21] we proposed a forward-backward-forward algorithm of
penalty-type, endowed with inertial and memory effects, for solving monotone inclusion prob-
lems, which gave rise to a primal-dual iterative scheme for solving convex optimization problems
with complex structures. However, we succeeded in proving only weak ergodic convergence for
the generated iterates, while with the specific choice of the sequences {λn}∞n=1 and {βn}∞n=1 in
Assumption 2 we will be able to prove weak convergence of the iterates generated in Algorithm
1 to an optimal solution of (1).

Remark 3 The conditions in Assumption 2 slightly extend the ones considered in [35] in the
noninertial case. The only differences are given by the first inequality in (II), which here involves
the constant α which controls the inertial terms (for the corresponding condition in [35] one

only has to take α = 0), and by the inequality
(

1
λn+1
− 1

λn

)
≤ 2

α
for all n ≥ 1.

We refer to Remark 12 for situations where the fulfillment of the conditions in Assumption
2 is guaranteed.

We start the convergence analysis with three technical results.

Lemma 4 Let x ∈ S and set p := −∇f(x). We have for all n ≥ 1

ϕn+1 − ϕn − α (ϕn − ϕn−1) + λnβng(xn) ≤ ‖xn+1 − xn‖2 + α‖xn − xn−1‖2

+λnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
,

(2)
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where ϕn := ‖xn − x‖2.

Proof. Since x ∈ S, we have according to the first-order optimality conditions that 0 ∈
∇f(x) +Nargmin g(x), thus p = −∇f(x) ∈ Nargmin g(x). Notice that for all n ≥ 1

∇f(xn) =
yn − xn+1

λn
− βn∇g(xn),

where yn := xn + α(xn − xn−1). This, together with the monotonicity of ∇f , imply that〈
yn − xn+1

λn
− βn∇g(xn) + p, xn − x

〉
= 〈∇f(xn)−∇f(x), xn − x〉 ≥ 0 ∀n ≥ 1, (3)

so

2 〈yn − xn+1, xn − x〉 ≥ 2λnβn〈∇g(xn), xn − x〉 − 2λn〈p, xn − x〉 ∀n ≥ 1. (4)

On the other hand, since g is convex and differentiable, we have for all n ≥ 1

0 = g(x) ≥ g(xn) + 〈∇g(xn), x− xn〉,

which means that

2λnβn〈∇g(xn), xn − x〉 ≥ 2λnβng(xn). (5)

As for all n ≥ 1
2〈xn − xn+1, xn − x〉 = ‖xn+1 − xn‖2 + ϕn − ϕn+1

and
2α〈xn − xn−1, xn − x〉 = α‖xn − xn−1‖2 + α (ϕn − ϕn−1) ,

it follows

2〈yn − xn+1, xn − x〉 = 2〈xn − xn+1, xn − x〉+ 2α〈xn − xn−1, xn − x〉
= ‖xn+1 − xn‖2 + α‖xn − xn−1‖2 + ϕn − ϕn+1 + α (ϕn − ϕn−1) . (6)

Combining (4), (5) and (6), we obtain that for each n ≥ 1

ϕn+1 − ϕn−α (ϕn − ϕn−1) + λnβng(xn)

≤ ‖xn+1 − xn‖2 + α‖xn − xn−1‖2 − λnβng(xn) + 2λn〈p, xn〉 − 2λn〈p, x〉. (7)

Finally, since x ∈ argmin g, we have that for all n ≥ 1

2λn〈p, xn〉 − λnβng(xn)− 2λn〈p, x〉 = λnβn

[〈
2p

βn
, xn

〉
− g(xn)−

〈
2p

βn
, x

〉]
≤ λnβn

[
g∗
(

2p

βn

)
−
〈

2p

βn
, x

〉]
= λnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
,

which completes the proof. �
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Lemma 5 We have for all n ≥ 1

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1)

+

[
Ln
2

+
α

2λn
− 1

λn

]
‖xn+1 − xn‖2 +

α

2λn
‖xn − xn−1‖2.

(8)

Proof. From the descent Lemma and the fact that ∇Ωn is Ln-Lipschitz continuous, we get
that

Ωn(xn+1) ≤ Ωn(xn) + 〈∇Ωn(xn), xn+1 − xn〉+
Ln
2
‖xn+1 − xn‖2 ∀n ≥ 1.

Since ∇Ωn(xn) = −xn+1−yn
λn

, it holds for all n ≥ 1

f(xn+1) + βng(xn+1) ≤ f(xn) + βng(xn)

−
〈
xn+1 − yn

λn
, xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖2

and then

f(xn+1) + βn+1g(xn+1) ≤ f(xn) + βng(xn) + (βn+1 − βn)g(xn+1)

− 1

λn
‖xn+1 − xn‖2 +

α

λn
〈xn − xn−1, xn+1 − xn〉

+
Ln
2
‖xn+1 − xn‖2,

which is nothing else than

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1) +

[
Ln
2
− 1

λn

]
‖xn+1 − xn‖2

+
α

λn
〈xn − xn−1, xn+1 − xn〉 . (9)

By the Cauchy-Schwarz inequalty it holds that

〈xn − xn−1, xn+1 − xn〉 ≤
1

2
‖xn−1 − xn‖2 +

1

2
‖xn+1 − xn‖2,

hence, (9) becomes

Ωn+1(xn+1) ≤ Ωn(xn) + (βn+1 − βn)g(xn+1) +
α

2λn
‖xn−1 − xn‖2

+

[
Ln
2
− 1

λn
+

α

2λn

]
‖xn+1 − xn‖2 ∀n ≥ 1.

�

For x ∈ S and all n ≥ 1, we set

Γn := f(xn) + (1−Kλn)βng(xn) +Kϕn

= Ωn(xn)−Kλnβng(xn) +Kϕn,

and, for simplicity, we denote

δn :=

(
1

2λn
+K

)
α + c.

5



Lemma 6 Let x ∈ S and set p := −∇f(x). We have for all n ≥ 2

Γn+1 − Γn − α(Γn − Γn−1) ≤ −δn‖xn+1 − xn‖2 + α

(
1

2λn
+K

)
‖xn − xn−1‖2

+Kλnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
+α (Ωn−1(xn−1)− Ωn(xn))

+αK (λnβng(xn)− λn−1βn−1g(xn−1)) . (10)

Proof. According to Lemma 5 and Assumption 2(II), (8) becomes for all n ≥ 1

Ωn+1(xn+1)− Ωn(xn)−Kλn+1βn+1g(xn+1) ≤ −(K + δn)‖xn+1 − xn‖2

+
α

2λn
‖xn − xn−1‖2. (11)

On the other hand, after multiplying (2) by K, we obtain for all n ≥ 1

Kϕn+1 −Kϕn − α (Kϕn −Kϕn−1) +Kλnβng(xn)

≤ K‖xn+1 − xn‖2 +Kα‖xn − xn−1‖2 +Kλnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
.

(12)

After summing up the relations (11) and (12) and adding on both sides of the resulting inequal-
ity the expressions α (Ωn−1(xn−1)− Ωn(xn)) and α (Kλnβng(xn)−Kλn−1βn−1g(xn−1)) for all
n ≥ 2, we obtain the required statement. �

The following proposition will play an essential role in the convergence analysis (see also [1–3,
16]).

Proposition 7 Let {an}∞n=1, {bn}∞n=1 and {cn}∞n=1 be real sequences and α ∈ [0, 1) be given.
Assume that {an}∞n=1 is bounded from below, {bn}∞n=1 is nonnegative and

∑∞
n=1 cn < +∞ such

that
an+1 − an − α(an − an−1) + bn ≤ cn ∀n ≥ 1.

Then the following statements hold:
(i)
∑∞

n=1[an − an−1]+ < +∞, where [t]+ := max{t, 0};
(ii) {an}∞n=1 converges and

∑∞
n=1 bn < +∞.

The following lemma collects some convergence properties of the sequences involved in our
analysis.

Lemma 8 Let x ∈ S. Then the following statements are true:
(i) The sequence {Γn}∞n=1 is bounded from below.
(ii)

∑∞
n=1 ‖xn+1 − xn‖2 < +∞ and limn→+∞ Γn exists.

(iii) limn→+∞ ‖xn − x‖ exists and
∑∞

n=1 λnβng(xn) < +∞.
(iv) limn→+∞Ωn(xn) exists.
(v) limn→+∞ g(xn) = 0 and every sequential weak cluster point of the sequence {xn}∞n=1 lies

in argmin g.
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Proof. We set p := −∇f(x) and recall that g(x) = min g = 0.
(i) Since f is convex and differentiable, it holds for all n ≥ 1

Γn = f(xn) + (1−Kλn)βng(xn) +Kϕn

≥ f(xn) +K‖xn − x‖2

≥ f(x) + 〈∇f(x), xn − x〉+K‖xn − x‖2 ≥ f(x)− ‖p‖
2

4K
,

which means that {Γn}∞n=1 is bounded from below. Notice that the first inequality in the
above relation is a consequence of Assumption 2(II), since 1−α

λn
≥ c + (1 + α)K ≥ K, thus

λnK ≤ 1− α ≤ 1 for all n ≥ 1.
(ii) For all n ≥ 2, we may set

µn := Γn − αΓn−1 + α

(
1

2λn
+K

)
‖xn − xn−1‖2

and
un := Ωn−1(xn−1)− Ωn(xn) +Kλnβng(xn)−Kλn−1βn−1g(xn−1).

We fix a natural number N0 ≥ 2. Then

N0∑
n=2

un = f(x1) + (1−Kλ1)β1g(x1)− f(xN0)− (1−KλN0)βN0g(xN0).

Since f is bounded from below and g(xN0) ≥ g(x) = 0, it follows that
∑∞

n=2 un < +∞.

We notice that −δn + α
(

1
2λn+1

+K
)

= α
2

(
1

λn+1
− 1

λn

)
− c and, since

(
1

λn+1
− 1

λn

)
≤ 2

α
, we

have for all n ≥ 1

−δn + α

(
1

2λn+1

+K

)
≤ 1− c. (13)

Thus, according Lemma 6, we get for all n ≥ 2

µn+1 − µn = Γn+1 − Γn − α(Γn − Γn−1) + α

(
1

2λn+1

+K

)
‖xn+1 − xn‖2

−α
(

1

2λn
+K

)
‖xn − xn−1‖2

≤ −δn‖xn+1 − xn‖2 +Kλnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
+αun + α

(
1

2λn+1

+K

)
‖xn+1 − xn‖2

≤ (1− c)‖xn+1 − xn‖2 +Kλnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
+ αun.

We fix another natural number N1 ≥ 2 and sum up the last inequality for n = 2, . . . , N1. We
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obtain

µN1+1 − µ2 ≤ (1− c)
N1∑
n=2

‖xn+1 − xn‖2

+K

N1∑
n=2

λnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]

+α

N1∑
n=2

un, (14)

which, by taking into account Assumption 2(III), means that {µn}∞n=2 is bounded from above
by a positive number that we denote by M . Consequently, for all n ≥ 2 we have

Γn+1 − αΓn ≤ µn+1 ≤M,

so
Γn+1 ≤ αΓn +M,

which further implies that

Γn ≤ αn−2Γ2 +M
n−2∑
k=1

αk−1 ≤ αn−2Γ2 +
M

1− α
∀n ≥ 3.

We have for all n ≥ 2

µn+1 ≥ f(x)− ‖p‖
2

4K
− αΓn,

hence

−µn+1 ≤ αΓn − f(x) +
‖p‖2

4K
≤ αn−1Γ2 +

αM

1− α
− f(x) +

‖p‖2

4K
. (15)

Consequently, for the arbitrarily chosen natural number N1 ≥ 2, we have (see (14))

(c− 1)

N1∑
n=2

‖xn+1 − xn‖2 ≤ −µN1+1 + µ2

+K

N1∑
n=2

λnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
+ α

N1∑
n=2

un,

which together with (15) and the fact that c > 1 implies that

∞∑
n=1

‖xn+1 − xn‖2 < +∞.

On the other hand, due to (13) we have δn+1 ≤ δn + 1 for all n ≥ 1. Consequently, using
also that c > 1, (10) implies that

Γn+1 − Γn − α(Γn − Γn−1) ≤ −δn‖xn+1 − xn‖2 + (δn − c)‖xn − xn−1‖2

+Kλnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
+ αun

≤ −δn‖xn+1 − xn‖2 + δn−1‖xn − xn−1‖2

+Kλnβn

[
g∗
(

2p

βn

)
− σargmin g

(
2p

βn

)]
+ αun ∀n ≥ 1.
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According to Proposition 7 and by taking into account that {Γn}∞n=1 is bounded from below,
we obtain that limn→+∞ Γn exists.

(iii) By Lemma 4 and Proposition 7, limn→+∞ ϕn exists and
∑∞

n=1 λnβng(xn) < +∞.
(iv) Since Ωn(xn) = Γn −Kϕn + Kλnβng(xn) for all n ≥ 1, by using (ii) and (iii), we get

that limn→+∞Ωn(xn) exists.
(v) Since lim infn→+∞ λnβn > 0, we also obtain that limn→+∞ g(xn) = 0. Let w be a sequen-

tial weak cluster point of {xn}∞n=1 and assume that the subsequence {xnj
}∞j=1 converges weakly

to w. Since g is weak lower semicontinuous, we have

g(w) ≤ lim inf
j→+∞

g(xnj
) = lim

n→+∞
g(xn) = 0,

which implies that w ∈ argmin g. This completes the proof. �

In order to show also the convergence of the sequence (f(xn))∞n=1, we prove first the following
result.

Lemma 9 Let x ∈ S be given. We have

∞∑
n=1

λn [Ωn(xn)− f(x)] < +∞.

Proof. Since f is convex and differentiable, we have for all n ≥ 1

f(x) ≥ f(xn) + 〈∇f(xn), x− xn〉.

Since g is convex and differentiable, we have for all n ≥ 1

0 ≥ βng(xn) + 〈βn∇g(xn), x− xn〉,

which together imply that

f(x) ≥ Ωn(xn) + 〈∇Ωn(xn), x− xn〉

= Ωn(xn) +

〈
yn − xn+1

λn
, x− xn

〉
∀n ≥ 1.

From here we obtain for all n ≥ 1 (see (6))

2λn [Ωn(xn)− f(x)] ≤ 2〈yn − xn+1, xn − x〉
= ‖xn+1 − xn‖2 + ϕn − ϕn+1 + α(ϕn − ϕn−1) + α‖xn − xn−1‖2.

Hence, by using the previous lemma, the required result holds. �

The Opial Lemma that we recall below will play an important role in the proof of the main
result of this paper.

Proposition 10 (Opial Lemma) Let H be a real Hilbert space, C ⊆ H a nonempty set and
{xn}∞n=1 a given sequence such that:

(i) For every z ∈ C, limn→+∞ ‖xn − z‖ exists.
(ii) Every sequential weak cluster point of {xn}∞n=1 lies in C.

Then the sequence {xn}∞n=1 converges weakly to a point in C.
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Theorem 11 (i) The sequence {xn}∞n=1 converges weakly to a point in S.
(ii) The sequence (f(xn))∞n=1 converges to the optimal objective value of the optimization

problem (1).

Proof. (i) According to Lemma 8, limn→+∞ ‖xn−x‖ exists for all x ∈ S. Let w be a sequential
weak cluster point of {xn}∞n=1. Then there exists a subsequence {xnj

}∞j=1 of {xn}∞n=1 such that
xnj

converges weakly to w as j → +∞. By Lemma 8, we have that w ∈ argmin g. This
means that in order to come to the conclusion it suffices to show that f(w) ≤ f(x) for all
x ∈ argmin g. From Lemma 9, Lemma 8 and the fact that

∑∞
n=1 λn = +∞, it follows that

limn→∞[Ωn(xn)− f(x)] ≤ 0 for all x ∈ S. Thus,

f(w) ≤ lim inf
j→+∞

f(xnj
) ≤ lim

n→+∞
Ωn(xn) ≤ f(x) ∀x ∈ S,

which shows that w ∈ S. Hence, thanks to Opial Lemma, {xn}∞n=1 converges weakly to a point
in S.

(ii) The statement follows easily from the above considerations. �

In the end of this section we present some situations where Assumption 2 is verified.

Remark 12 Let α ∈ (0, 1), c ∈ (1,+∞), q ∈ (0, 1) and γ ∈
(

0, 2
Lg

)
be arbitrarily chosen. We

set

K :=
2

α
> 0,

βn :=
γ[Lf + 2((1 + α)K + c)]

2− γLg
+ (1− α)γKnq,

and

λn :=
(1− α)γ

βn
,

for all n ≥ 1.
(i) Since βn ≥ γ[Lf+2((1+α)K+c)]

2−γLg
, we have βn(2 − γLg) ≥ γ[Lf + 2((1 + α)K + c)], which

implies that Ln

2
+ α−1

λn
≤ − (c+ (1 + α)K) for all n ≥ 1.

(ii) For all n ≥ 1 it holds

βn+1 − βn = (1− α)γK[(n+ 1)q − nq] ≤ (1− α)γK = Kλn+1βn+1.

(iii) It holds lim infn→+∞ λnβn = lim infn→+∞(1− α)γ > 0.
(iv) For all n ≥ 1 we have

1

λn+1

− 1

λn
=

1

(1− α)γ
(βn+1 − βn) = K ((n+ 1)q − nq) ≤ K =

2

α
.

(v) Since q ∈ (0, 1), we have
∑∞

n=1
1
βn

= +∞, which implies that
∑∞

n=1 λn = +∞.

(vi) Finally, as g ≤ δargmin g, we have g∗ ≥ (δargmin g)
∗ = σargmin g and this implies that

g∗ − σargmin g ≥ 0. We present a situation where Assumption 2(III) holds and refer to [10]
for further examples. For instance, if g(x) ≥ a

2
dist2(x, argmin g) where a > 0, then g∗(x) −

σargmin g(x) ≤ 1
2a
‖x‖2 for every x ∈ H. Thus, for p ∈ ran(Nargmin g), we have

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
≤ λn

2aβn
‖p‖2.

Hence
∑∞

n=1 λnβn

[
g∗
(

p
βn

)
− σargmin g

(
p
βn

)]
converges, if

∑∞
n=1

λn
βn

converges or, equivalently, if∑∞
n=1

1
β2
n

converges. This holds for the above choices of {βn}∞n=1 and {λn}∞n=1 when q ∈
(
1
2
, 1
)
.
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3 Numerical example: image classification via support

vector machines

In this section we employ the algorithm proposed in this paper in the context of image classi-
fication via support vector machines.

Having a set of training data ai ∈ Rn, i = 1, . . . , k, belonging to one of two given classes
denoted by “−1” and “+1”, the aim is to construct by using this information a decision function
given in the form of a separating hyperplane, which assigns every new data to one of the two
classes with a misclassification rate as low as possible. In order to be able to handle the
situation when a full separation is not possible, we make use of non-negative slack variables
ξi ≥ 0, i = 1, . . . , k; thus the goal will be to find (s, r, ξ) ∈ Rn ×R×Rk

+ as optimal solution of
the following optimization problem

minimize 1
2
‖s‖2 + C

2
‖ξ‖2

subject to di(a
>
i s+ r) ≥ 1− ξi, ∀i = 1, . . . , k

ξi ≥ 0,∀i = 1, . . . , k,

where, for i = 1, . . . , k, di is equal to −1 if ai belongs to the class “−1” and it is equal to
+1, otherwise. Each new data a ∈ Rn will by assigned to one of the two classes by means of
the resulting decision function z(a) = a>s + r, namely, a will be assigned to the class “−1”,
if z(a) < 0, and to the class “+1”, otherwise. For more theoretical insights in support vector
machines we refer the reader to [29].

By making use of the matrix

A =



d1a
>
1 d1 1 0 · · · 0

d2a
>
2 d2 0 1 · · · 0

...
...

...
...

. . .
...

dka
>
k dk 0 0 · · · 1

0>Rn 0 1 0 · · · 0
0>Rn 0 0 1 · · · 0

...
...

...
...

. . .
...

0>Rn 0 0 0 · · · 1


∈ R2k×(n+1+k)

the problem under investigation can be written as

minimize 1
2
‖s‖2 + C

2
‖ξ‖2

subject to A

sr
ξ

− (1Rk

0Rk

)
∈ R2k

+

or, equivalently,

minimize 1
2
‖s‖2 + C

2
‖ξ‖2

subject to

sr
ξ

 ∈ arg min 1
2
dist2

(
A(·)−

(
1Rk

0Rk

)
,R2k

+

)
.

By considering f : Rn×R×Rk → R as f

sr
ξ

 := 1
2
‖s‖2 + C

2
‖ξ‖2, we have ∇f

sr
ξ

 =

 s
0
Cξ


and notice that ∇f is max{1, C}-Lipschitz continuous.
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Figure 1: A sample of images belonging to the classes −1 and +1, respectively.

Figure 2: A sample of misclassified images.

Further, for g

sr
ξ

 := 1
2
dist2

A

sr
ξ

− (1Rk

0Rk

)
,R2k

+

, we have

∇g

sr
ξ

 = A>
(
I − projR2k

+

)A

sr
ξ

− (1Rk

0Rk

) and notice that ∇g is ‖A‖2-Lipschitz

continuous, where projR2k
+

denotes the projection operator on the set R2k
+ .

For the numerical experiments we used a data set consisting of 6.000 training images and
2.060 test images of size 28 × 28 taken from the website http://www.cs.nyu.edu/~roweis/

data.html representing the handwritten digits 2 and 7, labeled by −1 and +1, respectively
(see Figure 1). We evaluated the quality of the resulting decision function on test data set by
computing the percentage of misclassified images.

We denote by D = {(Xi, Yi), i = 1, . . . , 6.000} ⊂ R784 × {−1,+1} the set of available
training data consisting of 3.000 images in the class −1 and 3.000 images in the class +1. Due
to numerical reasons each image has been vectorized and normalized. We tested in MATLAB
different combinations of parameters chosen as in Remark 12 by running the algorithm for 3.000
iterations. A sample of misclassified images is shown in Figure 2.

In Table 1 we present the misclassification rate in percentage for different choices for the
parameters α ∈ (0, 1) (we recall that in this case we take K := 2/α) and C > 0, while for α = 0
which corresponds to the noninertial version of the algorithm we consider different choices
of the parameter K > 0 and C > 0. We observe that when combining α = 0.1 with each
regularization parameters C = 5, 10, 100 leads to the lowest misclassification rate with 2.1845
%.

In Table 2 we present the misclassification rate in percentage for different choices of the
parameters C > 0 and c > 1. The lowest classification rate of 2.1845% is obtained for each
regularization parameter C = 5, 10, 100.

Finally, Table 3 shows the misclassification rate in percentage for different choices for the

12
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α C = 0.1 C = 1 C = 2 C = 5 C = 10 C = 100
0.1 2.2330 2.2330 2.2330 2.1845 2.1845 2.1845
0.3 2.2330 2.2816 2.2816 2.2816 2.2816 2.2816
0.5 2.2330 2.2330 2.2330 2.2816 2.2816 2.3301
0.7 2.3786 2.3786 2.3786 2.3786 2.3786 2.3786
0.9 2.9126 2.9126 2.9126 2.9126 2.8641 2.8155
0 (K=0.1) 3.1068 3.0583 3.0583 2.9612 2.9612 2.7184
0 (K=1) 2.2816 2.2330 2.2330 2.2330 2.2330 2.2330
0 (K=10) 2.2816 2.2330 2.2330 2.2330 2.2330 2.2330
0 (K=100) 2.2330 2.2330 2.2330 2.2330 2.2330 2.2330
0 (K=1000) 2.2330 2.2330 2.2330 2.2330 2.2330 2.2330

Table 1: Misclassification rate in percentage for different choices for the parameters α and C
when c = 2 and q = 0.9.

C c = 1.1 c = 2 c = 5 c = 10 c = 100
0.1 2.2330 2.2330 2.2330 2.2330 2.2330
1 2.2330 2.2330 2.2330 2.2330 2.2330
2 2.2330 2.2330 2.2330 2.2330 2.2330
5 2.1845 2.1845 2.1845 2.1845 2.1845
10 2.1845 2.1845 2.1845 2.1845 2.1845
100 2.1845 2.1845 2.1845 2.1845 2.1845

Table 2: Misclassification rate in percentage for different choices for the parameters C and
c > 1 when α = 0.1 and q = 0.9.

C q = 0.6 q = 0.75 q = 0.9
0.1 2.2816 2.3301 2.2330
1 2.2330 2.2816 2.2330
2 2.2816 2.2816 2.2330
5 2.2330 2.2816 2.1845
10 2.2330 2.2816 2.1845
100 2.2330 2.2330 2.1845

Table 3: Misclassification rate in percentage for different choices for the parameters C and
q ∈ (1/2, 1) when α = 0.1 and c = 2.
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parameters C > 0 and q ∈ (1/2, 1). The lowest classification rate of 2.1845% is obtained when
combining the value q = 0.9 with each regularization parameter C = 5, 10, 100.

Acknowledgements. The authors are thankful to two anonymous reviewers for hints and
comments which improved the quality of the paper.
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