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1 Introduction and preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm
‖·‖. Let f : H → R = R∪{±∞} be a proper, convex and lower semicontinuous
function, and h : H → R and g : H → R be convex and differentiable functions
with Lipschitz continuous gradients with positive Lipschitz constants Lh and
Lg, respectively. We consider the bilevel optimization problem

min
x∈argmin g

f(x) + h(x) (1)

and assume that the set

S := arg min {f(x) + h(x) : x ∈ arg min g}

is nonempty. We also assume without loss of generality that min g = 0.
The work of Attouch and Czarnecki [5] has represented the starting point of

a series of articles approaching the minimization of a smooth or (sometimes)
a complexly structured nonsmooth objective function subject to the set of
minimzers of another function, from either a discrete perspective through it-
erative numerical algorithms or a continuous one through dynamical systems
(see [4–8,11,17–19,24–27,30,37,39]). The function determining the feasible set
is evaluated in both settings in the spirit of penalty methods and contributes
to the convergence of the generated sequences, in the discrete setting, and to
the asymptotic convergence of the generated trajectories, in the continuous
setting, to an optimal solution of the underlying bilevel optimization problem.
We emphasize in particular the proximal-gradient algorithm with penalty term
which has been introduced in [8] and for which weak ergodic convergence has
been proved.

In this paper we consider this algorithm in the context of solving prob-
lem (1) and we enhance it with inertial and memory effects. Our aim is to
provide suitable choices for the step sizes and the penalization parameters,
such that the generated iterates weakly converge to an optimal solution of
the (1), while the objective function values converge to its optimal objective
value. Algorithms of inertial type follow by time discretization of differential
inclusions of second order type (see [1, 3]) and have been first investigated in
the context of the minimization of a differentiable function by Polyak in [40]
and Bertsekas in [14]. In the last two decades intensive research efforts dedi-
cated to algorithms of inertial type and to their convergence behaviour can be
noticed (see [1–3,10,20–23,28,29,31–36,38]). For a variety of situations, in par-
ticular in the context of solving real-world problems, the presence of inertial
terms improves the convergence behavior of the generated sequences. It is also
well-known (see [9, 13]) that enhancing the proximal-gradient algorithm with
inertial effects may lead to a considerable improvement of the convergence
behaviour of the sequence of objective function values.

The proximal-gradient algorithm with penalization terms and inertial and
memory effects we propose for solving (1) follows.
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Algorithm 1 Initialization: Choose the positive sequences {λn}∞n=1, {βn}∞n=1,
and a nonnegative constant α ∈ [0, 1). Take arbitrary x0, x1 ∈ H.
Iterative step: For every n ≥ 1 and given current iterates xn−1, xn ∈ H define
xn+1 ∈ H by

xn+1 := proxλnf (xn + α(xn − xn−1)− λn∇h(xn)− λnβn∇g(xn)) .

For x ∈ H we denote by proxλnf (x) the proximal point of the function f of
parameter λn at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) +

1

2λn
‖y − x‖2

}
. (2)

In Algorithm 1, {λn}∞n=1 denotes the sequence of step sizes, {βn}∞n=1 the
sequence of penalization parameters, and α ∈ [0, 1) the parameter that controls
the inertial terms.

The proposed numerical scheme recovers, when α = 0, the algorithm in-
vestigated in [37] and, under the additional assumption f = 0, the gradient
method of penalty type from [39]. In case f = 0, Algorithm 1 gives rise to the
gradient method of penalty type with inertial and memory effects introduced
and studied in [30].

We prove weak convergence for the generated iterates to an optimal solu-
tion of (1), by making use of generalized Fejér monotonicity techniques and
of the Opial Lemma. The performed analysis allows us also to show the con-
vergence of the objective function values to the optimal objective value of
(1).

In the remaining of this section we recall some elements of convex analysis.
For a function f : H → R we denote by domf = {x ∈ H : f(x) < +∞} its
effective domain and say that f is proper, if domf 6= ∅ and f(x) 6= −∞ for all
x ∈ H. Let f∗ : H → R, f∗(u) = supx∈H{〈u, x〉 − f(x)} for all u ∈ H, be the
conjugate function of f . The subdifferential of f at x ∈ H, with f(x) ∈ R, is the
set ∂f(x) := {v ∈ H : f(y) ≥ f(x)+〈v, y−x〉 ∀y ∈ H}. We take by convention
∂f(x) := ∅, if f(x) ∈ {±∞}. We also denote by min f := infx∈H f(x) the
optimal objective value of the function f and by arg min f := {x ∈ H : f(x) =
min f} its set of global minima.

A convex and differentiable function g : H → R has a Lipschitz continuous
gradient with Lipschitz constant Lg > 0, if ‖∇g(x) − ∇g(y)‖ ≤ Lg‖x − y‖
for all x, y ∈ H. It is well-known (see, for instance, [12, Theorem 18.15]) that
this is equivalent to ∇g is 1

Lg
-cocoercive, namely, 〈x − y,∇g(x) − ∇g(y)〉 ≥

1
Lg
‖∇g(x)−∇g(y)‖2 for all x, y ∈ H.

Let M ⊆ H be a nonempty set. The indicator function of M , δM : H → R,
is the function which takes the value 0 on M and +∞ otherwise. The subdiffer-
ential of the indicator function is the normal cone of M , that is NM (x) = {u ∈
H : 〈u, y − x〉 ≤ 0 ∀y ∈M}, if x ∈M and NM (x) = ∅ for x /∈M . For x ∈M ,
we have that u ∈ NM (x) if and only if σM (u) = 〈u, x〉, where σM is the sup-
port function of M , defined by σM : H → R, σM (u) = supy∈M 〈y, u〉. Finally,
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ran(NM ) denotes the range of the normal cone NM , that is, p ∈ ran(NM ) if
and only if there exists x ∈M such that p ∈ NM (x).

2 Technical lemmas

The setting in which we will carry out the convergence analysis for Algorithm
1 is settled by the following hypotheses.

Assumption 2 (I) The subdifferential sum formula ∂(f + δargmin g) = ∂f +
Nargmin g holds;

(II) The objective function f + h is bounded from below;
(III) There exist positive constants η0, a, b,K and c > 1 such that for every

n ≥ 1:

0 < a ≤ λnβn ≤ b <
2

Lg(1 + η0)2
,
Lh + βnLg

2
+
α− 1

λn
≤ −(1 + 2α)K − c

and

βn+1 − βn ≤ K
η0

1 + η0
λn+1βn+1;

(IV) {λn}∞n=1 ∈ `2 \ `1 and
(

1
λn+1

− 1
λn

)
α ≤ 2 for every n ≥ 1;

(V)
∑∞
n=1λnβn

[
g∗
(
p
βn

)
− σargmin g

(
p
βn

)]
<+∞ for every p ∈ ran(Nargmin g).

Remark 1 For conditions which guarantee exact convex subdifferential sum
formulas we refer to [12,15,16,41]. One of these conditions, which is frequently
fulfilled in applications, asks for the continuity of the function f and thus does
not require any knowledge of the set of minimizers of g.

The assumption in (V) originates from the work of Attouch and Czar-
necki [5]; we refer to [4–8,11,17–19,24–27,30,37,39] for other variants, general-
izations to monotone operators and concrete examples for which this condition
is satisfied (see also Remark 2).

The aim of the following three results is to derive a generalized Fejér-type
inequality in the spirit of the one in the hypotheses of Lemma 4. This will
be achieved in terms of the sequence (Γn)n≥1, defined before Lemma 3, and
which can be seen as a Lyapunov sequence equal to the sum of the objective
function and a penalization of the function g both at the current iterate, and
the distance of the current iterate to a fixed optimal solution.

Lemma 1 Let u ∈ S. According to the first order optimality conditions there
exist v ∈ ∂f(u) and p ∈ Nargmin g(u) such that 0 = v + ∇h(u) + p. Set
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ϕn := ‖xn − u‖2 for every n ≥ 1. Then for every n ≥ 1 and η > 0 it holds

ϕn+1 − ϕn − α(ϕn − ϕn−1) + λnβn

[
2

Lg(1 + η)
− (1 + η)λnβn

]
‖∇g(xn)‖2

+
η

1 + η
λnβng(xn) ≤ 2α‖xn − xn−1‖2 + ‖xn+1 − xn‖2

+
4(1 + η)

η
λ2n‖∇h(u) + v‖2

+λn

[
4(1 + η)

η
λn −

2

Lh

]
‖∇h(xn)−∇h(u)‖2

+
η

1 + η
λnβn

[
g∗

(
2p
η

1+ηβn

)
− σargmin g

(
2p
η

1+ηβn

)]
.(3)

Proof Set yn := xn + α(xn − xn−1) for every n ≥ 1. Since yn − xn+1 −
λn∇h(xn) − λnβn∇g(xn) ∈ λn∂f(xn+1) and v ∈ ∂f(u), the monotonicity of
∂f guarantees that

〈yn − xn+1 − λn∇h(xn)− λnβn∇g(xn)− λnv, xn+1 − u〉 ≥ 0 ∀n ≥ 1

or, equivalently,

2〈yn − xn+1, u− xn+1〉 ≤ 2λn〈u− xn+1,∇h(xn) + βn∇g(xn) + v〉 ∀n ≥ 1.(4)

We notice that for every n ≥ 0

2〈xn − xn+1, u− xn+1〉 = ϕn+1 − ϕn + ‖xn+1 − xn‖2 (5)

and so for every n ≥ 1

2α〈xn − xn−1, u− xn+1〉 =2α〈xn − xn−1, u− xn〉+2α〈xn − xn−1, xn − xn+1〉
≥ α(‖xn−1 − u‖2 − ‖xn − u‖2 − ‖xn − xn−1‖2)

+α(−‖xn − xn−1‖2 − ‖xn+1 − xn‖2)

= α(ϕn−1 − ϕn)− 2α‖xn − xn−1‖2

−α‖xn+1 − xn‖2. (6)

By employing (5) and (6) in inequality (4), we obtain for every n ≥ 1

ϕn+1 − ϕn − α(ϕn − ϕn−1) + (1− α)‖xn+1 − xn‖2 − 2α‖xn − xn−1‖2

≤ 2λn〈u− xn+1,∇h(xn) + βn∇g(xn) + v〉
= 2λn〈u− xn+1, βn∇g(xn)〉+ 2λn〈u− xn+1,∇h(xn) + v〉
= 2λn〈u− xn, βn∇g(xn)〉+ 2λn〈xn − xn+1, βn∇g(xn)〉

+2λn〈u− xn+1,∇h(xn) + v〉. (7)

Next we evaluate the first two terms on the righ-hand side in the above state-
ment. Since ∇g is 1

Lg
−cocoercive, we have

〈∇g(xn)−∇g(u), xn − u〉 ≥
1

Lg
‖∇g(xn)−∇g(u)‖2 ∀n ≥ 1,
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and from here, since ∇g(u) = 0,

〈∇g(xn), u− xn〉 ≤ −
1

Lg
‖∇g(xn)‖2 ∀n ≥ 1. (8)

On the other hand, since g is convex and differentiable we have

0 = g(u) ≥ g(xn) + 〈∇g(xn), u− xn〉 ∀n ≥ 1

or, equivalently,

〈∇g(xn), u− xn〉 ≤ −g(xn) ∀n ≥ 1. (9)

From (8) and (9) we obtain for all n ≥ 1

2λnβn〈∇g(xn), u− xn〉 ≤ −
2

Lg(1 + η)
λnβn‖∇g(xn)‖2 − 2η

1 + η
λnβng(xn).(10)

For the term 2λnβn〈xn − xn+1,∇g(xn)〉 in (7) we have for all n ≥ 1 the
following estimate

2λnβn〈xn − xn+1,∇g(xn)〉 ≤ 1

1 + η
‖xn+1 − xn‖2 + (1 + η)λ2nβ

2
n‖∇g(xn)‖2.(11)

Employing the inequalities (10) and (11) in (7), we obtain for every n ≥ 1 that

ϕn+1 − ϕn − α(ϕn − ϕn−1) + (1− α)‖xn+1 − xn‖2 − 2α‖xn − xn−1‖2

≤ − 2

Lg(1 + η)
λnβn‖∇g(xn)‖2 − 2η

1 + η
λnβng(xn)

+
1

1 + η
‖xn+1 − xn‖2 + (1 + η)λ2nβ

2
n‖∇g(xn)‖2

+2λn〈u− xn+1,∇h(xn) + v〉,

and further

ϕn+1 − ϕn − α(ϕn − ϕn−1) +

[
2

Lg(1 + η)
− (1 + η)λnβn

]
λnβn‖∇g(xn)‖2

≤ 2α‖xn − xn−1‖2 −
2η

1 + η
λnβng(xn)

+

[
1

1 + η
+ α− 1

]
‖xn+1 − xn‖2

+2λn〈u− xn+1,∇h(xn) + v〉. (12)
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Not least,

2λn〈u− xn+1,∇h(xn) + v〉 = 2λn〈u− xn,∇h(xn) + v〉
+2λn〈xn − xn+1,∇h(xn) + v〉

≤ 2λn〈u− xn,∇h(xn) + v〉

+
η

2(1 + η)
‖xn+1 − xn‖2

+
2(1 + η)

η
λ2n‖∇h(xn) + v‖2

≤ 2λn〈u− xn,∇h(xn) + v〉

+
η

2(1 + η)
‖xn+1 − xn‖2

+
4(1 + η)

η
λ2n‖∇h(xn)−∇h(u)‖2

+
4(1 + η)

η
λ2n‖∇h(u) + v‖2 (13)

and by employing this estimate in (12), we deduce that for every n ≥ 1

ϕn+1 − ϕn − α(ϕn − ϕn−1) + λnβn

[
2

Lg(1 + η)
− (1 + η)λnβn

]
‖∇g(xn)‖2

+
η

1 + η
λnβng(xn) ≤ 2α‖xn − xn−1‖2

+

[
1

1 + η
+

η

2(1 + η)
+ α− 1

]
‖xn+1 − xn‖2

+
4(1 + η)

η
λ2n‖∇h(xn)−∇h(u)‖2

+
4(1 + η)

η
λ2n‖∇h(u) + v‖2

− η

1 + η
λnβng(xn) + 2λn〈u− xn,∇h(xn) + v〉. (14)

By using the 1
Lh

-cocoercivity of ∇h we obtain for every n ≥ 1 that

2λn〈u− xn,∇h(xn) + v〉 − η

1 + η
λnβng(xn)

= 2λn〈u− xn,∇h(xn)−∇h(u)〉+ 2λn〈u− xn,∇h(u) + v〉

− η

1 + η
λnβng(xn)

≤ −2λn
Lh
‖∇h(xn)−∇h(u)‖2 + 2λn〈u− xn,−p〉 −

η

1 + η
λnβng(xn),
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while, since p ∈ Nargmin g(u), it holds

−2λn〈u− xn, p〉 −
η

1 + η
λnβng(xn)

= 2λn〈xn, p〉 −
η

1 + η
λnβng(xn)− 2λn〈u, p〉

=
η

1 + η
λnβn

[〈
xn,

2p
η

1+ηβn

〉
− g(xn)−

〈
u,

2p
η

1+ηβn

〉]

≤ η

1 + η
λnβn

[
g∗

(
2p
η

1+ηβn

)
−

〈
u,

2p
η

1+ηβn

〉]

=
η

1 + η
λnβn

[
g∗

(
2p
η

1+ηβn

)
− σargmin g

(
2p
η

1+ηβn

)]
∀n ≥ 1.

By combining these two inequalities with (14), it follows for every n ≥ 1 that

ϕn+1 − ϕn − α(ϕn − ϕn−1) + λnβn

[
2

Lg(1 + η)
− (1 + η)λnβn

]
‖∇g(xn)‖2

+
η

1 + η
λnβng(xn) ≤ 2α‖xn − xn−1‖2

+

[
1

1 + η
+

η

2(1 + η)
+ α− 1

]
‖xn+1 − xn‖2

+
4(1 + η)

η
λ2n‖∇h(u) + v‖2

+λn

[
4(1 + η)

η
λn −

2

Lh

]
‖∇h(xn)−∇h(u)‖2

+
η

1 + η
λnβn

[
g∗

(
2p
η

1+ηβn

)
− σargmin g

(
2p
η

1+ηβn

)]
.

Since α ∈ [0, 1) and η > 0, it holds 1
1+η + η

2(1+η) + α− 1 < 1, which together

with the inequality above lead to the conclusion. �

For simplicity, we will make use of the following notation:

Ωn(xn) := f(xn) + h(xn) + βng(xn) ∀n ≥ 1.

Lemma 2 For every n ≥ 1 it holds

Ωn+1(xn+1)−Ωn(xn) ≤
[
α

2λn
− 1

λn
+
Lh + βnLg

2

]
‖xn+1 − xn‖2

+
α

2λn
‖xn − xn−1‖2 + (βn+1 − βn)g(xn+1). (15)
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Proof Recall that for every n ≥ 1 we have yn−xn+1

λn
− ∇h(xn) − βng(xn) ∈

∂f(xn+1), which implies

f(xn) ≥ f(xn+1) +

〈
yn − xn+1

λn
−∇h(xn)− βng(xn), xn − xn+1

〉
.

From here it follows that for every n ≥ 1 it holds

f(xn+1)− f(xn) ≤ − 1

λn
‖xn+1 − xn‖2 +

α

λn
〈xn − xn−1, xn+1 − xn〉

+〈∇h(xn), xn − xn+1〉+ βn〈∇g(xn), xn − xn+1〉

≤
[
α

2λn
− 1

λn

]
‖xn+1 − xn‖2 +

α

2λn
‖xn − xn−1‖2

+〈∇h(xn), xn − xn+1〉+ βn〈∇g(xn), xn − xn+1〉. (16)

From the Descent Lemma (see for example [12, Theorem 18.15]) we obtain for
every n ≥ 1 that

g(xn+1) ≤ g(xn) + 〈∇g(xn), xn+1 − xn〉+
Lg
2
‖xn+1 − xn‖2,

and

h(xn+1) ≤ h(xn) + 〈∇h(xn), xn+1 − xn〉+
Lh
2
‖xn+1 − xn‖2.

By combining these relations with inequality (16) we finally obtain the in-
equality in the statement of the lemma. �

For the forthcoming statements we fix an element u ∈ S. For a simpler
formulation of these results we will use the following notation:

Γn := Ωn(xn)−K η0
1 + η0

λnβng(xn) +Kϕn

= f(xn) + h(xn) +

(
1−K η0

1 + η0
λn

)
βng(xn) +Kϕn ∀n ≥ 1.

Lemma 3 Let u ∈ S. According to the first order optimality conditions there
exist v ∈ ∂f(u) and p ∈ Nargmin g(u) such that 0 = v +∇h(u) + p. Then for
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every n ≥ 2 it holds

Γn+1 − Γn − α(Γn − Γn−1) +Kλnβn

[
2

Lg(1 + η0)
− (1 + η0)λnβn

]
‖∇g(xn)‖2

≤
[
α

2λn
− 1

λn
+
Lh + βnLg

2
+K

]
‖xn+1 − xn‖2

+

[
α

2λn
+ 2αK

]
‖xn − xn−1‖2 +

4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2

+K

[
4(1 + η0)

η0
λ2n −

2λn
Lh

]
‖∇h(xn)−∇h(u)‖2

+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]

+α(Ωn−1(xn−1)−Ωn(xn))+
αKη0
1 + η0

(λnβng(xn)−λn−1βn−1g(xn−1)).

(17)

Proof We write (3) for η := η0, multiply it by K and after combining the
resulting inequality with (15) we obtain for every n ≥ 1 that

Ωn+1(xn+1) +Kϕn+1 −Ωn(xn)−Kϕn +
Kη0

1 + η0
λnβng(xn)

− α(Kϕn −Kϕn−1) +Kλnβn

[
2

Lg(1 + η0)
− (1 + η0)λnβn

]
‖∇g(xn)‖2

≤
[
α

2λn
− 1

λn
+
Lh + βnLg

2
+K

]
‖xn+1 − xn‖2 +

[
α

2λn
+ 2αK

]
‖xn − xn−1‖2

+
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2+K

[
4(1 + η0)

η0
λ2n −

2λn
Lh

]
‖∇h(xn)−∇h(u)‖2

+ (βn+1 − βn)g(xn+1)+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
−σargmin g

(
2p
η0

1+η0
βn

)]
.

In view of Assumption 2(III) we deduce that

Ωn+1(xn+1) +Kϕn+1 −Ωn(xn)−Kϕn +
Kη0

1 + η0
λnβng(xn)

− α(Kϕn −Kϕn−1) +Kλnβn

[
2

Lg(1 + η0)
− (1 + η0)λnβn

]
‖∇g(xn)‖2

≤
[
α

2λn
− 1

λn
+
Lh + βnLg

2
+K

]
‖xn+1 − xn‖2+

[
α

2λn
+ 2αK

]
‖xn − xn−1‖2

+
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2+K

[
4(1 + η0)

η0
λ2n −

2λn
Lh

]
‖∇h(xn)−∇h(u)‖2

+
Kη0

1 + η0
λn+1βn+1g(xn+1)
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+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]
∀n ≥ 1

and further

Γn+1 − Γn − α(Kϕn −Kϕn−1)

+Kλnβn

[
2

Lg(1 + η0)
− (1 + η0)λnβn

]
‖∇g(xn)‖2

≤
[
α

2λn
− 1

λn
+
Lh + βnLg

2
+K

]
‖xn+1 − xn‖2 +

[
α

2λn
+ 2αK

]
‖xn − xn−1‖2

+
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2+K

[
4(1 + η0)

η0
λ2n −

2λn
Lh

]
‖∇h(xn)−∇h(u)‖2

+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]
∀n ≥ 2.

In order to obtain (17) we only have to add α (Ωn−1(xn−1)−Ωn(xn)) and
αKη0
1+η0

(λnβng(xn)− λn−1βn−1g(xn−1)) to both sides of the above inequality.�

The following results is a very useful tool in the convergence analysis of
inertial algorithms (see [1, 2, 20]).

Lemma 4 Let {an}∞n=0, {bn}∞n=1 and {cn}∞n=1 be real sequences and α ∈ [0, 1)
be a given real number. Assume that {an}∞n=1 is bounded from below, {bn}∞n=1

is nonnegative and
∑∞
n=1 cn < +∞ such that

an+1 − an − α(an − an−1) + bn ≤ cn ∀n ≥ 1.

Then the following statements hold:
(i)
∑∞
n=1[an − an−1]+ < +∞, where [t]+ := max{t, 0};

(ii) {an}∞n=1 converges and
∑∞
n=1 bn < +∞.

The results presented in Lemma 5 related to the convergence of the gen-
erated iterates and in Lemma 6 related to the convergence of the objective
function values will be used in the next section in the proof of the main theo-
rem in combination with the Opial Lemma stated in Lemma 7.

Lemma 5 Let u ∈ S. According to the first order optimality conditions there
exist v ∈ ∂f(u) and p ∈ Nargmin g(u) such that 0 = v +∇h(u) + p. Then the
following statements are true:

(i) The sequence {Γn}+∞n=1 is bounded from below;
(ii)

∑∞
n=1 ‖xn+1 − xn‖2 < +∞;

(iii) limn→+∞ Γn exists and
∑+∞
n=1 λnβn‖∇g(xn)‖2 < +∞;

(iv) limn→+∞ ‖xn−u‖ exists,
∑∞
n=1[ϕn−ϕn−1]+< +∞ and

∑∞
n=1 λnβng(xn)<

+∞;
(v) limn→+∞Ωn(xn) exists;
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(vi) limn→+∞ g(xn) = 0 and every sequential weak cluster point of {xn}∞n=1 lies
in arg min g.

Proof (i) According to Assumption 2(III) we have that

Lh + βnLg
2

+
α− 1

λn
≤ −(1 + 2α)K − c,

which implies that 1 ≥ Kλn and further(
1− Kη0

1 + η0
λn

)
βng(xn) ≥ 0 ∀n ≥ 1. (18)

By using the definition of Γn and Assumption 2(II),we easily derive that
{Γn}∞n=1 is bounded from below.

(ii) For every n ≥ 2 we set

µn := Γn − αΓn−1 +

(
1

2λn
+ 2K

)
α‖xn − xn−1‖2

and

ωn := α(Ωn−1(xn−1)−Ωn(xn)) +
αKη0
1 + η0

(λnβng(xn)− λn−1βn−1g(xn−1)).

For a fixed natural number N0 ≥ 2 it holds

1

α

N0∑
n=2

ωn = f(x1) + h(x1) +

(
1− Kη0

1 + η0
λ1

)
β1g(x1)− f(xN0

)− h(xN0
)

−
(

1− Kη0
1 + η0

λN0

)
βN0

g(xN0
).

Since f + h is bounded from below and relation (18) is true, we obtain that
{ωn}∞n=1 is summable.

For every n ≥ 1 we set

δn :=

(
1

2λn
+ 2K

)
α+ c.

Consequently, according Assumption 2(III) it follows

Lh + βnLg
2

+
α

2λn
− 1

λn
+K ≤ −δn ∀n ≥ 1. (19)

Further, for every n ≥ 1 it holds

−δn + α

(
1

2λn+1
+ 2K

)
=
α

2

(
1

λn+1
− 1

λn

)
− c,

which, together with Assumption 2(IV), implies that

−δn + α

(
1

2λn+1
+ 2K

)
≤ 1− c (20)
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and so

δn+1 ≤ δn + 1. (21)

On the other hand, by Assumption 2(III), we also have for every n ≥ 1

0 <
2

Lg(1 + η0)
− (1 + η0)b ≤ 2

Lg(1 + η0)
− (1 + η0)λnβn (22)

and so

Kλnβn

[
2

Lg(1 + η0)
− (1 + η0)λnβn

]
≥ 0.

By employing the last inequality in Lemma 3 we obtain for every n ≥ 2

µn+1 − µn = Γn+1 − Γn − α (Γn − Γn−1) + α

(
1

2λn+1
+ 2K

)
‖xn+1 − xn‖2

−α
(

1

2λn
+ 2K

)
‖xn − xn−1‖2

≤
[
α

2λn
− 1

λn
+
Lh + βnLg

2
+K+ α

(
1

2λn+1
+ 2K

)]
‖xn+1 − xn‖2

+
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2

+K

[
4(1 + η0)

η0
λ2n −

2λn
Lh

]
‖∇h(xn)−∇h(u)‖2

+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]
+ ωn

≤ (1− c)‖xn+1 − xn‖2 +
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2

+K

[
4(1 + η0)

η0
λ2n −

2λn
Lh

]
‖∇h(xn)−∇h(u)‖2

+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]
+ ωn,

where for the last inequality we use (19) and (20). Since λn → 0 as n→ +∞,

there exists N1 ∈ N such that for every n ≥ N1 we have 4(1+η0)
η0

λn − 2
Lh

< 0.
This implies that for every n ≥ N1

µn+1 − µn ≤ (1− c)‖xn+1 − xn‖2 +
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2

+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]
+ ωn.
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Summing up this inequality for n = N1, . . . , N2, where N2 is a natural number
with N2 ≥ N1, we obtain that

µN2+1 − µN1 ≤ (1− c)
N2∑

n=N1

‖xn+1 − xn‖2 +
4K(1 + η0)

η0
‖∇h(u) + v‖2

N2∑
n=N1

λ2n

+
Kη0

1 + η0

N2∑
n=N1

λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]

+

N2∑
n=N1

ωn.

(23)

This means that {µn}∞n=2 is bounded from above (we take into account that
c > 1). Let M be a positive upper bound of {µn}∞n=2. Observing that Γn+1 −
αΓn ≤ µn+1 ≤M , thus Γn+1 ≤ αΓn +M , for every n ≥ N1, we obtain

Γn ≤ αn−N1ΓN1
+M

n−N1∑
k=1

αk−1 ≤ αn−N1ΓN1
+

M

1− α
∀n ≥ N1 + 1.

Since {Γn}∞n=1 is bounded from below, there exists C ∈ R such that

−µN2+1 = −ΓN2+1 + αΓN2
−
(

1

2λN2+1
+ 2K

)
α‖xN2+1 − xN2

‖2

≤ αΓN2
+ C ≤ αN2−N1+1ΓN1

+
Mα

1− α
+ C ∀N2 ≥ N1.

Thus, from the inequality (23), by taking into account that c > 1, we deduce
that

+∞∑
n=1

‖xn+1 − xn‖2 < +∞.

(iii) From Lemma 3, by using (19), (21) and (22), we obtain

Γn+1 − Γn − α(Γn − Γn−1) +Kλnβn

[
2

Lg(1 + η0)
− (1 + η0)b

]
‖∇g(xn)‖2

≤ −δn‖xn+1 − xn‖2 + δn−1‖xn − xn−1‖2 +
4K(1 + η0)

η0
λ2n‖∇h(u) + v‖2

+
Kη0

1 + η0
λnβn

[
g∗

(
2p
η0

1+η0
βn

)
− σargmin g

(
2p
η0

1+η0
βn

)]
+ ωn ∀n ≥ N1.

Since {Γn}∞n=1 is bounded from below, by using Lemma 4, it follows that (iii)
is true.

(iv) The statement follows from Lemma 1 and Lemma 4.
(v) Thanks to (iii), (iv) and Γn = Ωn(xn) −K η0

1+η0
λnβng(xn) + Kϕn for

every n ≥ 1, we obtain that limn→+∞Ωn(xn) exists.
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(vi) Since λnβn ≥ a > 0 for every n ≥ 1, we have
∑+∞
n=1 g(xn) < +∞ and

so limn→+∞ g(xn) = 0.
Finally, let y ∈ H be a sequential weak cluster point of {xn}∞n=1 and

{xnj}∞j=1 be a subsequence of {xn}∞n=1 such that xnj weakly converges to y as
j → +∞. Since g is weakly lower semicontinuous, we obtain that

g(y) ≤ lim inf
j→+∞

g(xnj
) ≤ lim

n→+∞
g(xn) = 0,

which means that y ∈ arg min g. �

Lemma 6 Let u ∈ S. Then we have

−∞ ≤
∞∑
n=1

λn [Ωn+1(xn+1)− (f(u) + h(u))] < +∞.

Proof For every n ≥ 1 we have that

Ωn+1(xn+1)− (f(u) + h(u)) = f(xn+1) + h(xn) + βng(xn)− (f(u) + h(u))

+(h(xn+1)− h(xn)) + (βn+1 − βn)g(xn+1)

+βn(g(xn+1)− g(xn))

≤ f(xn+1) + h(xn) + βng(xn)− (f(u) + h(u))

+(h(xn+1)− h(xn))+
Kη0

1 + η0
λn+1βn+1g(xn+1)

+βn(g(xn+1)− g(xn))

and so

λn[Ωn+1(xn+1)− (f(u) + h(u))] ≤ λn[f(xn+1) + h(xn) + βng(xn)

−(f(u) + h(u))]

+λn[(h(xn+1)− h(xn)]

+
Kη0

1 + η0
λnλn+1βn+1g(xn+1)

+λnβn[g(xn+1)− g(xn)].

According to the Descent Lemma we have for every n ≥ 1

λn[h(xn+1)− h(xn)] ≤ λn〈∇h(xn), xn+1 − xn〉+
λnLh

2
‖xn+1 − xn‖2

≤ λ2n
2
‖∇h(xn)‖2 +

1 + λnLh
2

‖xn+1 − xn‖2

and

λnβn[g(xn+1)− g(xn)] ≤ λnβn〈∇g(xn), xn+1 − xn〉+
λnβnLg

2
‖xn+1 − xn‖2

≤ λ2nβ
2
n

2
‖∇g(xn)‖2 +

1 + λnβnLg
2

‖xn+1 − xn‖2,
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which give rise to the following estimate

λn[Ωn+1(xn+1)− (f(u) + h(u))] ≤ λn[f(xn+1) + h(xn) + βng(xn)

−(f(u) + h(u))]

+
λ2n
2
‖∇h(xn)‖2

+
2 + λn(Lh + βnLg)

2
‖xn+1 − xn‖2

+
Kη0

1 + η0
λnλn+1βn+1g(xn+1)

+
λ2nβ

2
n

2
‖∇g(xn)‖2 ∀n ≥ 1. (24)

Further, we notice that for every n ≥ 1

f(xn+1)− f(u) ≤
〈
yn − xn+1

λn
−∇h(xn)− βn∇g(xn), xn+1 − u

〉
or, equivalently,〈

yn−xn+1

λn
, u− xn+1

〉
− 〈∇h(xn), u− xn+1〉 − βn〈∇g(xn), u− xn+1〉

≤ f(u)− f(xn+1). (25)

On the other hand, since g(u) = 0, we have for every n ≥ 1

0 = g(u) ≥ g(xn) + 〈∇g(xn), u− xn〉

or, equivalently,

−βn〈∇g(xn), u− xn+1〉 ≥ βng(xn) + βn〈∇g(xn), xn+1 − xn〉. (26)

Similarly, we have for every n ≥ 1

h(u) ≥ h(xn) + 〈∇h(xn), u− xn〉,

which implies that

−〈∇h(xn), u− xn+1〉 ≥ h(xn)− h(u) + 〈∇h(xn), xn+1 − xn〉. (27)

By summing up the inequalities in (25)-(27), we obtain for every n ≥ 1

2λn[f(xn+1) + h(xn) + βng(xn) − (f(u) + h(u))] ≤ 2〈yn − xn+1, xn+1 − u〉
+2λnβn〈∇g(xn), xn − xn+1〉
+2λn〈∇h(xn), xn − xn+1〉

≤ 2〈yn − xn+1, xn+1 − u〉
+λ2nβ

2
n‖∇g(xn)‖2 + 2‖xn − xn+1‖2

+λ2n‖∇h(xn)‖2. (28)
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Not least, according to (5) and (6) we obtain for every n ≥ 1

2〈yn − xn+1, xn+1 − u〉 = 2〈xn − xn+1, xn+1 − u〉+ 2α〈xn − xn−1, xn+1 − u〉
≤ ϕn − ϕn+1 + α(ϕn − ϕn−1)

+2α‖xn − xn−1‖2 + (α− 1)‖xn+1 − xn‖2

≤ ϕn − ϕn+1 + α(ϕn − ϕn−1) + 2α‖xn − xn−1‖2,

which, combined with (28) and Lemma 5(iv), implies that

∞∑
n=1

λn[f(xn+1) + h(xn) + βng(xn)− (f(u) + h(u))] < +∞.

The conclusion follows by taking into account (24). �

3 Convergence of the iterates and of the objective function values

In this section we will prove the main result of this paper. This addresses the
convergence of both the sequence of iterates {xn}∞n=1 generated by Algorithm
1 and of the sequence of objective values {f(xn) + h(xn)}∞n=1.

The Opial Lemma, which we state next and for which we refer to [12,
Lemma 2.39], will play a crucial role in the convergence analysis.

Lemma 7 Let H be a real Hilbert space, C ⊆ H a nonempty set and {xn}∞n=1

a given sequence such that:

(i) For every z ∈ C, limn→+∞ ‖xn − z‖ exists.

(ii) Every sequential weak cluster point of {xn}∞n=1 lies in C.

Then the sequence {xn}∞n=1 converges weakly to a point in C.

Theorem 3 Let {xn}∞n=1 be the sequence generated by Algorithm 1. Then:

(i) the sequence {xn}∞n=1 converges weakly to a point in S;

(ii) the sequence {f(xn) + h(xn)}∞n=1 converges to the optimal objective
value of the optimization problem (1).

Proof (i) We know that limn→+∞ ‖xn − u‖ exists for all u ∈ S (see Lemma
5(iv)), hence in view of the Opial Lemma it is sufficient to show that all
sequential weak cluster points of {xn}∞n=1 are in S. Since {λn}∞n=1 /∈ `1 and
limn→+∞Ωn(xn) exists, from Lemma 6 we obtain that

lim
n→+∞

Ωn(xn) ≤ f(u) + h(u) ∀u ∈ S.

Let x∗ ∈ H be a sequential weak cluster point of {xn}∞n=1 and {xnk
}∞k=1 be

a subsequence of {xn}∞n=1 such that xnk
converges weakly to x∗ as k → +∞.
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From here, by Lemma 5(vi), we obtain that x∗ ∈ arg min g. Take an arbitrary
u ∈ S. The weak lower semicontinuity of f and h implies that

f(x∗) + h(x∗) ≤ lim inf
k→+∞

f(xnk
) + lim inf

k→+∞
h(xnk

)

≤ lim inf
k→+∞

[f(xnk
) + h(xnk

)]

≤ lim
n→+∞

Ωn(xn) ≤ f(u) + h(u)

= min{f(x) + h(x) : x ∈ arg min g}

which means that x∗ ∈ S.

(ii) The statement is a direct consequence of the above inequalities. �

We close the paper by a remark which discusses the fulfillment of the
conditions stated in Assumption 2.

Remark 2 We chose

η0 ∈ (0,+∞), c ∈ (1,+∞), q ∈
(

1

2
, 1

)
, α ∈

(
0, 1− 1

2(1 + η0)2

)
and

γ ∈
(

1

Lg(1− α)(1 + η0)2
,min

{
2

Lg
,

3

Lg(1− α)(1 + η0)2

})
.

We set

K :=
2(1 + η0)

αη0
,

βn :=
γ [Lh + 2((1 + 2α)K + c)]

2− γLg
+

[
(1− α)γLg(1 + η0)2 − 1

Lg(1 + η0)2

]
Kη0

1 + η0
nq,

and

λn :=
(1− α)γ

βn
− 1

βnLg(1 + η0)2
,

for every n ≥ 1.

(i) By taking a := (1−α)γ− 1
Lg(1+η0)2

and b > 0 such that a < b < 2
Lg(1+η0)2

,

we have

0 < a = λnβn < b <
2

Lg(1 + η0)2
∀n ≥ 1.

(ii) Since βn ≥ γ[Lh+2((1+2α)K+c)]
2−γLg

, we have
Lh+βnLg

2 − βn

γ ≤ −(1 + 2α)K − c
for every n ≥ 1. On the other hand, since βn

γ ≤
(1−α)
λn

, we have that
Lh+βnLg

2 + α−1
λn
≤ −(1 + 2α)K − c for every n ≥ 1.
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(iii) For every n ≥ 1 we also have

βn+1 − βn =

[
(1− α)γLg(1 + η0)2 − 1

Lg(1 + η0)2

]
Kη0

1 + η0
((n+ 1)q − nq)

≤
[

(1− α)γLg(1 + η0)2 − 1

Lg(1 + η0)2

]
Kη0

1 + η0

=
Kη0

1 + η0
λn+1βn+1.

(iv) From (iii) it follows that for every n ≥ 1

1

λn+1
− 1

λn
= (βn+1 − βn)

[
Lg(1 + η0)2

(1− α)γLg(1 + η0)2 − 1

]
≤ Kη0

1 + η0
=

2

α
.

(v) Due to the fact that q ∈
(
1
2 , 1
)
, we have

∑+∞
n=1

1
βn

= +∞ and
∑+∞
n=1

1
β2
n
<

+∞. Consequently, {λn}∞n=1 ∈ `2 \ `1.
(vi) Since g ≤ δargmin g, it holds g∗ ≥ (δargmin g)

∗ = σargmin g and so g∗ −
σargmin g ≥ 0. For a function g : H → R fulfilling g ≥ a

2dist2(·, arg min g)
where a > 0, it holds g∗(x)−σargmin g(x) ≤ 1

2a‖x‖
2 for every x ∈ H. Thus,

for every n ≥ 1,

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
≤ λn

2aβn
‖p‖2 ∀p ∈ ran(Nargmin g).

Since
∑∞
n=1

1
β2
n
< +∞, from here it follows that

∞∑
n=1

λnβn

[
g∗
(
p

βn

)
− σargmin g

(
p

βn

)]
< +∞.

4 Conclusions

We investigate the weak (non-ergodic) convergence of an inertial proximal-
gradient method with penalization terms in connection with the solving of a
bilevel optimization problem, having as objective the sum of a convex nons-
mooth with a convex smooth function, and as constrained set the set of min-
imizers of another convex and differentiable function. The techniques of the
proof combine tools specific to inertial algorithms [3] and penalty type meth-
ods [5, 8]. We show the convergence of both generated iterates and objective
function values.
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20. R.I. Boţ, E.R. Csetnek, An inertial forward-backward-forward primal-dual splitting
algorithm for solving monotone inclusion problems, Numerical Algorithms 71, 519–540
(2016)
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25. R.I. Boţ, E.R. Csetnek, Penalty schemes with inertial effects for monotone inclusion
problems, Optimization 66(6), 965–982 (2017)
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