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Abstract. We address the minimization of the sum of a proper, convex and lower semicon-
tinuous with a (possibly nonconvex) smooth function from the perspective of an implicit
dynamical system of forward-backward type. The latter is formulated by means of the
gradient of the smooth function and of the proximal point operator of the nonsmooth
one. The trajectory generated by the dynamical system is proved to asymptotically con-
verge to a critical point of the objective, provided a regularization of the latter satisfies
the Kurdyka- Lojasiewicz property. Convergence rates for the trajectory in terms of the
 Lojasiewicz exponent of the regularized objective function are also provided.

Key Words. dynamical systems, continuous forward-backward method, nonsmooth op-
timization, limiting subdifferential, Kurdyka- Lojasiewicz property

AMS subject classification. 34G25, 47J25, 47H05, 90C26, 90C30, 65K10

1 Introduction

In this paper we approach the solving of the optimization problem

inf
x∈Rn

[f(x) + g(x)], (1)

where f : Rn → R ∪ {+∞} is a proper, convex, lower semicontinuous function and g :
Rn → R a (possibly nonconvex) Fréchet differentiable function with β-Lipschitz continuous
gradient for β ≥ 0, i.e., ‖∇g(x)−∇g(y)‖ ≤ β‖x− y‖ ∀x, y ∈ Rn, by associating to it the
implicit dynamical system{

ẋ(t) + x(t) = proxηf

(
x(t)− η∇g(x(t))

)
x(0) = x0,

(2)

where η > 0, x0 ∈ Rn is chosen arbitrary and proxηf : Rn → Rn, defined by

proxηf (y) = argmin
u∈Rn

{
f(u) +

1

2η
‖u− y‖2

}
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is the proximal point operator of ηf .
Due to the Lipschitz property of the proximal point operator and of the gradient of

the differentiable function, the existence and uniqueness of strong global solutions of the
dynamical system (2) is ensured in the framework of the Cauchy-Lipschitz Theorem.

The asymptotic analysis of the trajectories is carried out in the setting of functions sat-
isfying the Kurdyka- Lojasiewicz property (so-called KL functions). To this large class be-
long functions with different analytic features. The convergence analysis relies on methods
and techniques of real algebraic geometry introduced by  Lojasiewicz [38] and Kurdyka [37]
and developed recently in the nonsmooth setting by Attouch, Bolte and Svaiter [13] and
Bolte, Sabach and Teboulle [24].

The approach for proving asymptotic convergence for the trajectories generated by (2)
towards a critical point of the objective function of (1), expressed as a zero of the limiting
(Mordukhovich) subdifferential, use three main ingredients (see [6] for the continuous
case and also [13, 24] for a similar approach in the discrete setting). Namely, we show
a sufficient decrease property along the trajectories of a regularization of the objective
function, the existence of a subgradient lower bound for the trajectories and, finally, we
obtain convergence by making use of the Kurdyka- Lojasiewicz property of the objective
function. The case when the objective function is semi-algebraic follows as particular
case of our analysis. We close our investigations by establishing convergence rates for the
trajectories expressed in terms of the  Lojasiewicz exponent of the regularized objective
function.

In the context of minimizing a (nonconvex) smooth function (which corresponds to the
case when in (1) f is taken equal to zero), several first- and second-order gradient type
dynamical systems have been investigated by  Lojasiewicz [38], Simon [42], Haraux and
Jendoubi [35], Alvarez, Attouch, Bolte and Redont [6, Section 4], Bolte, Daniilidis and
Lewis [21, Section 4], etc. In the aforementioned papers, the convergence of the trajectories
is obtained in the framework of KL functions.

In what concerns implicit dynamical systems of the same type as (2), let us mention
that Bolte has studied in [20] the asymptotic convergence of the trajectories of{

ẋ(t) + x(t) = projC
(
x(t)− η∇g(x(t))

)
x(0) = x0.

(3)

where g : Rn → Rn is convex and differentiable with Lipschitz continuous gradient and
projC denotes the projection operator on the nonempty, closed and convex set C ⊆ Rn,
towards a minimizer of g over C. This corresponds to the case when in (1) f is the indicator
function of the set C, namely, f(x) = 0, for x ∈ C and +∞, otherwise. We refer also to the
work of Antipin [7] for more statements and results concerning the dynamical system (3).
The approach of (1) by means of (2), stated as a generalization of (3), has been recently
considered by Abbas and Attouch in [1, Section 5.2] in the full convex setting. Implicit
dynamical systems related to both optimization problems and monotone inclusions have
been considered in the literature also by Attouch and Svaiter in [16], Attouch, Abbas and
Svaiter in [2] and Attouch, Alvarez and Svaiter in [10]. These investigations have been
continued and extended in [17,26–29].

A further argument in favour of implicit-type dynamical systems of type (2) is that its
time discretization leads to the relaxed forward-backward iterative algorithm

xk+1 = (1− λk)xk + λk proxηf (xk − η∇g(xk)) ∀k ≥ 0, (4)
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where the starting point x0 ∈ Rn is arbitrarily chosen and (λk)k≥0 is the sequence of
relaxation parameters. Relaxation algorithms are important for applications, since the
parameter involving the relaxation offers the opportunity to accelerate the convergence of
the iterates. While in the convex setting this is a well-known and understood fact (see for
example [18]), in the nonconvex setting the convergence analysis of relaxation versions is
less studied. The results presented below let us hope that one can develope a convergence
analysis for the relaxed forward-backward method (4) in the nonconvex setting, too, an
issue which is left as an open problem and which can be subject of future investigations.

The non-relaxed variant of (4) (when λk = 1 for all k ≥ 0) has been investigated also in
the nonconvex setting for KL functions. We refer the reader to [11–13,24,25,30,32,33,36,40]
for different treatments of iterative schemes of type (4) in the nonconvex setting. Among
the concrete applications of optimization problems involving analytic features, we mention
here the use of the sparsity measure in compressive sensing, constrained feasibility prob-
lems involving semi-algebraic sets [13], sparse matrix factorization problems [24], restora-
tion of noisy blurred images by means of the Student-t distribution [30, 40] and phase
retrieval [19].

2 Preliminaries

In this section we recall some notions and results which are needed throughout the paper.
Let N = {0, 1, 2, ...} be the set of nonnegative integers. For n ≥ 1, the Euclidean scalar
product and the induced norm on Rn are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Notice
that all the finite-dimensional spaces considered in the manuscript are endowed with the
topology induced by the Euclidean norm.

The domain of the function f : Rn → R∪{+∞} is defined by dom f = {x ∈ Rn : f(x) <
+∞}. We say that f is proper if dom f 6= ∅. For the following generalized subdifferential
notions and their basic properties we refer to [39,41]. Let f : Rn → R∪{+∞} be a proper
and lower semicontinuous function. If x ∈ dom f , we consider the Fréchet (viscosity)
subdifferential of f at x as the set

∂̂f(x) =

{
v ∈ Rn : lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}
.

For x /∈ dom f we set ∂̂f(x) := ∅. The limiting (Mordukhovich) subdifferential is defined
at x ∈ dom f by

∂f(x) = {v ∈ Rn : ∃xk → x, f(xk)→ f(x) and ∃vk ∈ ∂̂f(xk), vk → v as k → +∞},

while for x /∈ dom f , one takes ∂f(x) := ∅. Therefore ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rn.
Notice that in case f is convex, these subdifferential notions coincide with the convex

subdifferential, thus ∂̂f(x) = ∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ Rn} for all
x ∈ Rn.

The graph of the limiting subdifferential fulfills the following closedness criterion: if
(xk)k∈N and (vk)k∈N are sequences in Rn such that vk ∈ ∂f(xk) for all k ∈ N, (xk, vk) →
(x, v) and f(xk)→ f(x) as k → +∞, then v ∈ ∂f(x).

The Fermat rule reads in this nonsmooth setting as follows: if x ∈ Rn is a local
minimizer of f , then 0 ∈ ∂f(x). We denote by

crit(f) = {x ∈ Rn : 0 ∈ ∂f(x)}
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the set of (limiting)-critical points of f .
When f is continuously differentiable around x ∈ Rn we have ∂f(x) = {∇f(x)}. We

will make use of the following subdifferential sum rule: if f : Rn → R ∪ {+∞} is proper
and lower semicontinuous and h : Rn → R is a continuously differentiable function, then
∂(f + h)(x) = ∂f(x) +∇h(x) for all x ∈ Rm.

We turn now our attention to functions satisfying the Kurdyka- Lojasiewicz property.
This class of functions will play a crucial role in the asymptotic analysis of the dynamical
system (2). For η ∈ (0,+∞], we denote by Θη the class of concave and continuous
functions ϕ : [0, η)→ [0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η),
continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η). In the following definition (see [12,24]) we
use also the distance function to a set, defined for A ⊆ Rn as dist(x,A) = infy∈A ‖x− y‖
for all x ∈ Rn.

Definition 1 (Kurdyka- Lojasiewicz property) Let f : Rn → R ∪ {+∞} be a proper and
lower semicontinuous function. We say that f satisfies the Kurdyka- Lojasiewicz (KL)
property at x ∈ dom ∂f = {x ∈ Rn : ∂f(x) 6= ∅}, if there exist η ∈ (0,+∞], a neighborhood
U of x and a function ϕ ∈ Θη such that for all x in the intersection

U ∩ {x ∈ Rn : f(x) < f(x) < f(x) + η}

the following inequality holds

ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point in dom ∂f , then f is called KL function.

The origins of this notion go back to the pioneering work of  Lojasiewicz [38], where
it is proved that for a real-analytic function f : Rn → R and a critical point x ∈ Rn
(that is ∇f(x) = 0), there exists θ ∈ [1/2, 1) such that the function |f − f(x)|θ‖∇f‖−1
is bounded around x. This corresponds to the situation when ϕ(s) = Cs1−θ, where
C > 0. The result of  Lojasiewicz allows the interpretation of the KL property as a re-
parametrization of the function values in order to avoid flatness around the critical points.
Kurdyka [37] extended this property to differentiable functions definable in o-minimal
structures. Further extensions to the nonsmooth setting can be found in [12,21–23].

One of the remarkable properties of the KL functions is their ubiquity in applica-
tions (see [24]). To the class of KL functions belong semi-algebraic, real sub-analytic,
semiconvex, uniformly convex and convex functions satisfying a growth condition. We
refer the reader to [11–13,21–24] and the references therein for more on KL functions and
illustrating examples.

An important role in our convergence analysis will be played by the following uniform
KL property given in [24, Lemma 6].

Lemma 1 Let Ω ⊆ Rn be a compact set and let f : Rn → R ∪ {+∞} be a proper and
lower semicontinuous function. Assume that f is constant on Ω and that it satisfies the
KL property at each point of Ω. Then there exist ε, η > 0 and ϕ ∈ Θη such that for all
x ∈ Ω and all x in the intersection

{x ∈ Rn : dist(x,Ω) < ε} ∩ {x ∈ Rn : f(x) < f(x) < f(x) + η} (5)
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the inequality
ϕ′(f(x)− f(x)) dist(0, ∂f(x)) ≥ 1. (6)

holds.

In the following we recall the notion of locally absolutely continuous function and state
two of its basic properties.

Definition 2 (see, for instance, [2, 16]) A function x : [0,+∞)→ Rn is said to be locally
absolutely continuous, if it absolutely continuous on every interval [0, T ], where T > 0,
which means that one of the following equivalent properties holds:

(i) there exists an integrable function y : [0, T ]→ Rn such that

x(t) = x(0) +

∫ t

0
y(s)ds ∀t ∈ [0, T ];

(ii) x is continuous and its distributional derivative is Lebesgue integrable on [0, T ];

(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals
Ik = (ak, bk) ⊆ [0, T ] we have the implication(

Ik ∩ Ij = ∅ and
∑
k

|bk − ak| < η

)
=⇒

∑
k

‖x(bk)− x(ak)‖ < ε.

Remark 2 (a) It follows from the definition that an absolutely continuous function
is differentiable almost everywhere, its derivative coincides with its distributional
derivative almost everywhere and one can recover the function from its derivative
ẋ = y by the integration formula (i).

(b) If x : [0, T ]→ Rn is absolutely continuous for T > 0 and B : Rn → Rn is L-Lipschitz
continuous for L ≥ 0, then the function z = B ◦x is absolutely continuous, too. This
can be easily seen by using the characterization of absolute continuity in Definition
2(iii). Moreover, z is differentiable almost everywhere on [0, T ] and the inequality
‖ż(t)‖ ≤ L‖ẋ(t)‖ holds for almost every t ∈ [0, T ].

The following two results, which can be interpreted as continuous versions of the quasi-
Fejér monotonicity for sequences, will play an important role in the asymptotic analysis
of the trajectories of the dynamical system investigated in this paper. For their proofs we
refer the reader to [2, Lemma 5.1] and [2, Lemma 5.2], respectively.

Lemma 3 Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded
from below and that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.
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Lemma 4 If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is locally absolutely
continuous, F ∈ Lp([0,+∞)), G : [0,+∞) → R, G ∈ Lr([0,+∞)) and for almost every
t ∈ [0,+∞)

d

dt
F (t) ≤ G(t),

then limt→+∞ F (t) = 0.

Further we recall a differentiability result involving the composition of convex functions
with absolutely continuous trajectories which is due to Brézis ( [31, Lemme 3.3, p. 73];
see also [14, Lemma 3.2]).

Lemma 5 Let f : Rn → R∪{+∞} be a proper, convex and lower semicontinuous function.
Let x ∈ L2([0, T ],Rn) be absolutely continuous such that ẋ ∈ L2([0, T ],Rn) and x(t) ∈
dom f for almost every t ∈ [0, T ]. Assume that there exists ξ ∈ L2([0, T ],Rn) such that
ξ(t) ∈ ∂f(x(t)) for almost every t ∈ [0, T ]. Then the function t 7→ f(x(t)) is absolutely
continuous and for almost every t such that x(t) ∈ dom ∂f we have

d

dt
f(x(t)) = 〈ẋ(t), h〉 ∀h ∈ ∂f(x(t)).

We close this section by recalling the following characterization of the proximal point
operator of a proper, convex and lower semincontinuous function f : Rn → R ∪ {+∞}.
For every η > 0 it holds (see for example [18])

p = proxηf (x) if and only if x ∈ p+ η∂f(p), (7)

where ∂f denotes the convex subdifferential of f .

3 Asymptotic analysis

Before starting with the convergence analysis for the dynamical system (2), we would like
to point out that this can be written as{

ẋ(t) = (prox ◦(Id−η∇g)− Id)
(
x(t)

)
,

x(0) = x0,
(8)

where prox ◦(Id−η∇g)− Id is a (2 +ηβ)-Lipschitz continuous operator. This follows from
the fact that the proximal point operator of a proper, convex and lower semicontinuous
function is nonexpansive, i.e., 1-Lipschitz continuous (see for example [18]). According
to the global version of the Cauchy-Lipschitz Theorem (see for instance [9, Theorem
17.1.2(b)]), there exists a unique global solution x ∈ C1([0,+∞),Rn) of the above dy-
namical system.

3.1 Convergence of the trajectories

Lemma 6 Suppose that f + g is bounded from below and η > 0 fulfills the inequality

ηβ(3 + ηβ) < 1. (9)

For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2). Then the
following statements hold:
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(a) ẋ ∈ L2([0,+∞);Rn) and limt→+∞ ẋ(t) = 0;

(b) ∃ limt→+∞(f + g)
(
ẋ(t) + x(t)

)
∈ R.

Proof. Let us start by noticing that in the light of the the reformulation in (8) and
of Remark 2(b), ẋ is locally absolutely continuous, hence ẍ exists and for almost every
t ∈ [0,+∞) one has

‖ẍ(t)‖ ≤ (2 + ηβ)‖ẋ(t)‖. (10)

We fix an arbitrary T > 0. Due to the continuity properties of the trajectory on [0, T ],
(10) and the Lipschitz continuity of ∇g, one has

x, ẋ, ẍ,∇g(x) ∈ L2([0, T ];Rn).

Further, from the characterization (7) of the proximal point operator we have

−1

η
ẋ(t)−∇g(x(t)) ∈ ∂f(ẋ(t) + x(t)) ∀t ∈ [0,+∞). (11)

Applying Lemma 5 we obtain that the function t 7→ f
(
ẋ(t)+x(t)

)
is absolutely continuous

and
d

dt
f
(
ẋ(t) + x(t)

)
=

〈
−1

η
ẋ(t)−∇g(x(t)), ẍ(t) + ẋ(t)

〉
for almost every t ∈ [0, T ]. Moreover, it holds

d

dt
g
(
ẋ(t) + x(t)

)
=
〈
∇g
(
ẋ(t) + x(t)

)
, ẍ(t) + ẋ(t)

〉
for almost every t ∈ [0, T ]. Summing up the last two equalities, we obtain

d

dt
(f + g)

(
ẋ(t) + x(t)

)
=

〈
−1

η
ẋ(t)−∇g(x(t)) +∇g

(
ẋ(t) + x(t)

)
, ẍ(t) + ẋ(t)

〉
=− 1

2η

d

dt

(
‖ẋ(t)‖2

)
− 1

η
‖ẋ(t)‖2

+
〈
∇g
(
ẋ(t) + x(t)

)
−∇g(x(t)), ẍ(t) + ẋ(t)

〉
≤− 1

2η

d

dt

(
‖ẋ(t)‖2

)
− 1

η
‖ẋ(t)‖2 + β‖ẋ(t)‖ · ‖ẍ(t) + ẋ(t)‖ (12)

≤− 1

2η

d

dt

(
‖ẋ(t)‖2

)
− 1

η
‖ẋ(t)‖2 + β(3 + ηβ)‖ẋ(t)‖2 (13)

=− 1

2η

d

dt

(
‖ẋ(t)‖2

)
−
[

1

η
− β(3 + ηβ)

]
‖ẋ(t)‖2

for almost every t ∈ [0, T ], where in (12) we used the Lipschitz continuity of ∇g and in
(13) the inequality (10). Altogether, we conclude that for almost every t ∈ [0, T ] we have

d

dt

[
(f + g)

(
ẋ(t) + x(t)

)
+

1

2η
‖ẋ(t)‖2

]
+

[
1

η
− β(3 + ηβ)

]
‖ẋ(t)‖2 ≤ 0 (14)

and by integration we get

(f + g)
(
ẋ(T ) + x(T )

)
+

1

2η
‖ẋ(T )‖2 +

[
1

η
− β(3 + ηβ)

] ∫ T

0
‖ẋ(t)‖2dt ≤

(f + g)
(
ẋ(0) + x0

)
+

1

2η
‖ẋ(0)‖2. (15)
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By using (9) and the fact that f + g is bounded from below and by taking into account
that T > 0 has been arbitrarily chosen, we obtain

ẋ ∈ L2([0,+∞);Rn). (16)

Due to (10), this further implies

ẍ ∈ L2([0,+∞);Rn). (17)

Furthermore, for almost every t ∈ [0,+∞) we have

d

dt

(
‖ẋ(t)‖2

)
= 2〈ẋ(t), ẍ(t)〉 ≤ ‖ẋ(t)‖2 + ‖ẍ(t)‖2.

By applying Lemma 4, it follows that limt→+∞ ẋ(t) = 0 and the proof of (a) is complete.
From (14), (9) and by using that T > 0 has been arbitrarily chosen, we get

d

dt

[
(f + g)

(
ẋ(t) + x(t)

)
+

1

2η
‖ẋ(t)‖2

]
≤ 0

for almost every t ∈ [0,+∞). From Lemma 3 it follows that

lim
t→+∞

[
(f + g)

(
ẋ(t) + x(t)

)
+

1

2η
‖ẋ(t)‖2

]
exists and it is a real number, hence from limt→+∞ ẋ(t) = 0 the conclusion follows. �

We define the limit set of x as

ω(x) = {x ∈ Rn : ∃tk → +∞ such that x(tk)→ x as k → +∞}.

Lemma 7 Suppose that f + g is bounded from below and η > 0 fulfills the inequality (9).
For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2). Then

ω(x) ⊆ crit(f + g).

Proof. Let x ∈ ω(x) and tk → +∞ be such that x(tk) → x as k → +∞. From (11) we
have

−1

η
ẋ(tk)−∇g(x(tk)) +∇g

(
ẋ(tk) + x(tk)

)
∈ ∂f

(
ẋ(tk) + x(tk)

)
+∇g

(
ẋ(tk) + x(tk)

)
= ∂(f + g)

(
ẋ(tk) + x(tk)

)
∀k ∈ N. (18)

Lemma 6(a) and the Lipschitz continuity of ∇g ensure that

−1

η
ẋ(tk)−∇g(x(tk)) +∇g

(
ẋ(tk) + x(tk)

)
→ 0 as k → +∞ (19)

and
ẋ(tk) + x(tk)→ x as k → +∞. (20)

We claim that
lim

k→+∞
(f + g)

(
ẋ(tk) + x(tk)

)
= (f + g)(x). (21)

8



Due to the lower semicontinuity of f it holds

lim inf
k→+∞

f
(
ẋ(tk) + x(tk)

)
≥ f(x). (22)

Further, since

ẋ(tk) + x(tk) = argmin
u∈Rn

[
f(u) +

1

2η

∥∥u− (x(tk)− η∇g(x(tk))
)∥∥2]

= argmin
u∈Rn

[
f(u) +

1

2η
‖u− x(tk)‖2 + 〈u− x(tk),∇g(x(tk))〉

]
we have the inequality

f
(
ẋ(tk) + x(tk)

)
+

1

2η
‖ẋ(tk)‖2 + 〈ẋ(tk),∇g(x(tk))〉

≤ f(x) +
1

2η
‖x− x(tk)‖2 + 〈x− x(tk),∇g(x(tk))〉 ∀k ∈ N.

Taking the limit as k → +∞ we derive by using again Lemma 6(a) that

lim sup
k→+∞

f
(
ẋ(tk) + x(tk)

)
≤ f(x),

which combined with (22) implies

lim
k→+∞

f
(
ẋ(tk) + x(tk)

)
= f(x).

By using (20) and the continuity of g we conclude that (21) is true.
Altogether, from (18), (19), (20), (21) and the closedness criteria of the limiting sub-

differential we obtain 0 ∈ ∂(f + g)(x) and the proof is complete. �

Lemma 8 Suppose that f + g is bounded from below and η > 0 fulfills the inequality (9).
For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2) and consider the
function

H : Rn × Rn → R ∪ {+∞}, H(u, v) = (f + g)(u) +
1

2η
‖u− v‖2.

Then the following statements are true:

(H1) for almost every t ∈ [0,+∞) it holds

d

dt
H
(
ẋ(t) + x(t), x(t)

)
≤ −

[
1

η
− (3 + ηβ)β

]
‖ẋ(t)‖2 ≤ 0

and
∃ lim
t→+∞

H
(
ẋ(t) + x(t), x(t)

)
∈ R;

(H2) for every t ∈ [0,+∞) it holds

z(t) :=

(
−∇g(x(t)) +∇g

(
ẋ(t) + x(t)

)
,−1

η
ẋ(t)

)
∈ ∂H

(
ẋ(t) + x(t), x(t)

)
and

‖z(t)‖ ≤
(
β +

1

η

)
‖ẋ(t)‖;
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(H3) for x ∈ ω(x) and tk → +∞ such that x(tk) → x as k → +∞, we have H
(
ẋ(tk) +

x(tk), x(tk)
)
→ H(x, x) as k → +∞.

Proof. (H1) follows from Lemma 6. The first statement in (H2) is a consequence of (11)
and the relation

∂H(u, v) =
(
∂(f + g)(u) + η−1(u− v)

)
× {η−1(v − u)} ∀(u, v) ∈ Rn × Rn, (23)

while the second one is a consequence of the Lipschitz continuity of ∇g. Finally, (H3) has
been shown as intermediate step in the proof of Lemma 7. �

Lemma 9 Suppose that f + g is bounded from below and η > 0 fulfills the inequality (9).
For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2) and consider the
function

H : Rn × Rn → R ∪ {+∞}, H(u, v) = (f + g)(u) +
1

2η
‖u− v‖2.

Suppose that x is bounded. Then the following statements are true:

(a) ω(ẋ+ x, x) ⊆ crit(H) = {(u, u) ∈ Rn × Rn : u ∈ crit(f + g)};

(b) limt→+∞ dist
((
ẋ(t) + x(t), x(t)

)
, ω
(
ẋ+ x, x

))
= 0;

(c) ω
(
ẋ+ x, x

)
is nonempty, compact and connected;

(d) H is finite and constant on ω
(
ẋ+ x, x

)
.

Proof. (a), (b) and (d) are direct consequences Lemma 6, Lemma 7 and Lemma 8.
Finally, (c) is a classical result from [34]. We also refer the reader to the proof of

Theorem 4.1 in [6], where it is shown that the properties of ω(x) of being nonempty,
compact and connected are generic for bounded trajectories fulfilling limt→+∞ ẋ(t) = 0).
�

Remark 10 Suppose that η > 0 fulfills the inequality (9) and f + g is coercive, that is

lim
‖u‖→+∞

(f + g)(u) = +∞.

For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2). Then f + g is
bounded from below and x is bounded.

Indeed, since f + g is a proper, lower semicontinuous and coercive function, it follows
that infu∈Rn [f(u) + g(u)] is finite and the infimum is attained. Hence f + g is bounded
from below. On the other hand, from (15) it follows

(f + g)
(
ẋ(T ) + x(T )

)
≤ (f + g)

(
ẋ(T ) + x(T )

)
+

1

2η
‖ẋ(T )‖2

≤ (f + g)
(
ẋ(0) + x0)

)
+

1

2η
‖ẋ(0)‖2 ∀T ≥ 0.

Since the lower level sets of f+g are bounded, the above inequality yields the boundedness
of ẋ+ x, which combined with limt→+∞ ẋ(t) = 0 delivers the boundedness of x.
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We come now to the main result of the paper.

Theorem 11 Suppose that f + g is bounded from below and η > 0 fulfills the inequality
(9). For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2) and consider
the function

H : Rn × Rn → R ∪ {+∞}, H(u, v) = (f + g)(u) +
1

2η
‖u− v‖2.

Suppose that x is bounded and H is a KL function. Then the following statements are
true:

(a) ẋ ∈ L1([0,+∞);Rn);

(b) there exists x ∈ crit(f + g) such that limt→+∞ x(t) = x.

Proof. According to Lemma 9, we can choose an element x ∈ crit(f + g) such that
(x, x) ∈ ω(ẋ+ x, x). According to Lemma 8, it follows that

lim
t→+∞

H
(
ẋ(t) + x(t), x(t)

)
= H(x, x).

We treat the following two cases separately.
I. There exists t ≥ 0 such that

H
(
ẋ(t) + x(t), x(t)

)
= H(x, x).

Since from Lemma 8(H1) we have

d

dt
H
(
ẋ(t) + x(t), x(t)

)
≤ 0 ∀t ∈ [0,+∞),

we obtain for every t ≥ t that

H
(
ẋ(t) + x(t), x(t)

)
≤ H

(
ẋ(t) + x(t), x(t)

)
= H(x, x).

Thus H
(
ẋ(t) + x(t), x(t)

)
= H(x, x) for every t ≥ t. This yields by Lemma 8(H1) that

ẋ(t) = 0 for almost every t ∈ [t,+∞), hence x is constant on [t,+∞) and the conclusion
follows.

II. For every t ≥ 0 it holds H
(
ẋ(t) + x(t), x(t)

)
> H(x, x). Take Ω = ω(ẋ+ x, x).

In virtue of Lemma 9(c) and (d) and since H is a KL function, by Lemma 1, there
exist positive numbers ε and η and a concave function ϕ ∈ Θη such that for all

(x, y) ∈{(u, v) ∈ Rn × Rn : dist((u, v),Ω) < ε}
∩ {(u, v) ∈ Rn × Rn : H(x, x) < H(u, v) < H(x, x) + η} (24)

one has
ϕ′(H(x, y)−H(x, x)) dist((0, 0), ∂H(x, y)) ≥ 1. (25)

Let t1 ≥ 0 be such that H
(
ẋ(t) + x(t), x(t)

)
< H(x, x) + η for all t ≥ t1. Since

limt→+∞ dist
((
ẋ(t) + x(t), x(t)

)
,Ω
)

= 0, there exists t2 ≥ 0 such that dist
((
ẋ(t) +

11



x(t), x(t)
)
,Ω
)
< ε for all t ≥ t2. Hence for all t ≥ T := max{t1, t2},

(
ẋ(t) + x(t), x(t)

)
belongs to the intersection in (24). Thus, according to (25), for every t ≥ T we have

ϕ′
(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)
dist

(
(0, 0), ∂H

(
ẋ(t) + x(t), x(t)

))
≥ 1. (26)

By applying Lemma 8(H2) we obtain for almost every t ∈ [T,+∞)

(β + η−1)‖ẋ(t)‖ϕ′
(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)
≥ 1. (27)

From here, by using Lemma 8(H1) and that ϕ′ > 0 and

d

dt
ϕ
(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)
=

ϕ′
(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

) d
dt
H
(
ẋ(t) + x(t), x(t)

)
,

we deduce that for almost every t ∈ [T,+∞) it holds

d

dt
ϕ
(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)
≤ −

(
β + η−1

)−1 [1

η
− (3 + ηβ)β

]
‖ẋ(t)‖. (28)

Since ϕ is bounded from below, by taking into account (9), it follows ẋ ∈ L1([0,+∞);Rn).
From here we obtain that limt→+∞ x(t) exists and this closes the proof. �

Since the class of semi-algebraic functions is closed under addition (see for example [24])
and (u, v) 7→ c‖u − v‖2 is semi-algebraic for c > 0, we can stat the following direct
consequence of the previous theorem.

Corollary 12 Suppose that f + g is bounded from below and η > 0 fulfills the inequality
(9). For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2). Suppose
that x is bounded and f + g is semi-algebraic. Then the following statements are true:

(a) ẋ ∈ L1([0,+∞);Rn);

(b) there exists x ∈ crit(f + g) such that limt→+∞ x(t) = x.

Remark 13 The construction of the function H, which we used in the above arguments
in order to derive a descent property, has been inspired by the decrease property obtained
in (14). Similar regularizations of the objective function of (1) have been considered also
in [30, 40], in the context of the investigation of non-relaxed forward-backward methods
involving inertial and memory effects in the nonconvex setting.

Remark 14 Some comments concerning condition (9) that involves the step size and the
Lipschitz constant of the smooth function are in order. In the full convex setting, it has
been proved by Abbas and Attouch in [1, Theorem 5.2(2)] that in order to obtain weak
convergence of the trajectory to an optimal solution of (1) no restriction on the step size
is needed. This surprising fact which is closely related to the continuous case, as for
obtaining convergence for the time-discretized version (4) one usually has to assume that
η is in the interval (0, 2β). Working in the nonconvex setting, one has to even strengthen
this assumption and it will be a question of future research to find out if one can relax
the restriction (9). Another question of future interest will be to properly choose the step
size when the Lipschitz constant of the gradient is not known, eventually by making use
of backtracking strategies, as is was already done in the convex setting.
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3.2 Convergence rates

In this subsection we investigate the convergence rates of the trajectories generated by
the dynamical system (2). When solving optimization problems involving KL functions,
convergence rates have been proved to depend on the so-called  Lojasiewicz exponent (see
[11,21,33,38]). The main result of this subsection refers to the KL functions which satisfy
Definition 1 for ϕ(s) = Cs1−θ, where C > 0 and θ ∈ (0, 1). We recall the following
definition considered in [11].

Definition 3 Let f : Rn → R ∪ {+∞} be a proper and lower semicontinuous function.
The function f is said to have the  Lojasiewicz property, if for every x ∈ crit f there exist
C, ε > 0 and θ ∈ (0, 1) such that

|f(x)− f(x)|θ ≤ C‖x∗‖ for every x fulfilling ‖x− x‖ < ε and every x∗ ∈ ∂f(x). (29)

According to [12, Lemma 2.1 and Remark 3.2(b)], the KL property is automatically
satisfied at any noncritical point, fact which motivates the restriction to critical points
in the above definition. The real number θ in the above definition is called  Lojasiewicz
exponent of the function f at the critical point x.

Theorem 15 Suppose that f + g is bounded from below and η > 0 fulfills the inequality
(9). For x0 ∈ Rn, let x ∈ C1([0,+∞),Rn) be the unique global solution of (2) and consider
the function

H : Rn × Rn → R ∪ {+∞}, H(u, v) = (f + g)(u) +
1

2η
‖u− v‖2.

Suppose that x is bounded and H satisfies Definition 1 for ϕ(s) = Cs1−θ, where C > 0
and θ ∈ (0, 1). Then there exists x ∈ crit(f + g) such that limt→+∞ x(t) = x. Let θ be the
 Lojasiewicz exponent of H at (x, x) ∈ critH, according to the Definition 3. Then there
exist a, b, c, d > 0 and t0 ≥ 0 such that for every t ≥ t0 the following statements are true:

(a) if θ ∈ (0, 12), then x converges in finite time;

(b) if θ = 1
2 , then ‖x(t)− x‖ ≤ a exp(−bt);

(c) if θ ∈ (12 , 1), then ‖x(t)− x‖ ≤ (ct+ d)−( 1−θ
2θ−1).

Proof. We define for every t ≥ 0 (see also [21])

σ(t) =

∫ +∞

t
‖ẋ(s)‖ds for all t ≥ 0.

It is immediate that
‖x(t)− x‖ ≤ σ(t) ∀t ≥ 0. (30)

Indeed, this follows by noticing that for T ≥ t

‖x(t)− x‖ = ‖x(T )− x−
∫ T

t
ẋ(s)ds‖

≤ ‖x(T )− x‖+

∫ T

t
‖ẋ(s)‖ds,

13



and by letting afterwards T → +∞.
We assume that for every t ≥ 0 we have H

(
ẋ(t) +x(t), x(t)

)
> H(x, x). As seen in the

proof of Theorem 11, in the other case the conclusion follows automatically. Furthermore,
by invoking again the proof of above-named result, there exist t0 ≥ 0 and M > 0 such
that for almost every t ≥ t0 (see (28))

M‖ẋ(t)‖+
d

dt

[(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)]1−θ
≤ 0

and
‖
(
ẋ(t) + x(t), x(t)

)
− (x, x)‖ < ε.

We derive by integration (for T ≥ t ≥ t0)

M

∫ T

t
‖ẋ(s)‖ds+

[(
H
(
ẋ(T ) + x(T ), x(T )

)
−H(x, x)

)]1−θ
≤
[(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)]1−θ
,

hence

Mσ(t) ≤
[(
H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)

)]1−θ
∀t ≥ t0. (31)

Since θ is the  Lojasiewicz exponent of H at (x, x), we have

|H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)|θ ≤ C‖x∗‖ ∀x∗ ∈ ∂H

(
ẋ(t) + x(t), x(t)

)
for every t ≥ t0. According to Lemma 8(H2), we can find a constant N > 0 and x∗(t) ∈
∂H
(
ẋ(t) + x(t), x(t)

)
such that for every t ∈ [0,+∞)

‖x∗(t)‖ ≤ N‖ẋ(t)‖.

From the above two inequalities we derive for almost every t ∈ [t0,+∞)

|H
(
ẋ(t) + x(t), x(t)

)
−H(x, x)|θ ≤ C ·N‖ẋ(t)‖,

which combined with (31) yields

Mσ(t) ≤ (C ·N‖ẋ(t)‖)
1−θ
θ . (32)

Since
σ̇(t) = −‖ẋ(t)‖ (33)

we conclude that there exists α > 0 such that for almost every t ∈ [t0,+∞)

σ̇(t) ≤ −α
(
σ(t)

) θ
1−θ . (34)

If θ = 1
2 , then

σ̇(t) ≤ −ασ(t)

for almost every t ∈ [t0,+∞). By multiplying with exp(αt) and integrating afterwards
from t0 to t, it follows that there exist a, b > 0 such that

σ(t) ≤ a exp(−bt) ∀t ≥ t0
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and the conclusion of (b) is immediate from (30).
Assume that 0 < θ < 1

2 . We obtain from (34)

d

dt

(
σ

1−2θ
1−θ
)
≤ −α1− 2θ

1− θ

for almost every t ∈ [t0,+∞).
By integration we get (

σ(t)
) 1−2θ

1−θ ≤ −αt+ β ∀t ≥ t0,

where α > 0. Thus there exists T ≥ 0 such that

σ(T ) ≤ 0 ∀t ≥ T,

which implies that x is constant on [T,+∞).
Finally, suppose that 1

2 < θ < 1. We obtain from (34)

d

dt

(
σ

1−2θ
1−θ
)
≥ α2θ − 1

1− θ
.

By integration one derives

σ(t) ≤ (ct+ d)−( 1−θ
2θ−1) ∀t ≥ t0,

where c, d > 0, and (c) follows from (30). �
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