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Abstract. In this paper we investigate in a Hilbert space setting a second order dynamical system of
the form

ẍ(t) + γ(t)ẋ(t) + x(t)− Jλ(t)A
(
x(t)− λ(t)D(x(t))− λ(t)β(t)B(x(t))

)
= 0,

whereA : H⇒ H is a maximal monotone operator, Jλ(t)A : H −→ H is the resolvent operator of λ(t)A and
D,B : H → H are cocoercive operators, and λ, β : [0,+∞) → (0,+∞), and γ : [0,+∞) → (0,+∞) are
step size, penalization and, respectively, damping functions, all depending on time. We show the existence
and uniqueness of strong global solutions in the framework of the Cauchy-Lipschitz-Picard Theorem and
prove ergodic asymptotic convergence for the generated trajectories to a zero of the operator A+D+NC ,
where C = zerB and NC denotes the normal cone operator of C. To this end we use Lyapunov analysis
combined with the celebrated Opial Lemma in its ergodic continuous version. Furthermore, we show
strong convergence for trajectories to the unique zero of A + D + NC , provided that A is a strongly
monotone operator.
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1 Introduction and preliminaries

Consider the bilevel optimization problem

inf
x∈argminψ

{f(x) + g(x)}, (1)

where f : H −→ R ∪ {+∞} is a proper convex and lower semicontinuous function, g, ψ : H −→ R are
convex and (Fréchet) differentiable functions both with Lipschitz continuous gradients, and argminψ
denotes the set of global minimizers of ψ, assumed to be nonempty.

By making use of the indicator function of argminψ, (1) can be rewritten as

inf
x∈H
{f(x) + g(x) + δargminψ(x)}. (2)
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Obviously, x ∈ argminψ is an optimal solution of (2) if and only if 0 ∈ ∂(f + g+ δargminψ)(x), which can
be split in

0 ∈ ∂f(x) +∇g(x) + ∂δargminψ(x), (3)

provided a suitable qualification condition which guarantees the subdifferential sum rule holds, like for
instance 0 ∈ int(dom f − argminψ).

Using that ∂δargminψ(x) = Nargminψ(x) and argminψ = zer∇ψ, (3) is nothing else than

0 ∈ ∂f(x) +∇g(x) +Nzer∇ψ(x). (4)

This motivates us to investigate the following inclusion problem

0 ∈ Ax+Dx+NC(x), (5)

where A : H ⇒ H is a maximally monotone operator, D : H −→ H is a L−1D -cocoercive operator, and
B : H −→ H is a L−1B -cocoercive operator with LD, LB > 0, C = zerB, assumed to be nonempty, and NC

denotes the normal cone operator of the set C. We recall that by the classical Baillon-Haddad Theorem,
the gradient of a convex and (Fréchet) differentiable function is L-Lipschitz continuous, for L > 0, if and
only if it is L−1-cocoercive, see for instance [12, Corollary 18.16]).

In [17], a first order dynamical system has been assigned to the monotone inclusion (5), and it has
been shown that the generated trajectories converge to a solution of it. In this paper, we assign to (5)
the following second order dynamical system{

ẍ(t) + γ(t)ẋ(t) + x(t) = Jλ(t)A
(
x(t)− λ(t)D(x(t))− λ(t)β(t)B(x(t))

)
x(0) = u0, ẋ(0) = v0,

(6)

where u0, v0 ∈ H and γ, λ, β : [0,+∞) −→ (0,+∞). Dynamical systems governed by resolvents of
maximally monotone operators have been considered in [1, 2], and then further developed in [18, 20].

The study of second order dynamical systems is motivated by the fact that the presence of the
acceleration term ẍ(t) can lead to better convergence properties of the trajectories. Time discretizations
of second order dynamical systems give usually rise to numerical algorithms with inertial terms which
have been shown to have improved convergence properties (see [25]). The geometric damping function γ
which acts on the velocity can in some situations accelerate the asymptotic properties of the orbits, as
emphasized for example in [30].

For B = 0 and λ is constant, the differential equation (6) becomes the second order forward-backward
dynamical system investigated in [20] in relation to the monotone inclusion problem

0 ∈ Ax+Dx.

On the other hand, when particularized to the monotone inclusion system (4), the differential equation
(6) reads {

ẍ(t) + γ(t)ẋ(t) + x(t) = proxλ(t)f
(
x(t)− λ(t)∇g(x(t))− λ(t)β(t)∇ψ(x(t))

)
x(0) = u0, ẋ(0) = v0,

(7)

where we made used of the fact that the resolvent of the subdifferential of a proper, convex and lower
semicontinuous function is the proximal point operator of the latter. In case f = 0, γ is constant and λ
is also constant and identical to 1, (7) leads to the differential equation that has been investigated in [8]
and [19].

The first part of the paper is devoted to the proof of the existence and uniqueness of (locally) absolutely
continuous trajectories generated by the dynamical system (6); an important ingredient for this analysis
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is the Cauchy-Lipschitz-Picard Theorem (see [24, 29]). The proof of the convergence of the trajectories
to a solution of (5) is the main result of the manuscript. Provided that a condition expressed in terms
of the Fitzpatrick function of the cocoercive operator B is fulfilled, we prove weak ergodic convergence
of the orbits. Furthermore, we show that, if the operator A is strongly monotone, then one obtains even
strong (non-ergodic) convergence for the generated trajectories.

In the remaining of this section, we explain the notations we used up to this point and will use
throughout the paper (see [15, 12, 28]).

The real Hilbert space H is endowed with inner product 〈·, ·〉 and associated norm ‖ · ‖ =
√
〈·, ·〉.

The normal cone of of a set S ⊆ H is defined by NS(x) = {u ∈ H : 〈y − x, u〉 ≤ 0 ∀y ∈ S}, if x ∈ S and
NS(x) = ∅ for x /∈ S. The following characterization of the elements of the normal cone of a nonempty
set by means of its support function will be used several times in the paper: for x ∈ S, u ∈ NS(x) if and
only if σS(u) = 〈x, u〉, where σS : H → R ∪ {+∞} is defined by σS(u) = supy∈S〈y, u〉.

Let A : H ⇒ H be a set-valued operator. We denote by GrA = {(x, u) ∈ H × H : u ∈ Ax} its
graph, by domA = {x ∈ H : Ax 6= ∅} its domain and by ranA = {u ∈ H : ∃x ∈ H s.t. u ∈ Ax} its
range. The notation zerA = {x ∈ H : 0 ∈ Ax} stands for the set of zeros of the operator A. We say
that A is monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. Further, a monotone operator A
is said to be maximally monotone, if there exists no proper monotone extension of the graph of A on
H×H. The following characterization of the zeros of a maximally monotone operator will be crucial in
the asymptotic analysis of (6): if A is maximally monotone, then

z ∈ zerA if and only if 〈u− z, w〉 ≥ 0 for all (u,w) ∈ GrA.

The resolvent of A, JA : H⇒ H, is defined by p ∈ JA(x) if and only if x ∈ p+Ap. Moreover, if A is
maximally monotone, then JA : H → H is single-valued and maximally monotone (cf. [12, Proposition
23.7 and Corollary 23.10]). We will also use the Yosida approximation of the operator A, which is defined
for α > 0 by Aα = 1

α(Id−JαA), where Id : H → H, Id(x) = x for all x ∈ H, is the identity operator on H.
The notion of Fitzpatrick function associated to a monotone operator A will be important in the

formulation of the condition under which the convergence of the trajectories is achieved. It is defined as

ϕA : H×H → R, ϕA(x, u) = sup
(y,v)∈GrA

{〈x, v〉+ 〈y, u〉 − 〈y, v〉},

and it is a convex and lower semicontinuous function. Introduced by Fitzpatrick in [23], this notion
played in the last years a crucial role in the investigation of maximality of monotone operators by means
of convex analysis specific tools (see [12, 13, 15, 28] and the references therein). We notice that, if A is
maximally monotone, then ϕA is proper and

ϕA(x, u) ≥ 〈x, u〉 ∀(x, u) ∈ H ×H,

with equality if and only if (x, u) ∈ GrA. We refer the reader to [13] for explicit formulae of Fitzpatrick
functions associated to particular classes of monotone operators.

Let γ > 0 be arbitrary. A single-valued operator A : H → H is said to be γ-cocoercive, if 〈x− y,Ax−
Ay〉 ≥ γ‖Ax−Ay‖2 for all (x, y) ∈ H ×H, and γ-Lipschitz continuous, if ‖Ax−Ay‖ ≤ γ‖x− y‖ for all
(x, y) ∈ H ×H.

For a proper, convex and lower semicontinuous function f : H → R∪{+∞}, its (convex) subdifferential
at x ∈ H is defined as

∂f(x) = {u ∈ H : f(y) ≥ f(x) + 〈u, y − x〉 ∀y ∈ H}.
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When seen as a set-valued mapping, it is a maximally monotone operator and its resolvent is given by
Jγ∂f = proxγf (see [12]), where proxγf : H → H,

proxγf (x) = argmin
y∈H

{
f(y) +

1

2γ
‖y − x‖2

}
, (8)

denotes the proximal point operator of f .

2 Existence and uniqueness of the trajectory

We start by specifying which type of solutions are we considering in the analysis of the dynamical system
(6).

Definition 1. We say that x : [0,+∞)→ H is a strong global solution of (6), if the following properties
are satisfied:

(i) x, ẋ : [0,+∞) → H are locally absolutely continuous, in other words, absolutely continuous on
each interval [0, b] for 0 < b < +∞;

(ii) ẍ(t) + γ(t)ẋ(t) +
(
x(t)− Jλ(t)A(x(t)− λ(t)D(x(t))− λ(t)β(t)B(x(t)))

)
= 0 for almost every t ≥ 0;

(iii) x(0) = u0 and ẋ(0) = v0.

For proving existence and uniqueness of the strong global solutions of (6), we use the Cauchy-
Lipschitz-Picard Theorem for absolutely continues trajectories (see for example [24, Proposition 6.2.1],
[29, Theorem 54]). The key argument is that one can rewrite (6) as a particular first order dynamical
system in a suitably chosen product space (see also [3]).

To this end we make the following assumption:

(H1) : γ, λ, β : [0,+∞) −→ (0,+∞) are continuous on each interval [0, b], for 0 < b < +∞,

which also describes the framework in which we will carry out the convergence analysis in the forthcoming
sections.

Theorem 2. Suppose that γ, λ and β satisfy (H1). Then for every u0, v0 ∈ H there exists a unique
strong global solution of (6).

Proof. Define X : [0,+∞) −→ H×H as X(t) = (x(t), ẋ(t)). Then (6) is equivalent to{
Ẋ(t) = F (t,X(t))
X(0) = (u0, v0),

(9)

where F (t, u, v) =
(
v,−γ(t)v − u+ Jλ(t)A(u− λ(t)D(u)− λ(t)β(t)B(u))

)
.

First we show that F (t, ·, ·) is Lipschitz continuous with a Lipschitz constant L(t) ∈ L1
loc([0,+∞)),

for every t ≥ 0. Indeed,

‖F (t, u, v)− F (t, ū, v̄)‖ =
√
‖v − v̄‖2 + ‖γ(t)(v̄ − v) + (ū− u) + (Jλ(t)A(s)− Jλ(t)A(s̄))‖2

≤
√
‖v − v̄‖2 + 2‖γ(t)(v̄ − v) + (ū− u)‖2 + 2‖Jλ(t)A(s)− Jλ(t)A(s̄)‖2

≤
√

(1 + 4γ2(t))‖v − v̄‖2 + 4‖(ū− u)‖2 + 2‖Jλ(t)A(s)− Jλ(t)A(s̄)‖2,

where s = u− λ(t)D(u)− λ(t)β(t)B(u) and s̄ = ū− λ(t)D(ū)− λ(t)β(t)B(ū).
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By using the nonexpansivness of Jλ(t)A we get

‖Jλ(t)A(s)− Jλ(t)A(s̄)‖ ≤ ‖(u− ū) + λ(t)(D(ū)−D(u)) + λ(t)β(t)(B(ū)−B(u)‖
≤ (1 + λ(t)LD + λ(t)β(t)LB)‖u− ū‖.

Hence,

‖F (t, u, v)− F (t, ū, v̄)‖ ≤
√

(1 + 4γ2(t))‖v − v̄‖2 + (4 + 2(1 + λ(t)LD + λ(t)β(t)LB)2)‖u− ū‖2

≤
√

5 + 4γ2(t) + 2(1 + λ(t)LD + λ(t)β(t)LB)2
√
‖u− ū‖2 + ‖v − v̄‖2

≤ (
√

5 + 2γ(t) +
√

2(1 + λ(t)LD + λ(t)β(t)LB))‖(u, v)− (ū, v̄)‖.

Since γ, λ, β ∈ L1
loc([0,+∞)), it follows that

L(t) :=
√

5 + 2γ(t) +
√

2(1 + λ(t)LD + λ(t)β(t)LB)

is also locally integrable on [0,+∞).
Next we show that F (·, u, v) ∈ L1

loc([0,+∞),H×H) for all u, v ∈ H. We fix u, v ∈ H and b > 0, and
notice that∫ b

0
‖F (t, u, v)‖dt =

∫ b

0

√
‖v‖2 + ‖γ(t)v + u− Jλ(t)A(u− λ(t)D(u)− λ(t)β(t)B(u))‖2dt

≤
∫ b

0

√
(1 + 2γ2(t))‖v‖2 + 4‖u‖2 + 4‖Jλ(t)A(u− λ(t)D(u)− λ(t)β(t)B(u))‖2dt.

According to (H1), there exist positive numbers λ and β such that 0 < λ ≤ λ(t) and 0 < β ≤ β(t)
for all t ∈ [0, b]. Hence

‖Jλ(t)A(u− λ(t)D(u)− λ(t)β(t)B(u))‖ =

‖Jλ(t)A(u− λ(t)D(u)− λ(t)β(t)B(u))− Jλ(t)A(u− λD(u)− λβB(u)) + Jλ(t)A(u− λD(u)− λβB(u))‖ ≤
(λ(t)− λ)‖D(u)‖+ (λ(t)β(t)− λβ)‖B(u)‖+ ‖Jλ(t)A(u− λD(u)− λβB(u))‖.

In addition,

‖Jλ(t)A(u− λD(u)− λβB(u))‖ =

‖Jλ(t)A(u− λD(u)− λβB(u))− JλA(u− λD(u)− λβB(u)) + JλA(u− λD(u)− λβB(u))‖ ≤
(λ(t)− λ)‖Aλ(u− λD(u)− λβB(u))‖+ ‖JλA(u− λD(u)− λβB(u))‖,

where the last inequality follows from the Lipschitz property of the resolvent operator as a function of
the step size, which basically follows by combining [22, Proposition 2.6] and [12, Proposition 23.28] (see
also [2, Proposition 3.1]). Hence,∫ b

0
‖F (t, u, v)‖dt ≤

∫ b

0

(
(1 +

√
2γ(t))‖v‖+ 2‖u‖+ 2(λ(t)− λ)‖D(u)‖+ 2(λ(t)β(t)− λβ)‖B(u)‖

)
dt

+

∫ b

0

(
2(λ(t)− λ)‖Aλ(u− λD(u)− λβB(u))‖+ 2‖JλA(u− λD(u)− λβB(u))‖

)
dt.

Hence, F (·, u, v) ∈ L1
loc([0,+∞),H × H) for all u, v ∈ H. The conclusion of the theorem follows by

applying the Cauchy-Lipschitz-Picard theorem to the first order dynamical system (9).
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3 Some preparatory lemmas

In this section we provide some preparatory lemmas which will be used when proving the convergence of
the trajectories generated by the dynamical system (6). We start by recalling two central results; see for
example [2, Lemma 5.1] and [2, Lemma 5.2], respectively.

Lemma 3. Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded below and that
there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F (t) ∈ R.

Lemma 4. If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is locally absolutely continuous,
F ∈ Lp([0,+∞)), G : [0,+∞)→ R, G ∈ Lr([0,+∞)) and for almost every t ∈ [0,+∞)

d

dt
F (t) ≤ G(t),

then limt→+∞ F (t) = 0.

Lemma 5. Suppose that (H1) holds and let x be the unique strong global solution of (6). Take (x∗, w) ∈
Gr(A+D +NC) such that w = v +Dx∗ + p, where v ∈ Ax∗ and p ∈ NC(x∗). For every t ≥ 0 consider
the function h(t) = 1

2‖x(t)− x∗‖2. Then the following inequality holds for almost every t ≥ 0:

ḧ(t) + γ(t)ḣ(t) + λ(t)

(
1

LD
− λ(t)

)
‖D(x(t))−Dx∗‖2 − ‖ẋ(t)‖2 ≤

λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
+λ2(t)‖Dx∗ + v‖2+ λ(t)〈w, x∗ − x(t)〉+ λ2(t)β2(t)

2
‖B(x(t))‖2.

(10)

Proof. We have ḣ(t) = 〈ẋ(t), x(t) − x∗〉 and ḧ(t) = 〈ẍ(t), x(t) − x∗〉 + ‖ẋ(t)‖2 for every t ≥ 0. By using
the definition of the resolvent, the differential equation in (6) can be written for almost every t ≥ 0 as

x(t)− λ(t)D(x(t))− λ(t)β(t)B(x(t)) ∈ ẍ(t) + γ(t)ẋ(t) + x(t) + λ(t)A(ẍ(t) + γ(t)ẋ(t) + x(t))

or, equivalently,

− 1

λ(t)
ẍ(t)− γ(t)

λ(t)
ẋ(t)−D(x(t))− β(t)B(x(t)) ∈ A(ẍ(t) + γ(t)ẋ(t) + x(t)). (11)

Since v ∈ Ax∗ and A is monotone, we get for almost every t ≥ 0〈
v +

1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) +D(x(t)) + β(t)B(x(t)), x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)

〉
≥ 0.

It follows that

λ(t)〈D(x(t)) + β(t)B(x(t)) + v, x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)〉 ≥
〈ẍ(t) + γ(t)ẋ(t),−x∗ + ẍ(t) + γ(t)ẋ(t) + x(t)〉 = ḧ(t) + γ(t)ḣ(t) + ‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 (12)
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for almost every t ≥ 0. Hence, for almost every t ≥ 0

ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2 ≤ λ(t)〈D(x(t)) + β(t)B(x(t)) + v, x∗ − x(t)〉
+λ(t)〈D(x(t)) + β(t)B(x(t)) + v,−ẍ(t)− γ(t)ẋ(t)〉 − ‖ẍ(t) + γ(t)ẋ(t)‖2 ≤

λ(t)〈D(x(t)) + β(t)B(x(t)) + v, x∗ − x(t)〉+
λ2(t)

4
‖D(x(t)) + β(t)B(x(t)) + v‖2,

and from here, by using mean inequalities,

ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2 ≤ λ(t)〈D(x(t)) + β(t)B(x(t)) + v, x∗ − x(t)〉+
λ2(t)β2(t)

2
‖B(x(t))‖2 + λ2(t)‖Dx∗ + v‖2 + λ2(t)‖D(x(t))−Dx∗‖2.

Since v = w−Dx∗ − p, we obtain for the first summand of the term on the right-hand side of the above
inequality for every t ≥ 0 the following estimate

λ(t)〈D(x(t)) + β(t)B(x(t)) + v, x∗ − x(t)〉 =

λ(t)〈D(x(t)) + β(t)B(x(t)) + w −Dx∗ − p, x∗ − x(t)〉 =

λ(t)〈D(x(t))−Dx∗, x∗ − x(t)〉+ λ(t)〈w, x∗ − x(t)〉+

λ(t)β(t)

[
〈B(x(t)), x∗〉+

〈
p

β(t)
, x(t)

〉
− 〈B(x(t)), x(t)〉 −

〈
p

β(t)
, x∗
〉]
≤

−λ(t)

LD
‖D(x(t))−Dx∗‖2 + λ(t)〈w, x∗ − x(t)〉+ λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
.

Hence, for almost every t ≥ 0, we have

ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2 ≤ λ2(t)β2(t)

2
‖B(x(t))‖2 + λ2(t)‖Dx∗ + v‖2 + λ2(t)‖D(x(t))−Dx∗‖2

− λ(t)

LD
‖D(x(t))−Dx∗‖2 + λ(t)〈w, x∗ − x(t)〉

+ λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
,

which is nothing else than the desired conclusion.

Lemma 6. Suppose that (H1) holds and let x be the unique strong global solution of (6). Take x∗ ∈
C ∩ domA and v ∈ Ax∗. For every t ≥ 0 consider the function h(t) = 1

2‖x(t) − x∗‖2. Then for every
ε > 0 the following inequality holds for almost every t ≥ 0:

ḧ(t) + γ(t)ḣ(t) +
1 + 2ε

2 + 2ε
‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 +

ελ(t)β(t)

1 + ε
〈B(x(t)), x(t)− x∗〉 ≤

λ(t)β(t)

(
1 + ε

2
λ(t)β(t)− 1

(1 + ε)LB

)
‖B(x(t))‖2 + λ(t)〈D(x(t)) + v, x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)〉. (13)

Proof. Let be ε > 0 fixed. According to (12) in the proof of the above lemma, we have for almost every
t ≥ 0

ḧ(t) + γ(t)ḣ(t) + ‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 ≤ λ(t)β(t)〈B(x(t)), x∗ − x(t)〉+
λ(t)β(t)〈B(x(t)),−ẍ(t)− γ(t)ẋ(t)〉+
λ(t)〈D(x(t)) + v, x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)〉.

7



Since B is 1
LB

-cocoercive and Bx∗ = 0 we have 〈B(x(t)), x∗ − x(t)〉 ≤ − 1
LB
‖B(x(t))‖2, hence

λ(t)β(t)〈B(x(t)), x∗ − x(t)〉 ≤ − λ(t)β(t)

(1 + ε)LB
‖B(x(t))‖2 +

ε

1 + ε
λ(t)β(t)〈B(x(t)), x∗ − x(t)〉,

for every t ≥ 0. Consequently,

ḧ(t) + γ(t)ḣ(t) + ‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 +
ελ(t)β(t)

1 + ε
〈B(x(t)), x(t)− x∗〉 ≤ − λ(t)β(t)

(1 + ε)LB
‖B(x(t))‖2

+ λ(t)β(t)〈B(x(t)),−ẍ(t)− γ(t)ẋ(t)〉+ λ(t)〈D(x(t)) + v, x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)〉,

which, combined with

λ(t)β(t)〈B(x(t)),−ẍ(t)− γ(t)ẋ(t)〉 ≤ 1

2(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

(1 + ε)λ2(t)β2(t)

2
‖B(x(t))‖2,

implies for almost every t ≥ 0 relation (13).

Lemma 7. Suppose that (H1) holds and let x be the unique strong global solution of (6). Furthermore,
suppose that lim supt−→+∞ λ(t)β(t) < 1

LB
. Take x∗ ∈ C ∩ domA and v ∈ Ax∗. For every t ≥ 0 consider

the function h(t) = 1
2‖x(t)−x∗‖2. Then there exist a, b, c > 0 and t0 > 0 such that for almost every t ≥ t0

the following inequality holds:

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 + aλ(t)β(t)
(
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤(

bλ2(t)− λ(t)

LD

)
‖D(x(t))−Dx∗‖2 + λ(t)〈Dx∗ + v, x∗ − x(t)〉+ bλ2(t)‖Dx∗ + v‖2 + ‖ẋ(t)‖2. (14)

Proof. Let be ε > 0. According to the previous lemma, (13) holds for almost every t ≥ 0. We estimate
the last summand in the right-hand side of (13) by using the mean inequality and the cocoercieveness of
D. For every t ≥ 0 we obtain

λ(t)〈D(x(t)) + v, x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)〉 ≤
ε

4(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

λ2(t)(1 + ε)

ε
‖D(x(t)) + v‖2 + λ(t)〈D(x(t)) + v, x∗ − x(t)〉 =

ε

4(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

λ2(t)(1 + ε)

ε
‖D(x(t)) + v‖2+

λ(t)〈D(x(t))−Dx∗, x∗ − x(t)〉+ λ(t)〈Dx∗ + v, x∗ − x(t)〉 ≤
ε

4(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2 +

λ2(t)(1 + ε)

ε
‖D(x(t)) + v‖2+

−λ(t)

LD
‖D(x(t))−Dx∗‖2 + λ(t)〈Dx∗ + v, x∗ − x(t)〉,

which, combined with ‖D(x(t)) + v‖2 ≤ 2‖D(x(t))−Dx∗‖2 + 2‖Dx∗ + v‖2, implies

λ(t)〈D(x(t)) + v, x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)〉 ≤ ε

4(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2+(

2λ2(t)(1 + ε)

ε
− λ(t)

LD

)
‖D(x(t))−Dx∗‖2 +

2λ2(t)(1 + ε)

ε
‖Dx∗ + v‖2 + λ(t)〈Dx∗ + v, x∗ − x(t)〉.

8



Using the above estimate in (13), we obtain for almost every t ≥ 0

ḧ(t) + γ(t)ḣ(t) +
1 + 2ε

2 + 2ε
‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 +

ελ(t)β(t)

1 + ε
〈B(x(t)), x(t)− x∗〉 ≤

λ(t)β(t)

(
1 + ε

2
λ(t)β(t)− 1

(1 + ε)LB

)
‖B(x(t))‖2 +

ε

4(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2+(

2λ2(t)(1 + ε)

ε
− λ(t)

LD

)
‖D(x(t))−Dx∗‖2 +

2λ2(t)(1 + ε)

ε
‖Dx∗ + v‖2 + λ(t)〈Dx∗ + v, x∗ − x(t)〉

or, equivalently

ḧ(t) + γ(t)ḣ(t) +
2 + 3ε

4(1 + ε)
‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 +

ελ(t)β(t)

1 + ε

(
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤

λ(t)β(t)

(
1 + ε

2
λ(t)β(t)− 1

(1 + ε)LB
+

ε

1 + ε

)
‖B(x(t))‖2 +

(
2λ2(t)(1 + ε)

ε
− λ(t)

LD

)
‖D(x(t))−Dx∗‖2

+
2λ2(t)(1 + ε)

ε
‖Dx∗ + v‖2 + λ(t)〈Dx∗ + v, x∗ − x(t)〉.

Since lim supt−→+∞ λ(t)β(t) < 1
LB

, there exists t0 > 0 such that

1 + ε

2
λ(t)β(t)− 1

(1 + ε)LB
+

ε

1 + ε
<

1 + ε

2LB
− 1

(1 + ε)LB
+

ε

1 + ε

for every t ≥ t0. Further, we notice that

1 + ε

2LB
− 1

(1 + ε)LB
+

ε

1 + ε
≤ 0

for every ε ∈
(

0,
√

(1 + LB)2 + 1− (1 + LB)
]
. By choosing ε0 from this interval and defining

a :=
ε0

1 + ε0
, b :=

2(1 + ε0)

ε0
and c :=

2 + 3ε0
4(1 + ε0)

,

the conclusion follows.

Remark 8. In the proof of the above theorem, the choice ε0 ≤
√

(1 + LB)2 + 1 − (1 + LB) <
√

2 − 1,

implies that a < 1− 1√
2

and 1
2 < c < 3

4 −
√
2
8 .

Lemma 9. Suppose that (H1) holds and let x be the unique strong global solution of (6). Furthermore,
suppose that lim supt−→+∞ λ(t)β(t) < 1

LB
and limt−→+∞ λ(t) = 0. Take (x∗, w) ∈ Gr(A + D + NC)

such that w = v + Dx∗ + p, where v ∈ Ax∗ and p ∈ NC(x∗). For every t ≥ 0 consider the function
h(t) = 1

2‖x(t) − x∗‖2. Then there exist a, b, c > 0 and t1 > 0 such that for almost every t ≥ t1 the
following inequality holds:

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 + aλ(t)β(t)

(
1

2
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤

aλ(t)β(t)

2

(
sup
u∈C

ϕB

(
u,

2p

aβ(t)

)
− σC

(
2p

aβ(t)

))
+ bλ2(t)‖Dx∗ + v‖2 + λ(t)〈w, x∗ − x(t)〉+ ‖ẋ(t)‖2.

(15)

9



Proof. According to Lemma 7, there exist a, b, c > 0 and t0 > 0 such that for almost every t ≥ t0 the
inequality (14) holds. Since limt−→+∞ λ(t) = 0, there exists t1 ≥ t0 such that λ(t) ≤ 1

bLD
, hence bλ2(t)−

λ(t)
LD
≤ 0 for every t ≥ t1. Consequently, we can omit for every t ≥ t1 the term

(
bλ2(t)− λ(t)

LD

)
‖D(x(t))−

Dx∗‖2 in (14) and obtain that the inequality

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 + aλ(t)β(t)
(
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤

λ(t)〈Dx∗ + v, x∗ − x(t)〉+ bλ2(t)‖Dx∗ + v‖2 + ‖ẋ(t)‖2 (16)

holds for almost every t ≥ t1.
Since Dx∗ + v = w − p, we have for every t ≥ 0

aλ(t)β(t)

2
〈B(x(t)), x∗ − x(t)〉+ λ(t)〈Dx∗ + v, x∗ − x(t)〉 =

aλ(t)β(t)

2

(
〈B(x(t)), x∗〉+

〈
2p

aβ(t)
, x(t)

〉
− 〈B(x(t)), x(t)〉 −

〈
2p

aβ(t)
, x∗
〉)

+ λ(t)〈w, x∗ − x(t)〉 ≤

aλ(t)β(t)

2

(
sup
u∈C

ϕB

(
u,

2p

aβ(t)

)
− σC

(
2p

aβ(t)

))
+ λ(t)〈w, x∗ − x(t)〉.

On the other hand, (16) can be equivalently written for almost every t ≥ t1 as

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 + aλ(t)β(t)
(1

2
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤

aλ(t)β(t)

2
〈B(x(t)), x∗ − x(t)〉+ λ(t)〈Dx∗ + v, x∗ − x(t)〉+ bλ2(t)‖Dx∗ + v‖2 + ‖ẋ(t)‖2,

hence

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 + aλ(t)β(t)

(
1

2
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤

aλ(t)β(t)

2

(
sup
u∈C

ϕB

(
u,

2p

aβ(t)

)
− σC

(
2p

aβ(t)

))
+ bλ2(t)‖Dx∗ + v‖2 + λ(t)〈w, x∗ − x(t)〉+ ‖ẋ(t)‖2.

4 Main result: the convergence of the trajectories

For the proof of the convergence of the trajectories generated by the dynamical system (6) we will utilize
the following assumptions:

(H2) : A+NC is maximally monotone and zer(A+D +NC) 6= ∅;
(H3) : λ ∈ L2([0,+∞)) \ L1([0,+∞)) and limt−→+∞ λ(t) = 0;

(Hfitz) : For every p ∈ ranNC ,
∫ +∞
0 λ(t)β(t)

(
supu∈C ϕB

(
u, p

β(t)

)
− σC

(
p
β(t)

))
dt < +∞.

Remark 10. (i) The first assumption in (H2) is fulfilled when a regularity condition which ensures the
maximality of the sum of two maximally monotone operators holds. This is a widely studied topic in the
literature; we refer the reader to [12, 14, 15, 28] for such conditions, including the classical Rockafellar’s
condition expressed in terms of the domains of the involved operators.

(ii) With respect to (Hfitz), we would like to remind that a similar condition formulated in terms of
the Fitzpatrick function has been considered for the first time in [16] in the discrete setting. Its continuous
version has been introduced in [17] and further used also in [5].
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This class of conditions, widely used in the context of penalization approaches, has its origin in [7].
Here, in the particular case C = argminψ, where ψ : H → R is a convex and differentiable function with
Lipschitz continuous gradient and such that minψ = 0, the condition

(H): For every p ∈ ranNC ,
∫ +∞
0 λ(t)β(t)

[
ψ∗
(

p
β(t)

)
− σC

(
p
β(t)

)]
dt < +∞.

has been used in the asymptotic analysis of a coupled dynamical system with multiscale aspects. The
function ψ∗ : H → R ∪ {+∞}, ψ∗(u) = supx∈H{〈u, x〉 − ψ(x)}, denotes the Fenchel conjugate of ψ.

According to [13], it holds

ϕ∇ψ(x, u) ≤ ψ(x) + ψ∗(u) ∀(x, u) ∈ H ×H. (17)

Since ψ(x) = 0 for x ∈ C, condition (Hfitz) applied to B = ∇ψ is fulfilled, provided that (H) is fulfilled.
For several particular situations where (Hfitz) is verified (in its continuous or discrete version) we refer
the reader to [7, 10, 9, 11, 27, 26].

For proving the convergence of the trajectories generated by the dynamical system (6) we will also
make use of the following ergodic version of the continuous Opial Lemma (see [7, Lemma 2.3]).

Lemma 11. Let S ⊆ H be a nonempty set, x : [0,+∞) → H a given map and λ : [0,+∞) → (0,+∞)
such that

∫ +∞
0 λ(t) = +∞. Define x̃ : [0,+∞)→ H by

x̃(t) =
1∫ t

0 λ(s)ds

∫ t

0
λ(s)x(s)ds.

Assume that
(i) for every z ∈ S, limt→+∞ ‖x(t)− z‖ exists;
(ii) every weak sequential cluster point of the map x̃ belongs to S.

Then there exists x∞ ∈ S such that w − limt→+∞ x̃(t) = x∞.

We can state now the main result of this paper.

Theorem 12. Suppose that (H1)− (H3) and (Hfitz) hold, and let x be the unique strong global solution
of (6). Furthermore, suppose that lim supt−→+∞ λ(t)β(t) < 1

LB
, γ is locally absolutely continuous and

for almost every t ≥ 0 it holds γ(t) ≥
√

2 and γ̇(t) ≤ 0. Let x̃ : [0,+∞) −→ H be defined by

x̃(t) =
1∫ t

0 λ(s)ds

∫ t

0
λ(s)x(s)ds.

Then the following statements hold:

(i) for every x∗ ∈ zer(A + D + NC), ‖x(t) − x∗‖ converges as t −→ +∞; in addition, ẋ, ẍ ∈
L2([0,+∞),H), λ(·)β(·)‖B(x(·))‖2 ∈ L1([0,+∞)),

∫ +∞
0 λ(t)β(t)〈B(x(t)), x(t) − x∗〉dt < +∞, and

limt→+∞ ẋ(t) = limt→+∞ ḣ(t) = 0, where h(t) = 1
2‖x(t)− x∗‖2;

(ii) x̃(t) converges weakly as t −→ +∞ to an element in zer(A+D +NC);

(iii) if, additionally, A is strongly monotone, then x(t) converges strongly as t −→ +∞ to the unique
element of zer(A+D +NC).
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Proof. (i) Let be x∗ ∈ zer(A+D+NC), thus (x∗, 0) ∈ Gr(A+D+NC) and 0 = v+Dx∗+ p for v ∈ Ax∗
and p ∈ NC(x∗). According to Lemma 9 and Remark 8, there exist a, b, c > 0, with a < 1 − 1√

2
and

1
2 < c < 3

4 −
√
2
8 , and t1 > 0 such that for almost every t ≥ t1 it holds

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 + aλ(t)β(t)

(
1

2
〈B(x(t)), x(t)− x∗〉+ ‖B(x(t))‖2

)
≤

aλ(t)β(t)

2

(
sup
u∈C

ϕB

(
u,

2p

aβ(t)

)
− σC

(
2p

aβ(t)

))
+ bλ2(t)‖Dx∗ + v‖2 + ‖ẋ(t)‖2.

On the other hand, since

γ(t)ḣ(t) =
d

dt
(γ(t)h(t))− ˙γ(t)h(t) ≥ d

dt
(γ(t)h(t)),

it holds

ḧ(t) + γ(t)ḣ(t) + c‖ẍ(t) + γ(t)ẋ(t)‖2 − ‖ẋ(t)‖2 ≥
d

dt

(
ḣ(t) + γ(t)h(t) + cγ(t)‖ẋ(t)‖2

)
+ (cγ2(t)− cγ̇(t)− 1)‖ẋ(t)‖2 + c‖ẍ(t)‖2

for every t ≥ 0.
By combining these two inequalities, we obtain for almost every t ≥ t1

d

dt

(
ḣ(t) + γ(t)h(t) + cγ(t)‖ẋ(t)‖2

)
+ (cγ2(t)− cγ̇(t)− 1)‖ẋ(t)‖2 + c‖ẍ(t)‖2+

a
λ(t)β(t)

2
〈B(x(t)), x(t)− x∗〉+ aλ(t)β(t)‖B(x(t))‖2 ≤

aλ(t)β(t)

2

(
sup
u∈C

ϕB

(
u,

2p

aβ(t)

)
− σC

(
2p

aβ(t)

))
+ bλ2(t)‖Dx∗ + v‖2. (18)

Since γ(t) ≥
√

2 and c > 1
2 one has cγ2(t) − cγ̇(t) − 1 ≥ 2c − 1 > 0 for almost every t ≥ 0. By using

that 〈B(x(t)), x(t) − x∗〉 ≥ 1
LB
‖B(x(t))‖2 for every t ≥ 0 and by neglecting the non-negative terms on

the left-hand side of (18), we get for almost every t ≥ t1

d

dt

(
ḣ(t) + γ(t)h(t) + cγ(t)‖ẋ(t)‖2

)
≤

aλ(t)β(t)

2

(
sup
u∈C

ϕB

(
u,

2p

aβ(t)

)
− σC

(
2p

aβ(t)

))
+ bλ2(t)‖Dx∗ + v‖2.

Further, by integration, we easily derive that there exists M > 0 such that for every t ≥ 0

ḣ(t) + γ(t)h(t) + cγ(t)‖ẋ(t)‖2 ≤M. (19)

Hence, ḣ(t)+γ(t)h(t) ≤M , which leads to ḣ(t)+
√

2h(t) ≤M for all t ≥ 0. Consequently, d
dt(h(t)e

√
2t) ≤

Me
√
2t; therefore, by integrating this inequality from 0 to T > 0, one obtains

h(T ) ≤ M√
2
− M√

2
e
√
2(−T ) + h(0)e

√
2(−T ),

which shows that h is bounded, hence x is bounded. Combining this with

〈ẋ(t), x(t)− x∗〉+ c
√

2‖ẋ(t)‖2 ≤M ∀t ≥ 0,
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which is a consequence of (19), we derive that ẋ is bounded, too.
In conclusion, t 7→ ḣ(t) + γ(t)h(t) + cγ(t)‖ẋ(t)‖2 is bounded from below. By taking into account

relation (18) and applying Lemma 3, we obtain

lim
t−→+∞

(
ḣ(t) + γ(t)h(t) + cγ(t)‖ẋ(t)‖2

)
∈ R (20)

and∫ +∞

0
‖ẋ(t)‖2dt,

∫ +∞

0
‖ẍ(t)‖2dt,

∫ +∞

0
λ(t)β(t)〈B(x(t)), x(t)− x∗〉dt,

∫ +∞

0
λ(t)β(t)‖B(x(t))‖2 ∈ R.

Since
d

dt

(
1

2
‖ẋ(t)‖2

)
= 〈ẍ(t), ẋ(t)〉 ≤ 1

2
‖ẍ(t)‖2 +

1

2
‖ẋ(t)‖2

for every t ≥ 0 and the function on the right-hand side of the above inequality belongs to L1([0,+∞)),
according to Lemma 4 one has limt→+∞ ẋ(t) = 0. Further, the equality ḣ(t) = 〈ẋ(t), x(t) − x∗〉 leads to
−‖ẋ(t)‖‖x(t)− x∗‖ ≤ ḣ(t) ≤ ‖ẋ(t)‖‖x(t)− x∗‖ for every t ≥ 0. Since limt→+∞ ẋ(t) = 0 and ‖x(·)− x∗‖
is bounded, one obtains limt→+∞ ḣ(t) = 0.

From limt−→+∞(ḣ(t) +γ(t)h(t) + cγ(t)‖ẋ(t)‖2) ∈ R, limt−→+∞ ḣ(t) = 0 and limt−→+∞ cγ(t)‖ẋ(t)‖2 =
0, one obtains that the limit limt−→+∞ γ(t)h(t) exists and it is a finite number. On the other hand, since
the limit limt−→+∞ γ(t) ≥

√
2 exists and it is a positive number, one can conclude that limt−→+∞ h(t)

exists and it is finite. Consequently, ‖x(t)− x∗‖ converges as t −→ +∞.
(ii) We show that every weak sequential limit point of x̃ belongs to zer(A + D + NC). Indeed, let

x0 be a weak sequential limit point of x̃; thus, there exists a sequence (sn)n≥0 with sn −→ +∞ and
x̃(sn) −→ x0 as n −→ +∞.

Take an arbitrary (x∗, w) ∈ Gr(A+D +NC) with w = v +Dx∗ + p, v ∈ Ax∗ and p ∈ NC(x∗). Since

limt−→+∞ λ(t) = 0, there exists t2 > 0 such that for every t ≥ t2 one has λ(t)
(

1
LD
− λ(t)

)
≥ 0. From

(10) we obtain

ḧ(t) + γ(t)ḣ(t) ≤

λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
+ λ2(t)‖Dx∗ + v‖2+

λ2(t)β2(t)

2
‖B(x(t))‖2 + ‖ẋ(t)‖2 + λ(t)〈w, x∗ − x(t)〉.

for every t ≥ t2. By integrating from t2 to T > t2, we get from here∫ T

t2

ḧ(t) + γ(t)ḣ(t)dt ≤ L+

〈
w,

(∫ T

t2

λ(t)dt

)
x∗ −

∫ T

t2

λ(t)x(t)dt

〉
,

where

L :=

∫ T

t2

λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
dt

+

∫ T

t2

(
λ2(t)‖Dx∗ + v‖2 +

λ2(t)β2(t)

2
‖B(x(t))‖2 + ‖ẋ(t)‖2

)
dt.
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Since γ(t)ḣ(t) ≥ d
dt(γ(t)h(t)) and γ(T )h(T ) ≥ 0, we obtain

−γ(t2)h(t2) ≤ L+

〈
w,

(∫ T

t2

λ(t)dt

)
x∗ −

∫ T

t2

λ(t)x(t)dt

〉
− ḣ(T ) + ḣ(t2),

hence
−γ(t2)h(t2)∫ T

0 λ(t)dt
≤ L1 − ḣ(T )∫ T

0 λ(t)dt
+

〈
w, x∗ −

∫ T
0 λ(t)x(t)dt∫ T

0 λ(t)dt

〉
,

where L1 := L+ ḣ(t2) +
〈
w,
∫ t2
0 λ(t)x(t)dt−

(∫ t2
0 λ(t)dt

)
x∗
〉
∈ R.

We choose in the above inequality T = sn for those n for which sn > t2, let n converge to +∞ and
so, by taking into account that

∫ +∞
0 λ(t)dt = +∞ and ḣ is bounded, we obtain

〈w, x∗ − x0〉 ≥ 0.

Since (x∗, w) ∈ Gr(A+D +NC) was arbitrary chosen, it follows that x0 ∈ zer(A+D +NC). Hence, by
Lemma 11, x̃(t) converges weakly as t −→ +∞ to an element in zer(A+D +NC).

(iii) Assume now that A is strongly monotone, i.e. there exists η > 0 such that

〈u∗ − v∗, x− y〉 ≥ η‖x− y‖2, for all (x, u∗), (y, v∗) ∈ Gr(A).

Let x∗ be the unique element of zer(A+D +NC). Then 0 = v +Dx∗ + p, for v ∈ Ax∗ and p ∈ NC(x∗).
Since v ∈ Ax∗ and A is η−strongly monotone, from (11) we obtain for almost every t ≥ 0〈

v +
1

λ(t)
ẍ(t) +

γ(t)

λ(t)
ẋ(t) +D(x(t)) + β(t)B(x(t)), x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)

〉
≥

η‖x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)‖2.

By repeating the arguments in the proof of Lemma 5, we easily derive for almost every t ≥ 0

ḧ(t) + γ(t)ḣ(t)− ‖ẋ(t)‖2 + ηλ(t)‖x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)‖2 ≤(
λ2(t)− λ(t)

LD

)
‖D(x(t))−Dx∗‖2 + λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
+

λ2(t)β2(t)

2
‖B(x(t))‖2 + λ2(t)‖v +Dx∗‖2.

Since limt−→+∞ λ(t) = 0, there exists t3 > 0 such that λ2(t)− λ(t)
LD
≤ 0 for every t ≥ t3. Thus for almost

every t ≥ t3

ḧ(t) + γ(t)ḣ(t) + ηλ(t)‖x∗ − ẍ(t)− γ(t)ẋ(t)− x(t)‖2 ≤

λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
+
λ2(t)β2(t)

2
‖B(x(t))‖2 + λ2(t)‖v +Dx∗‖2 + ‖ẋ(t)‖2.

Combining this inequality with

‖x∗ − x(t)‖2 ≤ 2‖ẍ(t) + γ(t)ẋ(t)‖2 + 2‖x∗ − x(t)− ẍ(t)− γ(t)ẋ(t)‖2,
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we derive for almost every t ≥ t3

ḧ(t) + γ(t)ḣ(t) +
ηλ(t)

2
‖x∗ − x(t)‖2 ≤

ηλ(t)‖ẍ(t) + γ(t)ẋ(t)‖2+

λ(t)β(t)

(
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

))
+
λ2(t)β2(t)

2
‖B(x(t))‖2 + λ2(t)‖v +Dx∗‖2 + ‖ẋ(t)‖2.

By using that γ(t)ḣ(t) ≥ d
dt(γ(t)h(t)) and ‖ẍ(t) + γ(t)ẋ(t)‖2 ≤ 2‖ẍ(t)‖2 + 2γ2(t)‖ẋ(t)‖2 for every

t ≥ 0, by integrating from t3 to T > t3, by letting T converge to +∞, and by using (i), we obtain∫ +∞

0
λ(t)‖x∗ − x(t)‖2dt < +∞.

Since λ ∈ L2([0,+∞)) \ L1([0,+∞)), it follows that ‖x(t)− x∗‖ −→ 0 as t −→ +∞.

Remark 13. We want to emphasize that unlike other papers addressing the asymptotic analysis of
second order dynamical systems, and where the damping function γ(t) was assumed to be strictly greater
than

√
2 for all t ≥ 0 (see [4, 20]), in Theorem 12 we allow for it take this value, too.

We close the paper by formulating Theorem 12 in the context of the optimization problem (1), where
we also use the relation between the assumptions (H) and (Hfitz) (see Remark 10).

Corollary 14. Consider the optimization problem (1). Suppose that its system of optimality conditions

0 ∈ ∂f(x) +∇g(x) +Nzer∇ψ(x)

is solvable, that (H1)− (H3) and (H) hold, and let x be the unique strong global solution of (7). Further-
more, suppose that lim supt−→+∞ λ(t)β(t) < 1

LB
, γ is locally absolutely continuous and for almost every

t ≥ 0 it holds γ(t) ≥
√

2 and γ̇(t) ≤ 0. Let x̃ : [0,+∞) −→ H be defined by

x̃(t) =
1∫ t

0 λ(s)ds

∫ t

0
λ(s)x(s)ds.

Then the following statements hold:

(i) for every x∗ ∈ zer(∂f + ∇g + Nzer∇ψ), ‖x(t) − x∗‖ converges as t −→ +∞; in addition, ẋ, ẍ ∈
L2([0,+∞),H), λ(·)β(·)‖∇ψ(x(·))‖2 ∈ L1([0,+∞)),

∫ +∞
0 λ(t)β(t)〈∇ψ(x(t)), x(t) − x∗〉dt < +∞,

and limt→+∞ ẋ(t) = limt→+∞ ḣ(t) = 0, where h(t) = 1
2‖x(t)− x∗‖2;

(ii) x̃(t) converges weakly as t −→ +∞ to an element in zer(∂f + ∇g + Nzer∇ψ), which is also an
optimal solution of (1);

(iii) if, additionally, f is strongly convex, then x(t) converges strongly as t −→ +∞ to the unique element
of zer(∂f +∇g +Nzer∇ψ), which is the unique optimal solution of (1).

Remark 15. For unconstrained optimization problems (which corresponds to the situation when ψ(x) =
0 for all x ∈ H) one can obtain convergence rates of O(t−2) for the objective along the trajectories by
choosing as damping function γ(t) = 1/t, for t > 0 (see for instance [6]). This is a setting which is
not covered by our analysis, however it is a topic which we might be of interest also in the context of
dynamical systems with penalty terms associated to bilevel programming problems.
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Remark 16. Time discretization of the dynamical system (6) with step size λk > 0, damping variable
γk > 0, penalty parameter βk > 0 leads to the numerical scheme

xk+1 − 2xk + xk−1

h2k
+ γk

xk+1 − xk

hk
+ xk = JλkA

(
xk − λkDxk − λkβkBxk

)
∀k ≥ 1,

where hk > 0 is the size of the time step and x0 = u0 and x1 = v0 are the initial points. For hk = 1 this
becomes

xk+1 =

(
1− 1

1 + γk

)
xk +

1

1 + γk
JλkA

(
xk − λkDxk − λkβkBxk

)
+

1

1 + γk
(xk − xk−1) ∀k ≥ 1,

which is a relaxed forward-backward algorithm of penalty type with inertial terms for solving the inclusion
(5). For the convergence analysis of inertial forward-backward penalty algorithms in the particular case
of convex optimization problems like (1) we refer the reader to [21].
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