ADMM for monotone operators: convergence analysis and rates
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Abstract. We propose in this paper a unifying scheme for several algorithms from the literature
dedicated to the solving of monotone inclusion problems involving compositions with linear
continuous operators in infinite dimensional Hilbert spaces. We show that a number of primal-
dual algorithms for monotone inclusions and also the classical ADMM numerical scheme for
convex optimization problems, along with some of its variants, can be embedded in this unifying
scheme. While in the first part of the paper convergence results for the iterates are reported,
the second part is devoted to the derivation of convergence rates obtained by combining variable
metric techniques with strategies based on suitable choice of dynamical step sizes. The numerical
performances which can be obtained for different dynamical step size strategies are compared
in the context of solving an image denoising problem.
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1 Introduction and preliminaries

Consider the convex optimization problem
inf {(2) + g(La) + h(x)}, (1)

where H and G are real Hilbert spaces, f : H — R := RU {400} and g : G — R are proper,
convex and lower semicontinuous functions, h : H — R is a convex and Fréchet differentiable
function with Lipschitz continuous gradient and L : H — G is a linear continuous operator.

Due to numerous applications in fields like signal and image processing, portfolio optimiza-
tion, cluster analysis, location theory, network communication, machine learning, the design
and investigation of numerical algorithms for solving convex optimization problems of type (1)
attracted in the last couple of years huge interest from the applied mathematics community.
The most prominent methods one can find in the literature for solving (1) are the primal-dual
prozximal splitting algorithms and the ADMM algorithms. We briefly describe the two classes of
algorithms.
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Primal-dual algorithms have their origins in the works of Arrow, Hurwicz and Uzawa [1] and
Korpelevich [33]. Tseng’s algorithm [40], which stands at heart of primal-dual algorithms of
forward-backward-forward type, is a modification of the iterative methods in these two funda-
mental works. Proximal splitting algorithms for solving convex optimization problems involving
compositions with linear continuous operators have been proposed by Combettes and Ways [19],
Esser, Zhang and Chan [26], Chambolle and Pock [14], and He and Yuan [32]. Further inves-
tigations have been made in the more general framework of finding zeros of sums of linearly
composed maximally monotone operators, and monotone and Lipschitz, respectively, cocoercive
operators. The resulting numerical schemes have been employed to the solving of the inclusion
problem

find x € H such that 0 € 9f(z) + (L* 0o dg o L)(x) + Vh(z),

which represents the system of optimality conditions of problem (1).

Briceno-Arias and Combettes pioneered this approach in [13], by reformulating the gen-
eral monotone inclusion in an appropriate product space as the sum of a maximally monotone
operator and a linear and skew one, and by solving the resulting inclusion problem via a forward-
backward-forward type algorithm (see also [16]). Afterwards, by using the same product space
approach, this time in a suitable renormed space, Vi succeeded in [41] in formulating a primal-
dual splitting algorithm of forward-backward type, in other words, by saving a forward step.
Condat has presented in [20], in the variational case, algorithms of the same nature with the one
in [41]. A primal-dual algorithm of Douglas-Rachford type has been proposed in [11]. Under
strong monotonicity /convexity assumptions and the use of dynamic step size strategies conver-
gence rates have been provided in [9], for the primal-dual algorithm in [41] (see also [14,15]), and
in [10], for the primal-dual algorithm in [16]. Among the recent developments in this field count
the primal-dual algorithm with linesearch introduced in [34], which avoids the exact calculation
of the norm of the linear operator, and the three-operator splitting algorithm for monotone
inclusions introduced in [21].

We describe the ADMM algorithm for solving (1) in the case h = 0, which corresponds to
the standard setting in the literature. By introducing an auxiliary variable one can rewrite (1)
as

inf r)+g(2)f. 2
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For a fixed real number ¢ > 0 we consider the augmented Lagrangian associated with problem

(2), which is defined as
Le:HXxGxG =R, Le(x,z,y) = f(x) +g(2) + (y, Lx — 2) + gHLm — 2|2

The ADMM algorithm relies on the alternating minimization of the augmented Lagrangian with
respect to the variables z and z (see [12,22-24,28-30] and Remark 4 for the exact formulation
of the iterative scheme). Generally, the minimization with respect to the variable x does not
lead to a proximal step. This drawback has been overcome by Shefi and Teboulle in [38] by
introducing additional suitably chosen metrics, and also in [3] for an extension of the ADMM
algorithm designed for problems which involve also smooth parts in the objective.

The aim of this paper is to provide a unifying algorithmic scheme for solving monotone
inclusion problems which encompasses several primal-dual iterative methods [8,14,20,41], and
the ADMM algorithm (and its variants from [38]) in the particular case of convex optimization



problems. A closer look at the structure of the new algorithmic scheme shows that it translates
the paradigm behind ADMM methods for optimization problems to the solving of monotone
inclusions. We carry out a convergence analysis for the proposed iterative scheme by making use
of techniques relying on the Opial Lemma applied in a variable metric setting. Furthermore, we
derive convergence rates for the iterates under supplementary strong monotonicity assumptions.
To this aim we use a dynamic step strategy, based on which we can provide a unifying scheme for
the algorithms in [9,14]. Not least we also provide accelerated versions for the classical ADMM
algorithm (and its variable metric variants). In the last section we compare the performances of
the accelerated algorithm under different dynamical step size strategies in the context of solving
a image processing problem.

In what follows we recall some elements of the theory of monotone operators in Hilbert spaces
and refer for more details to [4,6,39].

Let H be a real Hilbert space with inner product (-, -) and associated norm |- || = /(,-). For
an arbitrary set-valued operator A : H = H we denote by Gr A = {(z,u) € H x H : u € Az}
its graph, by domA = {x € H : Az # ()} its domain and by A~! : H = H its inverse
operator, defined by (u,z) € Gr A~! if and only if (x,u) € Gr A. We say that A is monotone
if (v —y,u—v) >0 for all (z,u),(y,v) € Gr A. A monotone operator A is said to be maximal
monotone, if there exists no proper monotone extension of the graph of A on H x H.

The resolvent of A, J4 : H = H, is defined by Ja = (Id +A)~!, where Id : H — H,1d(z) = z
for all x € H, is the identity operator on H. If A is maximal monotone, then J4 : H — H is
single-valued and maximal monotone (see [4, Proposition 23.7 and Corollary 23.10]). For an
arbitrary v > 0 we have (see [4, Proposition 23.2])

p € Jyaz if and only if (p.y 'z —p)) €eGra
and (see [4, Proposition 23.18])
Jya+ 7141097 Id =1d. (3)

When G is another Hilbert space and L : H — G is a linear continuous operator, then
L* : G — H, defined by (L*y,x) = (y, Lzx) for all (z,y) € H x G, denotes the adjoint operator of
L, while the norm of L is defined as ||L|| = sup{||Lz| : z € H, ||z|] < 1}.

Let v > 0 be arbitrary. We say that A is y-strongly monotone, if (x —y,u —v) > ||z — y||?
for all (x,u), (y,v) € Gr A. A single-valued operator A : H — H is said to be ~y-cocoercive, if
vz —y, Ax — Ay) > ||Ax — Ay|? for all (z,y) € H x H. Notice that we slightly modify the
classical definition of a coercive operator, without altering its sense, in order to cover also the
situation when A is constant (in particular, when A = 0) and v = 0. A is called 7-Lipschitz
continuous, if ||Az — Ay|| < 7|z — y|| for all (z,y) € H x H. A single-valued linear operator
A :H — H is said to be skew, if (z, Az) = 0 for all x € H. The parallel sum of two operators
A,B:H = H is defined by AOB : H = H,AOB = (A~' + B~1)~1,

Since the variational case will be also in the focus of our investigations, we recall next some
elements of convex analysis.

For a function f : H — R we denote by dom f = {z € H : f(x) < +oo} its effective domain
and say that f is proper, if dom f # () and f(x) # —oo for all € H. We denote by I'(H) the
family of proper convex and lower semi-continuous extended real-valued functions defined on
H. Let f*: H — R, f*(u) = supyey{{u,z) — f(z)} for all u € H, be the conjugate function
of f. The subdifferential of f at x € H, with f(x) € R, is the set df(x) := {v e H : f(y) >



f(@)+(v,y—x) Vy € H}. We take by convention df(x) := 0, if f(z) € {£oo}. If f € T'(H), then
df is a maximally monotone operator (cf. [37]) and it holds (0f)~! = df*. For f,g: H — R two
proper functions, we consider also their infimal convolution, which is the function f{g : H — R,

defined by (fOg)(z) = infyen{f(y) + g(x —y)}, for all x € H.
When f € I'(H) and v > 0, for every z € H we denote by prox, ;(z) the proximal point of
parameter v of f at x, which is the unique optimal solution of the optimization problem

yeH

1
inf —ly—z|*¢.
it {10+ 5y - ol
Notice that J,or = (Id+~y9f)~1 = prox. s, thus prox,, : H — H is a single-valued operator
fulfilling the extended Moreau’s decomposition formula

ProX. ; +7 ProxX(q /) f+ oy lId=1d.

Finally, we say that the function f : H — R is y-strongly convex for v > 0, if f — J| - |*is a
convex function. This property implies that Of is y-strongly monotone (see [4, Example 22.3]).

2 The ADMM paradigm employed to monotone inclusions

In this section we propose an algorithm for solving monotone inclusion problems involving
compositions with linear continuous operators in infinite dimensional Hilbert spaces which is
designed in the spirit of the ADMM paradigm.

2.1 Problem formulation, algorithm and particular cases

The following problem represents the central point of our investigations.

Problem 1 Let H and G be real Hilbert spaces, A : H = H and B : G = G be maximally
monotone operators and C' : H — H an n-cocoercive operator for n > 0. Let L : H — G be a
linear continuous operator. The aim is to solve the primal monotone inclusion

find z € H such that 0 € Az + (L* o Bo L)z + Cu, (4)
together with its dual monotone inclusion

find v € G such that 3z € H : —L*v € Az + Cz and v € B(Lx). (5)
Simple algebraic manipulations yield that (5) is equivalent to the problem
find v € G such that 0 € B~'v + ((—L) o(A+C) o (—L*))v,
which can be equivalently written as
find v € G such that 0 € B~lv + ((—L) o(A7'OCcHo (—L*))v. (6)
We say that (x,v) € Hx G is a primal-dual solution to the primal-dual pair of monotone

inclusions (4)-(5), if
—L*v € Az + Cx and v € B(Lx). (7)



If z € H is a solution to (4), then there exists v € G such that (z,v) is a primal-dual solution
to (4)-(5). On the other hand, if v € G is a solution to (5), then there exists x € H such
that (x,v) is a primal-dual solution to (4)-(5). Furthermore, if (z,v) € Hx G is a primal-dual
solution to (4)-(5), then x is a solution to (4) and v is a solution to (5).

Next we relate this general setting to the solving of a primal-dual pair of convex optimization
problems.

Problem 2 Let H and G be real Hilbert spaces, f € I'(H), g € I'(G), h : H — R a convex and
Fréchet differentiable function with n-Lipschitz continuous gradient, for n > 0, and L : H — G
a linear continuous operator. Consider the primal convex optimization problem

Inf {f(2) + h(z) + g(La)} (8)
and its Fenchel dual problem
igg{—(f* Oh*)(=L™v) = g*(v)} (9)

The system of optimality conditions for the primal-dual pair of optimization problems (8)-(9)
reads:
—L*v — Vh(Z) € 0f (%) and v € 0g(L7T), (10)

which is actually a particular formulation of (7) when
A:=0f, C:=Vh, B:=0qg. (11)

Notice that, due to the Baillon-Haddad Theorem (see [4, Corollary 18.16]), Vh is n-cocoercive.

If (8) has an optimal solution x € H and a suitable qualification condition is fulfilled, then
there exists v € G, an optimal solution to (9), such that (10) holds. If (9) has an optimal
solution v € G and a suitable qualification condition is fulfilled, then there exists z € H, an
optimal solution to (8), such that (10) holds. Furthermore, if the pair (z,v) € H x G satisfies
relation (10), then z is an optimal solution to (8), v is an optimal solution to (9) and the optimal
objective values of (8) and (9) coincide.

One of the most popular and useful qualification conditions guaranteeing the existence of a
dual optimal solution is the one known under the name Attouch-Brézis and which requires that:

0 € sqri(dom g — L(dom f)) (12)
holds. Here, for S C G a convex set, we denote by
sqriS := {z € S : Ux>oA(S — ) is a closed linear subspace of G}

its strong quasi-relative interior. The topological interior is contained in the strong quasi-relative
interior: int S C sqri S, however, in general this inclusion may be strict. If G is finite-dimensional,
then for a nonempty and convex set S C G, one has sqri S = ri S, which denotes the topological
interior of S relative to its affine hull. Considering again the infinite dimensional setting, we
remark that condition (12) is fulfilled, if there exists 2’ € dom f such that Lz’ € dom g and g is
continuous at Lz’. For further considerations on convex duality we refer to [4,6,7,25,42].



Throughout the paper the following additional notations and facts will be used. We denote
by St (H) the family of operators U : H — H which are linear, continuous, self-adjoint and
positive semidefinite. For U € S4(H) we consider the semi-norm defined by

|z||3 = (z,Uz) Vo € H.
The Loewner partial ordering is defined for Uy, Us € S (H) by
Ur = Us & ||z||f, > |lzllf, Vo € H.

Finally, for a > 0, we set
Po(H) :={U € S4(H) : U = ald}.

Let « > 0, U € Po(H) and A : H = H a maximally monotone operator. Then the operator
(U + A)~! : H — H is single-valued with full domain; in other words

for every & € H there exists a unique p € H such that p = (U + A) 'z.
Indeed, this is a consequence of the relation
U+A) ' =Td+Uu 1At oUu!

and of the maximal monotonicity of the operator U~ A in the renormed Hilbert space (H, (-, -)t7)
(see for example [18, Lemma 3.7]), where

<m7y>U = (a:,Uy> Vx,y € H.

We are now in the position to formulate the algorithm relying on the ADMM paradigm for
solving the primal-dual pair of monotone inclusions (4)-(5).

Algorithm 3 For allk > 0, let MF € Sy (H), My € §1(G) and ¢ > 0 be such that cL* L+ M} €
Po,,(H) for ax > 0. Choose (2°,2°,9°) € H x G x G. For all k > 0 generate the sequence
(2%, 2% yF) k>0 as follows:

~1

ol = (cL*L + M} + A) [cL*(zk —c Py + Mk - C’ajk} (13)
-1

L - (Id v lME 4 c_lB> [ka“ e lyh 4 c—lM;fzﬂ (14)

yk—H _ yk: + C(ka+1 _ Zk+1). (15)

The choice of variable metrics is mainly motivated by the fact this allows make use of
variable step sizes, as we will show in Section 3 in the context of primal-dual algorithms. In [31],
variable metrics have been used in the context of an ADMM iterative scheme. We refer the
reader to [35], where the positive impact of variable metrics on the performances of numerical
optimization algorithms is emphasized.

We show below that several algorithms from the literature can be embedded in the iterative
scheme of Algorithm 3.



Remark 4 For all k£ > 0, the equations (13) and (14) are equivalent to
cL* (28 — Laftt — 7 2y%) + MF (2P — oMY — CaF € AxF L (16)
and, respectively,
e(Laktt — M+ e lyky 4 ME (2R — 2Ry e BRHL (17)
Notice that the latter is equivalent to
YEFL L ME(F — ) @ Bk (18)

In the variational setting as described in Problem 2, namely, by choosing the operators as
n (11), the inclusion (16) becomes

0 € df (@) + eL*(Lah ™ — 28 4 7 yk) + M (2P — 2%) + Vh(zh),

which is equivalent to

. c _ 1
¢! = argmin {f(z) + (x — 2%, Vh(z®)) + Z||Lz — 28 + ¢ ¥)2 + Sz — xk||?\/[k} .
zeH 2 2 1

On the other hand, (17) becomes
c(Lahtt — M e lyFy 4 ME (2R — 2R € ag(2F Y,

which is equivalent to

. c _ 1
M = argmin {g(z) + Gl =z N+ Sz - z’“!@k} :
z€G 2

Consequently, the iterative scheme (13)-(15) reads

c 1
P argmin{f<x>+<x—xk,w<x'f>>+uLx—zuc-ly'fH%H:c—w’“ﬁw} (19)
ze€H 2 2 '
c 1
21 = argmin {g(z) + oLt — 2 TP+ Sz - Zk”?w} (20)
2€G 2 2 ’
Sy e (21)

which is the algorithm formulated and investigated by Banert, Bot, and Csetnek in [3]. The case
when h = 0 and M, M5 are constant for every k > 0 has been considered in the setting of finite
dimensional Hilbert spaces by Shefi and Teboulle [38] (see also [27]). We want to emphasize
that when h = 0 and M} = M} = 0 for all k > 0 the iterative scheme (19)-(21) collapses into
the classical version of the ADMM algorithm.

Remark 5 For all £ > 0, consider the particular choices M := i Id —cL*L for 7, > 0, and
Mé“ = 0.
(i) Let k > 0 be fixed. Relation (13) (written for z*+2) reads

2h 2 — (Tk_+11 Id +A)*1 [CL*(zk-i-l _ C—lyk:-i-l) + 7_k—+11xk+1 L Lot — ka+1] '

7



From (15) we have
CLH (L — Lyl = CLF (2R ) oL La
hence
"2 = (Tkjrll Id +A)71 [T,;rllka — L*(2yF T — o) — C’xkﬂ}
oA (karl — T Ozt — Tk+1L*(2yk+1 — yk)> ) (22)
On the other hand, by using (3), relation (14) reads

k:-i-l:J

- . (ka-‘rl i c—lyk> — Lkt ey g (CkaH +yk)

which is equivalent to
cLabtt 4 yf — e bt =g 5 (CLl’k—H + yk> .
By using again (15), this can be reformulated as
Y = Joper (vF + eLat). (23)

The iterative scheme in (22)- (23) generates, for a given starting point (x!,4°) € H x G and
a fixed ¢ > 0, a sequence (z¥, y’“)kzl as follows:

yk+1 = J0371 (yk + CL$k+1> (24)
" = 4 (mkﬂ — Tpp1 O — 7 ¥ (27 — yk)) : (25)

When 75, = 7 for all £ > 1, the algorithm (24)-(25) recovers a numerical scheme for solving
monotone inclusion problems proposed by Vi in [41, Theorem 3.1]. More precisely, the error-
free variant of the algorithm in [41, Theorem 3.1] formulated for a constant sequence (\,)nen
equal to 1 and employed to the solving of the primal-dual pair (6)-(4) (by reversing the order
in Problem 1, that is, by treating (6) as the primal monotone inclusion and (4) as its dual
monotone inclusion) is nothing else than the iterative scheme (24)-(25).

In case C' =0, (24)-(25) becomes for all k > 0

= T (x’“ — mL* (2" — yk_l)) (26)
AR J.g-1 (yk + chkH> , (27)

which, in case 7, = 7 for all K > 1 and c¢7||L||? < 1, is nothing else than the algorithm introduced
by Bot, Csetnek and Heinrich in [8, Algorithm 1, Theorem 2] applied to the solving of the primal-
dual pair (6)-(4) (by reversing the order in Problem 1).

(ii) Considering again the variational setting as described in Problem 2, the algorithm (24)-
(25) reads for all £ >0

= PIOX g« (yk +0ka+1)

k+2
x = Prox, . s

(wkH — o1 VR(z") — 7 LF (297 - yk)> :

8



When 7, = 7 > 0 for all £ > 1, one recovers a primal-dual algorithm investigated under the
assumption L — ¢||L|*> > % by Condat in [20, Algorithm 3.2, Theorem 3.1].

Not least, (26)-(27) reads in the variational setting (which corresponds to the case h = 0)
forall k>0

= prox,, ¢ (ack — e L* (29" — yk_1)>
g = ProX. - <yk + chkH) .

When 7, = 7 > 0 for all £ > 1, this iterative schemes becomes the algorithm proposed by
Chambolle and Pock in [14, Algorithm 1, Theorem 1] for solving in case h = 0 the primal-dual
pair of optimization problems (9)-(8) (in this order).

2.2 Convergence analysis

In this subsection we will address the convergence of the sequence of iterates generated by
Algorithm 3. One of the tools we will use in the proof of the convergence statement is the
following version of the Opial Lemma formulated in the setting of variable metrics (see [17,
Theorem 3.3]).

Lemma 6 Let S be a nonempty subset of H and (wk)kzo be a sequence in H. Let a > 0 and
WF € Po(H) be such that WF = WEFL for all k > 0. Assume that:

(i) for all z € S and for all k > 0: 2" — 2|l yyrer < ||2F — 2|lyyw;

(i3) every weak sequential cluster point of (z¥)1>0 belongs to S.
Then (z¥)x>0 converges weakly to an element in S.

We present the first main theorem of this manuscript.

Theorem 7 Consider the setting of Problem 1 and assume that the set of primal-dual solutions
to the primal-dual pair of monotone inclusions (4)-(5) is nonempty. Let (x%, 2% y*)1>¢ be the
sequence generated by Algorithm 3 and assume that My — 11d € S(H), M} = ML ME €
S1(G), MY = MY for all k > 0. If one of the following assumptions:

(I) there ewists oq > 0 such that M — 11d € Po,(H) for all k > 0;
(1) there exist a,cp > 0 such that M — 21d+L*L € Po(H) and M} € Pa,(G) for all k > 0;

(I1I) there exists a > 0 such that MF — 11d+L*L € Po(H) and 2My+" = M§ = My for all
k> 0;

is fulfilled, then there exists (x,v), a primal-dual solution to (4)-(5), such that (2, 2%, y*¥)k>0
converges weakly to (x, Lx,v).

Proof. Let S C H x G x G be defined by
S = {(z, Lz,v) : (z,v) is a primal dual solution to (4)-(5)}. (28)
Let (z*, Lz*,y*) € S be fixed. Then it holds

—L*y* — Cz* € Ax™ and y* € B(Lz™).



Let k£ > 0 be fixed. From (16) and the monotonicity of A we have
(eL*(2F — La**t — = Yyk) 4 MF (2 — 281 — C2F + Lry* + Co*, 2t — 2%) > 0,
while from (17) and the monotonicity of B we have
(e(Laktt — R by 4 ok — k) g kL peny s )
Since C' is n-cocoercive, we have
n(Ca* — Cx¥, z* — 2F) > ||Cx* — CzF|.

We consider first the case when n > 0.
Summing up the three inequalities obtained above we get

c(zF — Lkt Lokt — La*) + (y* — ¥, La®tt — Lo*) + (Co* — O2F, 2P — 2%)
(M (P — 2P, 2R — gy o e(Lak Tt — 2P 2R L) 4 (yF — oy, 2R — L)
H(MF(2F — 2P, P L) + (O — C2F o — %) — 7Y |Ca* — C2¥)? > 0.
(29)
According to (15) we also have
(=g, Lab T — La®) + (g —y*, 2 L) = (g — g, Labt b0y = ol e — g bt by
3

<
~

—~
(=)
SN—

By expressing the inner products through norms we further derive
= (125 = La™|? = |12 — Za* Y2 = | 2™+ — La|)
(HLx’““ La|[2 = [ LaF+t = 202 — 24— L))
+% (Ily* — "2+ [y = ) - Yy y*H2>
3 (It = "y — = R — ek — )

k _k k
(Hz Lx*||?w§ — 2% == +1||?\/[§ —|]2"+ - LSU*“M;C)

+(Ca* — CzF 2" — 2Fy — 71| o2z* — C2F)? > 0.

c
2

l\D\»—t

By expressing Lz**! — 2**1 through relation (15) and by taking into account that

(Cz* — Cab F L — 2%y — 71|02 — O =
ol (e et o5 -

L k1
2||~”U

Tak — 2k, (31)

2
B

we obtain

k+1 k+1

g+ L - Ly g I - 0

1 k *
v —v s
1
=2
2

n
4

1
k k
Sl = 2By + 11 = LB +

1

*HCL‘k k—HHMk -
-1 * k Lk ki1

—n || (Caz —Cm)+§<x —x )

*EHZk - ka+1H2 o
2 2
10

- Zk+1||?\4k

||$k - l‘k+1||2.

2
4




From here, using the monotonicity assumptions on (MF)x> and (M§)s>o, it yields

1 1
§||33k+1 - x*H?\/[f-H + 5\\2’]6“ La” ”Mk+1+cld %Hykﬂ - y*HQ <

1

k * (12 k k * (|2
Sllat = a2+ 21l —Lm*r\M§+cId+%r\y "
Lok

zk o ka—&-l”Q o in

k k k
5 oz~ *Hz can 7

/. Hn_l (C:L‘* — CiL‘k> + % <1‘k - xk+1> H ) (32)

In case n = 0, similar arguments lead to the the inequality

1 1 .
§||3’3kJrl - w*HZ ket + *szﬂ La” ”Mk+1+dd %Hykﬂ —y* <
1
k * k %112
Ha: — a3 + *Hz —La* |y ora + 2elly" =7l
1 1
_§Hz _ ka’-HH2 o §ka o :Uk-i-lHQ . — 5sz k+1”Mk- (33)

By using telescoping arguments, one can easily see that both (32) and (33) imply

ST = Lt < oo, S et — aF Ry < oo, 1 = R < oo (39)
k>0 k>0 k>0

Consider first the hypotheses in assumption (I).

Discarding the negative terms on the right-hand side of both (32) and (33), it follows that
statement (i) in Opial Lemma (Lemma 6) holds, when applied in the product space H x G X G,
for the sequence (z%, 2%, y¥) >0, for Wk .= (M} ,Mk +cld,c11d) for k > 0, and for S defined
as in (28).

Since My — 21d € Pq, (H) for all k > 0 with a; > 0, from (34) we get

a* — P 50 (k= 400) (35)

and
2K — Dbt 50 (k — +o0). (36)

A direct consequence of (35) and (36) is

2P 0 (B = +o0). (37)
From (15), (36) and (37) we derive

y* — " =0 (k — +o0). (38)

The relations (35)-(38) will play an essential role when verifying assumption (ii) in the Opial
Lemma for S taken as in (28). Let (Z,%,7) € H x G x G be such that there exists (ky)n>0,
kn — 400 (as n — +00), and (xF, 2Fn ykn) converges weakly to (Z,Z,7) (as n — +00).
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From (35) we obtain that (Lz*»*1),cy converges weakly to LZ (as n — +o00), which com-
bined with (36) yields Z = Lz. We use now the following notations for n > 0:

af = eL* (2P — Lakntl — ¢7lykn) 4 Mf" (zFn — ghntly 4 Oghntl — Oghn

n

Ay = ghntl
b:L = ykn"rl + M2kn (an _ an+1)
by = 2L,

From (16) we have for all n > 0
a, € (A+C)(an). (39)

Further, from (17) and (15) we have for all n > 0

b’ € Bb,. (40)
Furthermore, from (35) we have
a, converges weakly to T (as n — +00). (41)
From (38) and (37) we obtain
b, converges weakly to § (as n — +00). (42)
Moreover, (15) and (38) yield
La,, — by, converges strongly to 0 (as n — 400). (43)

Finally, we have

al + L*b} = cL* (2" — LMl 4 L* (yfn L — o)
+ M{fn(xk‘n _ xkn"v‘l) + L*Mé’n(zkn _ Zk?n+1)
+ Oghntl — Oghn,

By using the fact that C' is n-Lipschitz continuous, from (35)-(38) we get
a, + L*b;, converges strongly to 0 (as n — 400). (44)

Let usdefine T: HxG = HxG by T'(z,y) = (A(z)+C(z))x B~ (y) and K : HxG — H xG by
K(xz,y) = (L*y, —Lx) for all (z,y) € H x G. Since C is maximally monotone with full domain
(see [4]), A+ C is maximally monotone, too (see [4]), thus 7" is maximally monotone. Since
K is s skew operator, it is also maximally monotone (see [4]). Due to the fact that K has full
domain, we conclude that

T + K is a maximally monotone operator. (45)
Moreover, from (39) and (40) we have

(@’ + L*b%, by, — Lay) € (T + K)(an,b%) ¥n > 0. (46)
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Since the graph of a maximally monotone operator is sequentially closed with respect to the
weak xstrong topology (see [4, Proposition 20.33]), from (45), (46), (41), (42), (43) and (44) we
derive that

(0,0) € (T + K)(z,7) = (A+ C,B ) (z,7) + (LY, - L7).

The latter is nothing else than saying that (Z,7) is a primal dual-solution to (4)-(5), which
combined with z = Lz implies that the second assumption of the Opial Lemma is verified, too.
In conclusion, (2%, z¥, y*)r>0 converges weakly to (z, Lz, v), where (z,v) a primal-dual solution
to (4)-(5).

Consider now the hypotheses in assumption (II).

We start by showing that the relations (35)-(38) are fulfilled in this situation, too. Indeed,
in this case we derive from (34) that (36) and (37) hold. From (15), (36) and (37) we obtain
(38). Finally, the inequalities

OéH:L‘k+1 _ l‘kH2 SkaJrl _ $k||?\4{e,g1d + HkaJrl _ ka||2

SHmkH — wk”?\/[f—gld + 2\|Lmk+1 — zkHQ + 2sz — kaHQ Vk >0
vield (35).
On the other hand, notice that both (32) and (33) yield
3 tim (St =2+ 52t~ LR g o It — o7 (47)
k—too \ 2 Mg Mj+cld T 9 ’

hence (y*)x>0 and (2¥)x>0 are bounded. Combining this with (15) and the condition imposed on
Mf — g Id +L*L, we derive that (xk)kzo is bounded, too. Hence there exists a weak convergent
subsequence of (xk, 2k, yk)kzo. By using the same arguments as in the proof of (I), one can see
that every sequential weak cluster point of (2%, 2% y*);>0 belongs to the set S defined in (28).

In the remaining of the proof, we show that the set of sequential weak cluster points of
(azk,zk7yk)k20 is a singleton. Let (x1,21,91), (72, 22,y2) be two such sequential weak cluster
points. Then there exist (kp)p>0, (kq)g>0, kp = +00 (as p = +00), kg = +00 (as ¢ = +00),
a subsequence (z*7, 2% y*»),~o which converges weakly to (z1,21,1) (as p — +o0), and a
subsequence (%7, z%a, yka) > which converges weakly to (z2,22,92) (as ¢ — +00). As shown
above, (z1,21,y1) and (x2, 22, y2) belong to the set S (see (28)), thus z; = Lz, i € {1,2}. From
(47), which is true for every primal-dual solution to (4)-(5), we derive

3 lim <E($k,2k,yk;x1,L$17y1) - E(xk73k7yk;$2,L$2,y2)) ) (48)

k—+o0

where, for (z*, Lz*,y*) the expression E(x*, 2% y*;2* La*, y*) is defined as

1
+ —ly*F - y*|%

1 1
k _k k. _ k 2 k 2
E(x 2 Y 7$*7Lx*7y*) - 5”.’17 - x*HM{C + 5”2 - Lx*||M§+CId 2

Further, we have for all £ > 0

1 1 1
§”$k - 1‘1||?\4{e - ngEk - 952||?\4{c = 5\\952 - $1||?\4{e + <$k - 352,M1k($2 — 1)),

1
3 2K~ Ly, (MY +c1d)(Lay—Lay)),

Lo Laal g

Lok Lok
§HZ _Lle?\/15+cId_§HZ _LxQH?w;chd:
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and

1k 9o 1.4 9 1 92 1, %
26”3% yi| 20”?/ ya| —QCHyz yi| +C<y Y2, Y2 — Y1)-

Applying [36, Théoréme 104.1], there exists M; € Si(H) such that (MF)g>o converges
pointwise to M in the strong topology (as k — 400). Similarly, the monotonicity condition
imposed on (M§);>¢ implies that sup,~q | M5 + cId|| < +o0o. Thus, according to [17, Lemma
2.3], there exists o’ > 0 and My € Py (G) such that (M§ + cId)p>o converges pointwise to Mo
in the strong topology (as k — +00).

Taking the limit in (48) along the subsequences (kp),>0 and (kq)q>0 and using the last three
relations above we obtain

1 1
§Hx1 — .%QH?\/[I + <x1 — x'Q,Ml({L‘Q — $1)> + §HLx1 — Lxg”?\/h + <L$1 — LxQ,MQ(Lxg — Lx1)>

1 , 1 1 , 1 , 1 )
+%Hy1 —y2|” + E<y1 —Y2,Y2 — Y1) = §H$1 — 2oy, + §HL951 — Las|lyy, + %Hyl — 2%,

hence

1
—[lzy — @2ll3y, — IILw1 — Laallyy, — EHyl —a|* =0,

thus ||x1 — x2||pr, =0, Lzy = Lzg and y; = yo. Since
(Oé + g) 21 = @2||* < [Ja1 — 2|3y, + [[La1 — Las| %,

we obtain that z; = 2. In conclusion, (zF, 2*, y*) k>0 converges weakly to an element in S (see
(28)).

Finally, consider the hypotheses in assumption (IIT). We start by refining the inequalities
obtained in (32) and (33).

By considering the relation (18) for consecutive iterates and by taking into account the
monotonicity of B we derive

<Zk+1 _ Zk7yk+1 o yk + Méc(zk o ZkJrl) o Méc—l(zkfl _ zk)) >0,
hence

<Zk+1 - Zk7yk+1 o yk> > ||Zk+1 - ZkH?\/[k + <Zk+1 _ Zk,Még_l(Zkil - Zk)>
2

> [ F 2y — SR = R — Sl = R
Substituting y*+1 — y¥ = ¢(LzFT! — 2#+1) in the last inequality it follows
[ 2 1||Zk+1 T R lnzk _R L <
2 2 M, 2 M,
g (sz _ ka+1H2 _ sz+1 _ ZchZ _ Hka-&-l _ Zk+1”2> ' (49)
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In case n > 0, adding (49) and (32) leads to

1 k+1 * (12 1 k+1 * (12 1 k+1 * (12 1 k+1 k2
ST = g 2 = Ll gl = I S I e <

1 1 B
i e | At [

1 k * 1 k *
§HIE — X ||?W{g+§‘|2 — Lz ”?\/I%C—i-cld—'—?c 9 M§71

1 2
- val (Ca* = cat) + 5 (ak —ah*) ‘ k| R [
2
Ch k k 1k k
—Qllz 22— %Hy k|2

Taking into account that according to (IIT) we have 3M¥ — My~ %= MJ we can conclude that
for all £ > 1 it holds

1 . 1 . 1 1
inkH —x H?W{m + §H2k+1 — Lz H?\@H%Id + %Hykﬂ — g1+ 2sz+1 - ZkH?\@cS
Lok w2 Lok 2 | T S T A e B
5”1’ - HM{c‘*‘gHz — Lz ”Mé“—i—cld—i_%Hy -y +§”Z -z HM§—1
Lokl k2 Couktl  ky2 Lok k2
—§||33 —x ||M{c_g1d—§”z — 21" = 20”2/ -y 7. (50)

Similarly, we obtain in case n = 0 for all £ > 1 the inequality

1 1 1 1
T T 1 T (T
1 k *1(12 1 k *(12 1 k 2 1 k k—1)2
in - ||M{e + iHZ — Lz ”Mémrcld + %HZ/ -y + 5”2 -z HMéc—l
1 c 1
bR S g (s

k+1

Using telescoping sum arguments, we obtain that ||z*" — mk||M{@_g =0, y* — 1 = 0 and
2

2k — 2+l 5 0 as k — +oo. Using (15), it follows that L(z* — z*+1) — 0 as k — +oo, which,
combined with My —2Id+L*L € Po(H), k > 0, further implies that 2* —z**! — 0 as k — +o0.
Consequently, ¥ — La**! — 0 as k — +oo. Hence the relations (35)-(38) are fulfilled. On the
other hand, from both (50) and (51) we derive
: 1 k *|2 1 k *1|2 1 k * (|2 1 k k—12
5 Jim (Gl = 0" By + 5% — L Bagana + 5ol =0 1P 4 4 = AR ).
By using that
125 = 2 er < 128 = 2" < UMY — 22717 vk > 1,

it follows that limy_, 4o ||2F — zk_1||?w,€,1 = 0, which further implies that (47) holds. From here
2

the conclusion follows by arguing as in the proof provided above in the setting of assumption
(I1). |
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Remark 8 (i) Choosing as in Remark 5 M := %Id —cL*L, with (7;)k>0 a monotonically
nondecreasing sequence of positive numbers and 7 := sup;>( 7% € R, and Méf =0 for all k£ > 0,
we have

1 1 1 1 n
(o (3t = 21a) ) > (5 = clel? = 2) ol = (3 = llLfP - 2) ol v € 3

This shows that under the assumption £ — ¢[|L||? > ¥ (which recovers the one in Algorithm 3.2
and Theorem 3.1 in [20]) the operators M{ — 7 1d belong for all k > 0 to the class Pq, (H), with
ap=L1—¢|L|2-%>0.

(ii) Let us briefly discuss the condition considered in (II):

Joar > 0 such that L*L € P, (H). (52)

By taking into account [4, Fact 2.19], one can see that (52) holds if and only if L is injective and
ran L* is closed. This means that if ran L* is closed, then (52) is equivalent to L is injective.
Hence, in finite dimensional spaces, namely, if H = R"® and G = R™, with m > n > 1, (52) is
nothing else than saying that L has full column rank, which is a widely used assumption in the
proof of the convergence of the classical ADMM algorithm.

Remark 9 In the finite dimensional variational case, the sequences generated by the classical
ADMM algorithm, which corresponds to the iterative scheme (19)-(21) for h = 0 and M} =
M} =0 for all k > 0, are convergent, provided that L has full column rank. This situation is
covered by the theorem above in the context of assumption (III).

Remark 10 An anonymous referee asked whether it is possible to perform a similar analysis
for a slight modification of Algorithm 3, in which (15) is replaced through

yP = gk e (Laktt — A, (53)

where v € (0, \/52“ ) It has been noticed in [28] that the numerical performances of the classical

ADMM algorithm for convex optimization problems, under the use of a relaxation parameter
v > 1, outperform the ones obtained when v = 1.

In this remark we give a positive answer to the question posed by the reviewer. To this end,
we consider as follows Algorithm 3 with (15) replaced by (53), where 1 < v < ‘/52+1, and work
under the hypotheses (IIT) of Theorem 7. We will prove that one can derive in this new setting
inequalities which are similar to (50) and (51), respectively.

Let k > 0 be fixed. Take first 7 > 0. We have relation (29), while instead of (30) we get

<y* - yk’kaz-l—l _ L.CIZ*> + <yk o y*,2k+1 - LI'*>
(' =y, La™t =22 = () 7Ny — o8 M =)

() Hy" =y Ly —yF) b ev|| Lat T R, (54)

Further, we have
C<Zk - ka+1’ka+1 o LLU*> + C<Ll‘k+1 _ Zk+1,Zk+1 _ L$*> —

c(2® — LaP L Lakftl — La*) 4 e(Lab Tt — 2L R Loh ) o e(Laktt — 2R Lokt — L%y =
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c<zk — hH Lkt Lx*) — cHLa:k+1 — zk+1||2 =
c(2F — R Labtt — Ry ook — SR L R Lty || Labt — 2R L2 =
1
7<zl~c o zk—&—l’yk—i-l _ yk> + c<zk o zk—i—l,zk—i—l o L:L'*> o CHL.I‘k+1 o zk+1H27

v
which, combined with (54) and (29), leads to
1
7<Zk o Zk+1’yk+1 _ yk> + C(Zk _ Zk+1,zk+1 _ L$*> _ CHkaJrl _ zk+1H2
—}—(cu)_l(y* _ yk+1’yk+1 _ k> + CI/HLJJk-H _ Zk+1H2
+(MF (2P — 2P, 2R — ) 4 (M2 (2 — 2 2R Loy
+(Cx* — Cxk 2Pt — 2%y — 7| Cx* — C2*)? > 0. (55)
In order to estimate the term 1 (z%F — 21 y*1 — 4k} we use the monotonicity of B. Notice
that (18) becomes in this case

1
yk + ;(yk—H _yk) +M§(Zk _ Zk-i—l) c sz—f—l‘

From here we obtain that for all k > 1
1 _ 1 _ _ _
<zk+1—zk,yk—l—;(ka—yk)+M§(zk—zk+1)—yk I_Z(ykz_yk 1)—M§ l(zk 1_zk)>20’

hence

1 1
;<Zk+1 gk Rl gk (1 _ V) (FHL gk gk gkl

HZkJrl — 5 - |2k+1 kH

e 2
M 2

1
Mk 1 §sz Mk 1.

For /3 := cv? (this choice for 3 will be clarified later) we have for all £ > 1 the inequality
Bl — 2P 4+ BTl — P2 2 20 =R P ),
By expressing the inner products through norms, we derive from (31) and (55) for all £ > 1
1 1 1 _
3 (1 5) (B0 = 2124 0 = 1P = et = ot e
v B
+g <”2k _ Ll'*HZ _ sz _ zk+1H2 _ sz+1 _ L.’L'*H2>
1 k k k k *
5 (I = oH12 = Iy = P12 = ™ = 7))
cv
1 k k
5 (% = 21 — Nl — AR — ¥ = 22 )
Lk x k_ Lk k *
5 (15 = La* B — N1sF = 2 — 12— a2

| (e -0+ ot -o0)

_||Zk+1 —

Ui

B k+1)2
Tt — 2+

[z

'+

1 1
kHMéc + §||Zk+1 _ZkH?V[;*l + §||Zk k 1”2 k L > 0.
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1
The coefficient of ||2¥+1 — 2F||2 is g <1 -——) - g = —%(1 +v —v?). Taking into account (53) it
v
lv—-11
yields that the coefficient of || Lz* — 2¥||? is 3 v 5021/2 = % (1 —1). On the other hand, the
coefficient of ||La*+t — 2F+112 is —¢(1 —v) — % = c%, while we have

1
1— =
v

c

2

Cc

1/—2_ c
N 2

2

Cc

(-2)+

v (=1 —v+412).

Taking into account the monotonicity of (MF);>o and (M5)g>o, and that 3M5 — Mé“_l = MY

for all £ > 1, we finally obtain

Lokl w2 L k1 .2 Lok w2, Lokt kg2

5”5” -z HM{M +§HZ — Lz ”M§+1+c1d+@”y -yl +§HZ -z ||M§
¢ <1 _ 1) HLIL‘k+1 _ Zk+1||2 <
2 v

Low . Lo « T . Lok ke
§||$ - II?\4{€+§H2 — Lz ||?\4§+01d+@”y -y ”2+§HZ — 2

2

ME1

(1= L) jnak — 2
2 v

1 c c _
—inkH - ka?\/lf—gId - 5(1 +v— Vz)HZkH - ZkH2 - QV 1(1 +v— VQ)H?JHI - kaQ- (56)
In a similar way, we obtain in case n = 0 for all £k > 1 the inequality
1ka+l _ x*HZ + lek+1 o Lx*HQ + i” k+1 *HQ + EHZkJrl . ZkHQ
2 M T My erd T 9o 1Y y 2 M
1
+E (1 o > ”ka+1 o Zk-‘rl”? <
2 v
et = 22 22 = Lot 2 gg + 5l — I+ llF — 2
2 MET g M+eld T 9o, IV 7Y 2 My
c 1 k k2
1= ) I Lek =
+5 (1= 5 ) It =4
1 c c _
L P R e B o [ At l

In other words, we obtain (56) instead of (50) and (57) instead of (51), respectively. By using
the same arguments as in the proof of Theorem 7, we obtain the convergence of the ADMM

algorithm for monotone operators modified according

to (53).

3 Convergence rates under strong monotonicity and by means

of dynamic step sizes

We state the problem on which we focus throughout this section.

Problem 11 In the setting of Problem 1 we replace the cocoercivity of C' by the assumptions
that C' is monotone and pu-Lipschitz continuous for o > 0. Moreover, we assume that A + C' is

~-strongly monotone for v > 0.
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Remark 12 If C is a n-cocoercive operator for n > 0, then C' is monotone and n-Lipschitz
continuous. Though, the converse statement may fail. The skew operator (z,y) — (L*y, —Lx)
is for instance monotone and Lipschitz continuous, and not cocoercive. This operator appears
in a natural way when considering formulating the system of optimality conditions for convex
optimization problems involving compositions with linear continuous operators (see [13]). Notice
that due to the celebrated Baillon-Haddad Theorem (see, for instance, [4, Corollary 8.16]), the
gradient of a convex and Fréchet differentiable function is n-cocoercive if and only if it is -
Lipschitz continuous.

Remark 13 In the setting of Problem 11 the operator A+ L* o Bo L+ C'is strongly monotone,
thus the monotone inclusion problem (4) has at most one solution. Hence, if (z,v) is a primal-
dual solution to the primal-dual pair (4)-(5), then z is the unique solution to (4). Notice that
the problem (5) may not have an unique solution.

We propose the following algorithm for the formulation of which we use dynamic step sizes.

Algorithm 14 For all k > 0, let M} : G — G be a linear, continuous and self-adjoint operator
such that 7, LL* + M% € P,, (G) for ay >0 for all k > 0. Choose (2°,2°,y°) € H x H x G. For
all k > 0 generate the sequence (xF, 2*, yk)kzo as follows:

-1
Yt = (’TkLL* + MY+ B_l) [—TkL(Zk - TI;1$k) + MQkyk} (58)
SRl — (9; — 1> L*yk+1 + e—:C:pk + % (Id +)\T,;+11A_1)_1 [—L*yk'|r1 + )\T,;rllxk - Czk]
(59)
AR ol GV AL B (60)
k

where \, 7, 0, > 0 for all k > 0.

Remark 15 We would like to emphasize that when C' = 0 Algorithm 14 has a similar structure
to Algorithm 3. Indeed, in this setting, the monotone inclusion problems (4) and (6) become

find x € ‘H such that 0 € Az + (L*oBo L)x (61)

and, respectively,
find v € G such that 0 € B~lo + ((—L) o (Ao (—L*))v. (62)

The two problems (61) and (62) are dual to each other in the sense of the Attouch-Théra duality
(see [2]). By taking in (58)-(60) A = 1, 6 = 1 (which corresponds to the limit case = 0 and
v = 0 in the equation (66) below) and 7, = ¢ > 0 for all £ > 0, then the resulting iterative
scheme reads

~1
Yt = <cLL* + MY+ Bfl) [—cL(zk —c k) + Mé“yk}
o - (1d +C—1A—1)*1 [7L*yk+1 +C—1xk]
= 2R ge (—L*ka - zk“) i
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This is nothing else than Algorithm 3 employed to the solving of the primal-dual system of
monotone inclusions (62)-(61), that is, by treating (62) as the primal monotone inclusion and
(61) as its dual monotone inclusion (notice that in this case we take in relation (14) of Algorithm
3 MY =0 for all k£ > 0).

We chose the parameters involved in Algorithm 14 such that

pry < 27, (63)
A>u+1, (64)
aom[|L|I* < 1, (65)
and for all k > 0
0, = . (66)
V14 T A2y — preg)
Thto = OkTht1 (67)
Opt1 = 9;10k (68)
T LL* + M} = o, ' 1d (69)
T oppr e Sk Blppe Lo (70)
Tk+1 Tk+1 Tk+2 Tk+2

Remark 16 Fix an arbitrary & > 1. From (58) we have
—~k
—meL(2* — 7 tak) + My* € Myt 4 By, (71)

where

M, := 7, LL* + M¥. (72)
Due to (60) we have

—Tkzk = TkL*yk + Hk_l(a:k — xkil),
which combined with (71) delivers
—~k
My (yF = ") + L2 + 0 (o — b )] € BTy, (73)

Fix now an arbitrary k£ > 0. From (3) and (59) we have

A A
O o <Zk:+1 n L*yk—i-l) —CxF = — Ly 4 2 ok

Tk+1
_ T:\HJ(WH/A)A [xk i % <_L*yk+1 _ C:Bk)} '
By using (60) we obtain
ZF = 1 /0 A [xk + % <—L*yk+1 — C’xk>] i (74)
Finally, the definition of the resolvent yields the relation
77:\+1 (xk - :ckH) — Lyt ookt — 2k e (A4 O)af L (75)
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Remark 17 Taking into consideration the above remark, in particular equation (74), one can
notice that in Algorithm 14 the sequences (z¥);>0 and (y*);>0 can be generated independently
of the sequence (zk)kzo. More precisely, for (z°, 2!, y') € H x H x G given starting points, one
has for all k > 1

1
Y = (RLL 4 M+ BT LG+ O (eb = b)) + (R LL* + M| (76)

E+1 ko Tktl *, kt1 k
= I (s /0 A [x + Y (*L y* - Cx )} . (77)
The sequence (z)g>1 can be then obtained by
ZF = E(aﬂk —2Fy — LyF vk > 1.
Tk

Remark 18 The choice
mLL* + M} = 0,1 1d Yk >0 (78)

leads to so-called accelerated versions of primal-dual algorithms that have been intensively stud-
ied in the literature. Indeed, in this setting, (76)-(77) becomes for all k£ > 1
Y =g [Z/k +opL(a" + O (a* — fﬁk_l))]

PR — Tiress /A [xk I L)J\rl (_L*yk—i-l _ C;,;k)] ’

which is Algorithm 5 in [9]. Not least, in the variational case when A = 0f and B = dg, and
for C' =0 and A = 1, we obtain for all k>0

P = PrOX,, g« [yk + oL (mk + Op_q (2F — :Ek_l)):|

B4+l _ k *, k+1
x = Pprox, .y (x — g1 L7y ),

which is the numerical scheme considered by Chambolle and Pock in [14, Algorithm 2].
We also notice that condition (78) guarantees the fulfillment of both (69) and (70), due to
the fact that the sequence (7410%)k>0 is constant (see (67) and (68)).

Remark 19 Assume again that C' = 0 and consider the variational case as described in Problem
2. From (71) and (72) we derive for all £k > 1 the relation

0 € 8g* (4 1) + 7L (L*ykJrl . Tk—lmk) + oMb (yk+1 _ yk) 7
which in case M¥ € S, (G) is equivalent to

. N T N _ 2 1
y* = argmin [g (y) + 5k HL y+ 28 — 7 lwkH +5lly - y’“l!?wk] :
yeG 2

Algorithm 14 becomes in case A =1

. * Tk * - 2 1
"1 = argmin [g (y) + ) HL y+2F -7 1$kH + 5“3/ - ka?\/ﬂ“]
yeG ’
2
AL = (9 — 1) Ly 6, argmin [f*(z) + % H_L*ykﬂ —z+ Tk_+11:zkH }
z€H
S % (_L*yk—i—l - zk—i—l) ,
k
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which can be regarded as an accelerated version of the iterative scheme (19)-(21) from Remark
4.

We present the main theorem of this section.

Theorem 20 Consider the setting of Problem 11 and let (x,v) be a primal-dual solution to the
primal-dual system of monotone inclusions (4)-(5). Let (2%, 2%, y¥)1>0 be the sequence generated
by Algorithm 14 and assume that the relations (63)-(70) are fulfilled. Then we have for alln > 2

Az — 2|2 1 — oom|| L)
‘ 5 + H ”yn_UHQ S
Tn+1 0071
1 2
)\ [,Ul — X 2 ||y - UH LL* Ml xl — I‘O 2 2
H 5 || + 71 +M, + || 5 || —|-f<L(331—:EO),y1—’U>.
75 T2 T T1

Moreover, hlf nr, = %, hence one obtains for (x")n>o0 an order of convergence of (’)(%)
n——+00 -

Proof. Let k > 1 be fixed. From (73), the relation Lz € B~'v (see (7)) and the monotonicity
of B~! we obtain

~k
<yk;+1 o, My (yF — Y 4 L [xk; O (aF — xk—l)] _ Lx> >0
or, equivalently,

1 1 1

S =l =S Iy ol =Sl =y R 2 (P = v L — L [ah 4 Gy (2F - 2F ) )
(79)

Further, from (75), the relation —L*v € (A + C)x (see (7)) and the 7-strong monotonicity of

A+ C we obtain

A

<mk+1 —x, —— (a:k — $k+1> — Ly bt — o2k + L*U> > y||aftt — g2
Tk+1

or, equivalently,

A
2Tk+1

B g = A — 2 et g

k 2
ok — a2 - e

A
m”x
+(zFH — z Czk — O2FY)
+(yF+t — v, La* Tt — L) .(80)

Since C'is p-Lipschitz continuous, we have that

HTk41 1%
(o8~ Ol — Cal ) > B b — P - ot ),
+

which combined with (80) implies

A
b o] > (

A —
y = T okt 2 SR b b

2Tk 2 2Tk 41
+(yF T — v, La* Tt — La). (81)

2711
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By adding the inequalities (79) and (81), we obtain

A 1 A HTh+1
O . | e

g = ol
2 M 2mp 2 Mo 2T i1

Lok k12 A= k1 k2
+2||y y IIEk + 2Tk+1llx x|

" <yk+1 — oL [$k+1 —2F — 0 (aF — xk_l)b . (82)

Further, we have

<L [xk+1 b g (- xkq)} il v> — (L(zF T — k), yF L )
— Qk_l(L(azk — xkil), yb — v)
VO (Db — Yy, yf ey
> (L(z! — 28), yF L o)
— Hk_1<L(xk — a:kil), Yk — v)

— 91%—1”L||2‘7k”$k—1 . ly
2 20, ’

k yk+1”2

By combining this inequality with (82) we obtain (after dividing by 711)

[ I+ =l
M. 3 M. Y I k
kg > M [ B kg
Tk+1 Th41 Tk+1 Te+1  Tk+1
k _ . k+12
N Hy Yy ||]fw\gk B Hyk . yk—HHQ (83)
2Tk 41 2Tj110%
A — 927 L 20'k
+ > MHmk—l-l o J:kH2 7k 1” || ”IEk . .’Ek_1H2
27—k+l 27k+1
1
+7<L($k+1 . xk),ka _ U>
Tk+1
0.
k1 <L($k — :ckil), yk —v).
Tk+1

From (69) and (72) we have that the term in (83) is nonnegative. Further, noticing that (see
(66), (67), (68) and (65))

011 1
Tk+1 Tk
A 0% poA
27'/,3_~_1 Ter1 2 27',§+2’
Tk+10k = TkOk—1 = ... = T100
and o
|EIPort?s _ miillLlPon _ nllLl?o0 _ 1
Th+1 7',3 7',3 - 7',?’
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we obtain (see also (64) and (70))

" —vl2_s A Iyt =2 A
Mo ¢ ka o ZL‘||2 > Mo 4 ||£L‘k+1 o l‘”2
2741 27—k+1 2Ti42 2Tk+2
1 k k 1 k k—
+2T||37 1 —gF|? - ﬁHﬂC — 22
Ti+1 Tk
1 1 _
=+ <L($k+1_mk)ayk+1_v>_7<[’(xk_xk 1)7yk_v>‘
Tk+1 Tk

Let n be a natural number such that n > 2. Summing up the above inequality from k£ = 1 to
n — 1, it follows

Iyt =ol2 ly" —vl2n )
7]\424_72”.7:1_1.”2 > M, + = ||xn_x||2
279 275 2Tn11 27504
1 —1712 1 1 012
+27772LH~”U71—$” [ —27712’\95 —
1 1
+7<L(xn - xn—1)7yn - U> - 7<L(x1 - $0)7y1 - U>‘
Tn 1

The inequality in the statement of the theorem follows by combining this relation with (see (69))

n __ gvn
ly™ = olign |y =l

2Tn+1 T 20nTnt1 ’
1 1 L|?
ﬁ”ﬂ?n — 2" 2 —(L(a" — 2,y — ) > quy” —v|? and 0,71 = o071
i Tn 2

Finally, we notice that for any n > 0 (see (66) and (67))

Tn+1
Tn+2 = = .
1+ 2y — i)

From here it follows that 7,41 < 7, for all n > 1 and ET nty, = A/v (see [9, page 261]). The
n o0

proof is complete. |

Remark 21 In Remark 18 we provided an example of a family of linear, continuous and self-
adjoint operators (M5 )x>o for which the relations (69) and (70) are fulfilled. In the following
we will furnish more examples in this sense.

To begin, we notice that simple algebraic manipulations easily lead to the conclusion that if

HT1 S s (84)

then (6)r>0 is monotonically increasing. In the examples below we replace (63) with the stronger
assumption (84).
(i) For all £ > 0, take
My =o' 1d.
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Then (69) trivially holds, while (70), which can be equivalently written as
1 1 1 1
—LL* + ——M§ = —LL* + —— M5!
Or—1 Thl O Th+2
follows from the fact that (75410%)k>0 is constant (see (67) and(68)) and () x>0 is monotonically
increasing.
(ii) For all £ > 0, take
Méc = 0.

Relation (70) holds since (6j)x>0 is monotonically increasing. Condition (69) becomes in this
setting
o, LL* = 1d VEk > 0. (85)

Since 7, > T4 for all k > 1 and (7x410%)k>0 is constant, (85) holds, if

LL* €P_1 (G). (86)

9071
Provided that G is finite-dimensional, (86) holds if and only if o7 Amin(LL*) > 1, where
Amin(LL*) denotes the smallest eigenvalue of LL*. Since o¢71|/L||?> < 1, this is possible only
in the particular case when LL* = —— Id. The resulting iterative scheme can be regarded as
a0TL
an accelerated version of the classical ADMM algorithm (see Remark 4).
(iii) For all k£ > 0, take
M5y = 7,1d.

Relation (70) holds since (6x)x>0 is monotonically increasing. On the other hand, condition (69)
is equivalent to
O‘ka(LL* + Id) =1d. (87)

Since 13, > Tp4 for all £ > 1 and (74410%)k>0 is constant, (87) holds, if
O'()TlLL* = (1 —O’oTl)Id. (88)

In case o9y > 1 (which is allowed according to (65) if ||L||> < 1) this is obviously fulfilled.
Otherwise (when o9 < 1), in order to guarantee (88), we have to impose that

LL* € Piogr, (G). (89)

9071

When G is finite-dimensional, (89) holds if and only if o¢71(1 + Apin(LL*)) > 1.

4 Numerical experiments

In this section we will compare the performances of Algorithm 14, for different choices of the
sequence of matrices (M5)x>o, in the context of solving an image denoising problem. We con-
sidered in our numerical experiments the convex optimization problem

1
inf  { —llz—b||* + rTViso(2) ¢ 90
ot {Glle =P TV (o)} (90)
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where x € R™ stands for the vectorized coloured image X € RM*N = 3MN and Tij = Xij
represents the value of the pixel in the i-th row and the j-th column, for 1 <¢< M,1 < j < N.
Further, b € R" denotes the observed noisy image, r > 0 a regularization parameter and
TV : R" — R the discrete anisotropic total variation mapping.

Recall that the discrete anisotropic total variation mapping TV apiso : R™* — R,

M—-1N-1 M-—1 N—-1
TVaniso(®) = Y Y i1y — wigl + [wign —@igl+ D e — zigl+ > [wargen — zagl,
i=1 j=1 i=1 3=1

can be written as
TV aniso(z) = || Lz|[1 Vz € R",

where L : R™ — R" x Rn,l‘i,j — (Lll‘i,j, Lgﬂfi,j), with

)

Lize; = Tit1,j — Tijs 1fz <M and Loz ; — Tij+1 — Tij, ?fj <N
’ 0, ifi=M ’ 0, ifj=N

is a linear operator.

(a) Original image (b) Blurred and noisy image

(d) Choice (II): My = o}, ' 1d (e) Choice (ITT): M} = 74 Id

Figure 1: The original image, the noisy image (corrupted with Gaussian noise with standard deviation
o = 10) and the obtained reconstructed images for the choices (I)-(III) and a tolerance error of ¢ = 10~°
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Let be f : R* - R, f = dj0,255)7, the indicator function of [0,255]", g : R" x R" — R,
9(y1,y2) = rl|(y1,92)|]1, and h : R" — R, h(x) = %Hx — b||%. Solving (90) means solving the
monotone inclusion problem

find € R" such that 0 € Az + (L* o Bo L)x + Ch, (91)

for A=0f,B = 3dg,C = Vh. Notice that C is 1-Lipschitz continuous and 1-strongly monotone.

We solved (91) with Algorithm 14 (actually by using the formulation (76)-(77)) for three
different choices of the sequence of matrices (M})x>0, namely, (I) M¥ = o, 1d —74L*L, k > 0,
(see Remark 18); (IT) M¥ = ;' Id, k > 0; and (IIT) M§ = 7, 1d, k > 0, (see Remark 21 (i) and
(iii)).

M;=a: Id, =10
* k_ -1 =
'rkLL -i-Mz-rrk Id, 0=10

0.9

2

Figure 2: The parameter tuning surfaces/curves generated by the SSIM values as functions of the initial
step sizes

In all three implementations, for updating the sequence (l‘k)kzg we used the closed form
the proximal operator of the function A~'7;,; f, which requires in every iteration nothing more
than the calculation of the projection on the box [0,255]". On the other hand, for updating the
sequence (yk)kZQ, we used two different approaches. For the choice (I) of the sequence (MJ5) k>0
the algorithm required only the closed formula of the proximal operator of o,g*, which is the
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projection on the box [—r, 7]?". For the choices (II)-(III), of the sequence (M%)x>0 we determined
in every iteration

—1
yk:—i-l _ (TkLL* + Méc +8g*) [L(l'k + ekil(xk _ xk—l)) + (TkLL* + M§>yk}
or, equivalently,

1
k41 _ : . k ko ok—1 LTI 1P
7= smgin [g°() = (0 L+ 0o =)+ Gl o B 92

by executing some steps of FISTA (see [5]).

We used in the numerical experiments a 256 x 256 test image (see Figure 1) corrupted with
Gaussian noise with standard deviation o € {10,20,30}, took A\ = 2 and as regularization
parameter » = 0.07. We stopped the algorithm when the difference of two consecutive primal
iterates was less than a given error tolerance € > 0. In Figure 1 we show the original image, the
corrupted image and the reconstructed images obtained for the four different choices (I)-(IV)
for a tolerance error of € = 1075,

In Table 1 we compare the performances of the three iterative schemes in case ¢ = 10
in terms of the number of iterations and cpu time in seconds needed to achieve two different
tolerance errors. Prior to the comparisons we did for all schemes a parameter tuning in order
to determine which choice of the initial step sizes o¢ and 71 provides the highest value for the
Structural Similarity Index (SSIM). In Figure 2 we show the dependence of the SSIM-value on
(00, 11) for the cases (I) and (II) and on 71 for case (III). In case (III), we took op = 1

T1(14+Amin(zL*)) ’
which proved to be the best choice.

e=10"% e£=10"°
Choice (I): M§ = 0, ' Id —7,L*L 14 (0.85s) 107 (5.02s)
Choice (II): M} = o' 1d 18 (3.21s) 115 (41.79s)
Choice (TIT): M¥ = 7, 1d 16 (3.00s) 110 (42.42s)

Table 1: Performance evaluation of Algorithm 14; the entries refer to the number of iterations and the
CPU times in seconds

The entries in Table 1 show that the iterative schemes that correspond to the choices (II)
and (III) are, in terms of the number of iterates, as fast as the scheme that corresponds to (I).
The differences in CPU time (which are substantial only for low tolerance errors) are caused
by the fact that for the choices (II) and (III) inner loops are done in each iteration. One could
possibly improve the CPU times in these two settings by solving (92) with numerical algorithms
which are better adapted to outer loop.

Acknowledgements. We are thankful to two anonymous reviewers for comments and
remarks which improved the quality of the paper. The numerical experiments have been carried
out by Ulrik Hager-Roiser for a seminar paper at University of Vienna in the winter semester
2017/2018.

28



References

1]

2]

[12]

[13]

[14]

K.J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-Linear Programming, Stan-
ford University Press, Stanford, 1958

H. Attouch, M. Théra, A general duality principle for the sum of two operators, Journal of
Convex Analysis 3(1), 1-24, 1996

S. Banert, R.I. Bot, E.R. Csetnek, Fizing and extending some recent results on the ADMM
algorithm, arXiv:1612.05057, 2016

H.H. Bauschke, P.L. Combettes, Convezr Analysis and Monotone Operator Theory in Hilbert
Spaces, CMS Books in Mathematics, Springer, New York, 2011

A. Beck, M. Teboulle, A fast iterative shrinkage- thresholding algorithm for linear inverse
problems, SITAM Journal on Imaging Sciences 2(1), 183-202, 2009

J.M. Borwein, J.D. Vanderwerff, Convex Functions: Constructions, Characterizations and
Counterexamples, Cambridge University Press, Cambridge, 2010

R.I. Bot, Conjugate Duality in Conver Optimization, Lecture Notes in Economics and
Mathematical Systems, Vol. 637, Springer, Berlin Heidelberg, 2010

R.I. Bot, E.R. Csetnek, A. Heinrich, A primal-dual splitting algorithm for finding zeros of
sums of maximal monotone operators, SIAM Journal on Optimization 23(4), 2011-2036,
2013

R.I. Bot, E.R. Csetnek, A. Heinrich, C. Hendrich, On the convergence rate improvement
of a primal-dual splitting algorithm for solving monotone inclusion problems, Mathematical
Programming 150(2), 251-279, 2015

R.I. Bot, C. Hendrich, Convergence analysis for a primal-dual monotone + skew splitting al-
gorithm with applications to total variation minimization, Journal of Mathematical Imaging
and Vision 49(3), 551-568, 2014

R.I. Bot, C. Hendrich, A Douglas-Rachford type primal-dual method for solving inclusions
with mixtures of composite and parallel-sum type monotone operators, SIAM Journal on
Optimization 23(4), 2541-2565, 2013

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Foundations and Trends in
Machine Learning 3, 1-12, 2010

L.M. Briceno-Arias, P.L. Combettes, A monotone + skew splitting model for composite
monotone inclusions in duality, SIAM Journal on Optimization 21(4), 1230-1250, 2011

A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with ap-
plications to imaging, Journal of Mathematical Imaging and Vision 40(1), 120-145, 2011

A. Chambolle, T. Pock, On the ergodic convergence rates of a first-order primal-dual algo-
rithm, Mathematical Programming 159(1-2), 253-287, 2016

29



[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

P.L. Combettes, J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with
miztures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued
and Variational Analysis 20(2), 307-330, 2012

P.L. Combettes, B.C. V1, Variable metric quasi-Fejér monotonicity, Nonlinear Analysis 78,
17-31, 2013

P.L. Combettes, B.C. Va, Variable metric forward-backward splitting with applications to
monotone inclusions in duality, Optimization 63(9), 1289-1318, 2014

P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multi-
scale Modeling and Simulation 4(4), 1168-1200, 2005

L. Condat, A primal-dual splitting method for convexr optimization involving Lipschitzian,
prozimable and linear composite terms, Journal of Optimization Theory and Applications
158(2), 460-479, 2013

D. Davis, W. Yin, A three-operator splitting scheme and its optimization applications, Set-
Valued and Variational Analysis 25(4), 829-858, 2017

J. Eckstein, Augmented Lagrangian and alternating direction methods for convex optimiza-
tion: a tutorial and some illustrative computational results, Rutcor Research Report 32-
2012, 2012

J. Eckstein, Some saddle-function splitting methods for convexr programming, Optimization
Methods and Software 4, 75-83, 1994

J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for mazimal monotone operators, Mathematical Programming 55, 293-318,
1992

I. Ekeland, R. Temam, Convexr Analysis and Variational Problems, North-Holland Publish-
ing Company, Amsterdam, 1976

E. Esser, X.Q. Zhang, T.F. Chan, A general framework for a class of first order primal-dual
algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences
3(4), 1015-1046, 2010

M. Fazel, T.K. Pong, D. Sun, P. Tseng, Hankel matriz rank minimization with applications
in system identification and realization, SIAM Journal on Matrix Analysis and Applications
34, 946-977, 2013

M. Fortin, R. Glowinski, On decomposition-coordination methods using an augmented La-
grangian, in: M. Fortin and R. Glowinski (eds.), Augmented Lagrangian Methods: Appli-
cations to the Solution of Boundary-Value Problems, North-Holland, Amsterdam, 1983

D. Gabay, Applications of the method of multipliers to variational inequalities, in: M. Fortin
and R. Glowinski (eds.), Augmented Lagrangian Methods: Applications to the Solution of
Boundary-Value Problems, North-Holland, Amsterdam, 1983

30



[30]

[39]
[40]

[41]

[42]

D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems
via finite element approximations, Computers and Mathematics with Applications 2, 17-40,
1976

B.S. He, H. Yang, S.L. Wang, Alternating direction method with self-adaptive penalty pa-
rameters for , monotone variational inequalities, Journal of Optimization Theory and Ap-
plications 106(2), 337-356, 2000

B.S. Yuan, X. M. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point
problem: from contraction perspective SIAM Journal on Imaging Sciences 5(1), 119-149,
2012

G.M. Korpelevich, The extragradient method for finding saddle points and other problems,
Matecon 12, 747-756, 1976

Y. Malitsky, T. Pock, A first-order primal-dual algorithm with linesearch, SIAM Journal on
Optimization 28(1), 411-432, 2018

H. Raguet, L. Landrieu, Preconditioning of a generalized forward-backward splitting and
application to optimization on graphs, STAM Journal on Imaging Sciences 8(4), 2706-2739,
2015

F. Riesz, B.Sz.-Nagy, Lecons d’Analyse Fonctionnelle, fifth ed., Gauthier-Villars, Paris,
1968

R.T. Rockafellar, On the mazimal monotonicity of subdifferential mappings, Pacific Journal
of Mathematics 33(1), 209-216, 1970

R. Shefi, M. Teboulle, Rate of convergence analysis of decomposition methods based on the
proximal method of multipliers for conver minimization, SIAM Journal on Optimization
24(1), 269297, 2014

S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, Berlin, 2008

P. Tseng, A modified forward-backward splitting method for maximal monotone mappings,
SIAM Journal on Control and Optimization 38(2), 431-446, 2000

B.C. Vu, A splitting algorithm for dual monotone inclusions involving cocoercive operators,
Advances in Computational Mathematics 38(3), 667681, 2013

C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002

31



