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Abstract

We investigate the convergence properties of incremental mirror descent type subgradient
algorithms for minimizing the sum of convex functions. In each step we only evaluate the
subgradient of a single component function and mirror it back to the feasible domain, which
makes iterations very cheap to compute. The analysis is made for a randomized selection of
the component functions, which yields the deterministic algorithm as a special case. Under
supplementary differentiability assumptions on the function which induces the mirror map
we are also able to deal with the presence of another term in the objective function, which is

evaluated via a proximal type step. In both cases we derive convergence rates of O
(

1√
k

)
in

expectation for the kth best objective function value and illustrate our theoretical findings
by numerical experiments in positron emission tomography and machine learning.

Keywords. nonsmooth convex minimization; incremental mirror descent algorithm; global
rate of convergence; random sweeping
AMS subject classification. 90C25, 90C90, 90C06

1 Introduction

We consider the problem of minimizing the sum of nonsmooth convex functions

min
x∈C

m∑
i=1

fi(x), (1)

where C ⊆ Rn is a nonempty, convex and closed set and, for every i = 1, ...,m, the so-called
component functions fi : Rn → R := R ∪ {±∞} are assumed to be proper and convex and will
be evaluated via their respective subgradients. Implicitly we will assume that m is large and it
is therefore very costly to evaluate all component functions in each iteration. Consequently, we
will examine algorithms which only use the subgradient of a single component function in each
iteration. These so-called incremental algorithms, see [4, 9], have been applied for large-scale
problems arising in tomography [3], generalized assignment problems [9] or machine learning
[14]. We refer also to [8] for a slightly different approach, where in the spirit of incremental
algorithms only the gradient of one of the component functions is evaluated in each step, but
gradients at old iterates are used for the other components. Both, subgradient algorithms and
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incremental methods usually require decreasing stepsizes in order to converge, which makes them
slow near an optimal solution. However, they provide in a very small number of iterations a
low accuracy optimal value and possess a rate of convergence which is almost independent of
the dimension of the problem. We refer the reader to [13] for a subgradient algorithm designed
for the minimization of a nonsmooth nonconvex function under the making use of proximal
subgradients.

When solving optimization problems of type (1) one might want to capture in the formulation
of the iterative scheme the geometry of the feasible set C. This can be done by a so-called mirror
map, that mirrors each iterate onto the feasible set. The Bregman distance associated with the
function that induces the mirror map plays an essential role in the convergence analysis and in
the formulation of convergence rates results (see [1,2]). So-called mirror descent algorithms were
first discussed in [10] and more recently in [2,11,15] in a very general framework, in [12,14] from
a statistical learning point of view, and in [5] for the case of dynamical systems. The mirror map
can be viewed as a generalization of the ordinary orthogonal projection on C in Hilbert spaces
(see Example 2.4), but allows also for a more careful consideration of the problems structure,
as it is the case when the objective function is subdifferentiable only on the relative interior
of the feasible set. In such a setting one can design a mirror map which maps not onto the
entire feasible set but only on a subset of it where the objective function is subdifferentiable (see
Example 2.5).

There exists already a rich literature on incremental algorithms dealing with similar prob-
lems. In [4,9] incremental subgradient methods with a random selection of the component func-
tions and even projections onto a feasible set are considered, but no mirror descent. Incremental
subgradient algorithms utilizing mirror descent techniques are investigated in [3], however there
an additional projection onto the feasible set is required which thus excludes the case where
domf 6⊇ C (this is taken care of in our case by the weak assumption that im(∇H∗) ⊆ domf).
Furthermore, the results appearing in Section 4 discussing Bregman proximal steps appear to
completely novel for this kind of problems and are only known from a forward-backward set-
ting [1].

The basic concepts in the formulation of mirror descent algorithms are recalled in Section
2. We also provide some illustrating examples, which present some special cases, as the general
setting might not be immediately intuitive. In Section 3 we formulate an incremental mirror
descent subgradient algorithm with random sweeping of the component functions which we show

to have a convergence rate of O
(

1√
k

)
in expectation for the kth best objective function value.

In Section 4 we ask additionally for differentiability of the function which induces the mirror
map and are then able to add another nonsmooth convex function to the objective function
which is evaluated in the iterative scheme by a proximal type step. For the resulting algorithm
we show a similar convergence result. In the last section we illustrate the theoretical findings
by numerical experiments in positron emission tomography and machine learning.

2 Elements of convex analysis and the mirror descent algorithm

Throughout the paper we assume that Rn is endowed with the Euclidean inner product 〈·, ·〉
and corresponding norm ‖·‖ =

√
〈·, ·〉. For a nonempty convex set C ⊆ Rn we denote by riC

its relative interior, which is the interior of C relative to its affine hull. For a convex function
f : Rn → R we denote by domf := {x ∈ Rn : f(x) < +∞} its effective domain and say
that f is proper, if f > −∞ and domf 6= ∅. The subdifferential of f at x ∈ Rn is defined
as ∂f(x) := {p ∈ Rn : f(y) ≥ f(x) + 〈p, y − x〉 ∀y ∈ Rn}, for f(x) ∈ R, and as ∂f(x) := ∅,
otherwise. We will write f ′(x) for an arbitrary subgradient, i.e. an element of the subdifferential
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∂f(x).

Problem 2.1. Consider the optimization problem

min
x∈C

f(x), (2)

where C ⊆ Rn is a nonempty, convex and closed set, f : Rn → R is a proper and convex function,
and H : Rn → R is a proper, lower semicontinuous and σ-strongly convex function such that
C = domH and im(∇H∗) ⊆ int(domf).

We say that H : Rn → R is σ-strongly convex for σ > 0, if for every x, x′ ∈ Rn and every
λ ∈ [0, 1] it holds σ

2λ(1 − λ)‖x − x′‖2+H(λx + (1 − λ)x′) ≤ λH(x) + (1 − λ)H(x′). It is well-
known that, when H is proper, lower semicontinuous and σ-strongly convex, then its conjugate
function H∗ : Rn → R, H∗(y) = supx∈Rn{〈y, x〉 − H(x)}, is Fréchet differentiable (thus it has
full domain) and its gradient ∇H∗ is 1

σ -Lipschitz continuous or, equivalently, H∗ is Fréchet
differentiable and its gradient ∇H∗ is σ-cocoercive, which means that for every y, y′ ∈ Rn it
holds σ‖∇H∗(y)−∇H∗(y′)‖2≤ 〈y−y′,∇H∗(y)−∇H∗(y′)〉. Recall that im(∇H∗) := {∇H∗(y) :
y ∈ Rn}.

The following mirror descent algorithm has been introduced in [11] under the name dual
averaging.

Algorithm 2.2. Consider for some initial values x0 ∈ int(domf), y0 ∈ Rn and sequence of
positive stepsizes (tk)k≥0 the following iterative scheme:

(∀k ≥ 0)

[
yk+1 = yk − tkf ′(xk)
xk+1 = ∇H∗(yk+1).

We notice that, since the sequence (xk)k≥0 is contained in the interior of the effective domain
of f , the algorithm is well-defined. The assumptions concerning the function H, which induces
the mirror map ∇H∗, are not consistent in the literature. Sometimes H is assumed to be a
Legendre function as in [1], or strongly convex and differentiable as in [2, 15]. In the following
section we will only assume that H is proper, lower semicontinuous and strongly convex.

Example 2.3. For H = 1
2‖·‖

2 we have that H∗ = 1
2‖·‖

2 and thus ∇H∗ is the identity operator
on Rn. Consequently, Algorithm 2.2 reduces to the classical subgradient method:

(∀k ≥ 0) xk+1 = xk − tkf ′(xk).

Example 2.4. For C ⊆ Rn a nonempty, convex and closed set, take H(x) = 1
2‖x‖

2, for x ∈ C,
and H(x) = +∞, otherwise. Then ∇H∗ = PC , where PC denotes the orthogonal projection onto
C. In this setting, Algorithm 2.2 becomes:

(∀k ≥ 0)

[
yk+1 = yk − tkf ′(xk)
xk+1 = PC(yk+1).

This iterative scheme is similar to, but different from the well-known subgradient projection
algorithm, which reads:

(∀k ≥ 0)

[
yk+1 = xk − tkf ′(xk)
xk+1 = PC(yk+1).

Example 2.5. When considering numerical experiments in positron emission tomography, one
often minimizes over the unit simplex ∆ := {x = (x1, . . . , xn)T ∈ Rn :

∑n
j=1 xj = 1, x ≥ 0}. An
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appropriate choice for the function H is H(x) =
∑n

j=1 xj log(xj) for x ∈ ∆, where 0 log(0) = 0,
and H(x) = +∞, if x /∈ ∆. In this case ∇H∗ is given for every y ∈ Rn by

∇H∗(y) =
1∑n

i=1 exp(yi)
(exp(y1), exp(y2), . . . , exp(yn))T ,

and maps into the relative interior of ∆.

The following result will play an important role in the convergence analysis that we will
carry out in the next sections.

Lemma 2.6. Let H : Rn → R be a proper, lower semicontinuous and σ-strongly convex function,
for σ > 0, x ∈ Rn and y ∈ ∂H(x). Then it holds

H(x) + 〈y, x′ − x〉+
σ

2
‖x′ − x‖2 ≤ H(x′) ∀x′ ∈ Rn.

Proof. The function H̃(·) := H(·)− σ
2 ‖·‖

2 is convex and y − σx ∈ ∂H̃(x). Thus

H̃(x) + 〈y − σx, x̃− x〉 ≤ H̃(x̃) ∀x̃ ∈ Rn

or, equivalently,

H(x)− σ

2
‖x‖2 + 〈y − σx, x̃− x〉 ≤ H(x̃)− σ

2
‖x̃‖2 ∀x̃ ∈ Rn.

Rearranging the terms, leads to the desired conclusion.

3 A stochastic incremental mirror descent algorithm

In this section we will address the following optimization problem.

Problem 3.1. Consider the optimization problem

min
x∈C

m∑
i=1

fi(x), (3)

where C ⊆ Rn is a nonempty, convex and closed set, for every i = 1, ...,m, the functions
fi : Rn 7→ R are proper and convex, and H : Rn → R is a proper, lower semicontinuous and
σ-strongly convex function such that C = domH and im(∇H∗) ⊆ int (∩mi=1domfi).

In this section we apply the dual averaging approach described in Algorithm 2.2 to the
optimization problem (3) by only using the subgradient of a component function at a time. This
incremental approach (see, also, [4, 9]) is similar to but slightly different from the extension
suggested in [2]. Furthermore, we introduce a stochastic sweeping of the component functions.
For a similar strategy, but in the random selection of coordinates we refer to [6].

Algorithm 3.2. Consider for some initial values x0 ∈ int (∩mi=1domfi) , ym,−1 ∈ Rn and se-
quence of positive stepsizes (tk)k≥0 the following iterative scheme:

(∀k ≥ 0)



ψ0,k = xk
y0,k = ym,k−1

for i = 1, . . . ,m

yi,k = yi−1,k − εi,k tkpi f
′
i(ψi−1,k)

ψi,k = ∇H∗(yi,k)
end
xk+1 = ψm,k,

where εi,k is a {0, 1} valued random variable for every i = 1, ...,m and k ≥ 0, such that εi,k is
independent of ψi−1,k and P(εi,k = 1) = pi for every i = 1, ...,m and k ≥ 0.
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One can notice that in the above iterative scheme yi,k ∈ ∂H(ψi,k) for every i = 1, ...,m and
k ≥ 0.

In the convergence analysis of Algorithm 3.2 we will make use of the following Bregman-
distance-like function associated to the proper and convex function H : Rn → R and defined
as

dH : Rn × domH × Rn → R, dH(x, y, z) := H(x)−H(y)− 〈z, x− y〉. (4)

We notice that dH(x, y, z) ≥ 0 for every (x, y) ∈ Rn × domH and every z ∈ ∂H(y), due to
subgradient inequality.

The function dH is an extension of the Bregman distance (see [1, 14, 15]), which is as-
sociated to a proper and convex function H : Rn → R fulfilling dom∇H := {x ∈ Rn :
H is differentiable at x} 6= ∅ and defined as

DH : Rn × dom∇H → R, DH(x, y) = H(x)−H(y)− 〈∇H(y), x− y〉. (5)

Theorem 3.3. In the setting of Problem 3.1, assume that the functions fi are Lfi-Lipschitz
continuous on im(∇H∗) for i = 1, ...,m. Let (xk)k≥0 be a sequence generated by Algorithm 3.2.
Then for every N ≥ 1 and every y ∈ Rn it holds

E

(
min

0≤k≤N−1

m∑
i=1

fi(xk)−
m∑
i=1

fi(y)

)
≤

dH(y, x0, y0,0) + 1
σ (
∑m

i=1 Lfi)
2

((∑m
i=1

1
p2i

)2
+ 1

)∑N−1
k=0 t2k∑N−1

k=0 tk
.

Proof. Let y ∈ ∩mi=1domfi ∩ domH be fixed. For y outside this set the conclusion follows
automatically.

For every i = 1, ...,m and every k ≥ 0 it holds

dH(y, ψi,k, yi,k) = H(y)−H(ψi,k)− 〈yi,k, y − ψi,k〉

= H(y)−H(ψi,k)−
〈
yi−1,k −

tk
pi
εi,kf

′
i(ψi−1,k), y − ψi,k

〉
.

Rearranging the terms, this yields for every i = 1, ...,m and every k ≥ 0 to

dH(y, ψi,k, yi,k) = dH(y, ψi−1,k, yi−1,k)− dH(ψi,k, ψi−1,k, yi−1,k) +
tk
pi
εi,k〈f ′i(ψi−1,k), y − ψi,k〉

= dH(y, ψi−1,k, yi−1,k)− dH(ψi,k, ψi−1,k, yi−1,k) +
tk
pi
εi,k〈f ′i(ψi−1,k), y − ψi−1,k〉

− tk
pi
εi,k〈f ′i(ψi−1,k), ψi,k − ψi−1,k〉

≤ dH(y, ψi−1,k, yi−1,k)− dH(ψi,k, ψi−1,k, yi−1,k) +
tk
pi
εi,k(fi(y)− fi(ψi−1,k))

+
tk
pi
εi,k‖f ′i(ψi−1,k)‖‖ψi−1,k − ψi,k‖.

From here we get for every i = 1, ...,m and every k ≥ 0

dH(y, ψi,k, yi,k) ≤ dH(y, ψi−1,k, yi−1,k)− dH(ψi,k, ψi−1,k, yi−1,k) +
tk
pi
εi,k(fi(y)− fi(ψi−1,k))

+
1

σ
t2k

1

p2
i

ε2i,k‖f ′i(ψi−1,k)‖2 +
σ

4
‖ψi−1,k − ψi,k‖2
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which, by using that H is σ-strongly convex and Lemma 2.6, yields

dH(y, ψi,k, yi,k) ≤ dH(y, ψi−1,k, yi−1,k)− dH(ψi,k, ψi−1,k, yi−1,k) +
tk
pi
εi,k(fi(y)− fi(ψi−1,k))

+
1

σ
t2k

1

p2
i

εi,k‖f ′i(ψi−1,k)‖2 +
1

2
dH(ψi,k, ψi−1,k, yi−1,k)

= dH(y, ψi−1,k, yi−1,k) +
tk
pi
εi,k(fi(y)− fi(ψi−1,k)) +

1

σ
t2k

1

p2
i

εi,k‖f ′i(ψi−1,k)‖2

− 1

2
dH(ψi,k, ψi−1,k, yi−1,k).

Using the fact that fi is Lfi-Lipschitz continuous, it follows that ‖f ′i(ψi−1,k)‖ ≤ Lfi , for every
i = 1, ...,m and every k ≥ 0, thus

dH(y, ψi,k, yi,k) ≤ dH(y, ψi−1,k, yi−1,k) +
tk
pi
εi,k(fi(y)− fi(ψi−1,k)) +

1

σ
t2k

1

p2
i

εi,kL
2
fi

− 1

2
dH(ψi,k, ψi−1,k, yi−1,k).

Since all the involved functions are measurable, we can take the expected value on both sides
of the above inequality and get due to the assumed independence of εi,k and ψi−1,k for every
i = 1, ...,m and every k ≥ 0

E (dH(y, ψi,k, yi,k)) ≤ E (dH(y, ψi−1,k, yi−1,k)) + E
(
tk
pi

(fi(y)− fi(ψi−1,k))

)
E(εi,k)

+
1

σ
t2k

1

p2
i

L2
fi
E(εi,k)− E

(
1

2
dH(ψi,k, ψi−1,k, yi−1,k)

)
.

Since E(εi,k) = pi, we get for every i = 1, ...,m and every k ≥ 0

E (dH(y, ψi,k, yi,k)) ≤ E (dH(y, ψi−1,k, yi−1,k)) + E (tk(fi(y)− fi(ψi−1,k)))

+
1

σ
t2k

1

pi
L2
fi
− E

(
1

2
dH(ψi,k, ψi−1,k, yi−1,k)

)
.

Summing the above inequality for i = 1, ...,m and using that

m∑
i=1

L2
fi

1

pi
≤

(
m∑
i=1

L4
fi

) 1
2
(

m∑
i=1

1

p2
i

) 1
2

≤

(
m∑
i=1

Lfi

)2( m∑
i=1

1

p2
i

) 1
2

,

it yields for every k ≥ 0

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + E

(
tk

m∑
i=1

(fi(y)− fi(ψi−1,k))

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2( m∑
i=1

1

p2
i

) 1
2

− E

(
m∑
i=1

1

2
dH(ψi,k, ψi−1,k, yi−1,k)

)
or, equivalently,

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + E

(
tk

m∑
i=1

(fi(y)− fi(xk) + fi(xk)− fi(ψi−1,k))

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2( m∑
i=1

1

p2
i

) 1
2

− E

(
m∑
i=1

1

2
dH(ψi,k, ψi−1,k, yi−1,k)

)
.

6



Thus, for every k ≥ 0,

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + tkE

(
m∑
i=1

fi(y)−
m∑
i=1

fi(xk)

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2( m∑
i=1

1

p2
i

) 1
2

− E

(
m∑
i=1

1

2
dH(ψi,k, ψi−1,k, yi−1,k)

)

+ E

(
tk

m∑
i=1

(fi(xk)− fi(ψi−1,k))

)
. (6)

On the other hand, by using the Lipschitz continuity of ∇H∗ it yields for every k ≥ 0

m∑
i=1

(fi(xk)− fi(ψi−1,k)) =

m∑
i=2

i−1∑
j=1

(fi(ψj−1,k)− fi(ψj,k))

≤
m∑
i=2

i−1∑
j=1

Lfi‖ψj−1,k − ψj,k‖ ≤

(
m∑
l=1

Lfl

)
m∑
i=2

‖ψi−1,k − ψi,k‖,

≤

(
m∑
l=1

Lfl

)
m∑
i=2

‖∇H∗(yi−1,k)−∇H∗(yi,k)‖

≤ 1

σ

(
m∑
l=1

Lfl

)
m∑
i=2

‖yi−1,k − yi,k‖

=
1

σ

(
m∑
l=1

Lfl

)
m∑
i=2

∥∥∥∥εi,k tkpi f ′i(ψi−1,k)

∥∥∥∥
≤ 1

σ
tk

(
m∑
l=1

Lfl

)(
m∑
i=1

εi,k
pi
Lfi

)
.

Therefore, for every k ≥ 0

E

(
tk

m∑
i=1

(fi(xk)− fi(ψi−1,k))

)
≤ 1

σ
t2k

(
m∑
l=1

Lfl

)
E

(
m∑
i=1

εi,k
pi
Lfi

)

≤ 1

σ
t2k

(
m∑
i=1

Lfi

)2

. (7)

Combining (6) and (7) gives for every k ≥ 0

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + tkE

(
m∑
i=1

fi(y)−
m∑
i=1

fi(xk)

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2( m∑
i=1

1

p2
i

) 1
2

− E

(
m∑
i=1

1

2
dH(ψi,k, ψi−1,k, yi−1,k)

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2

. (8)
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Since ψm,k = xk+1 and ym,k = y0,k+1 we get for every k ≥ 0 that

E(dH(y, xk+1, y0,k+1)) ≤ E(dH(y, xk, y0,k)) + tkE

(
m∑
i=1

fi(y)−
m∑
i=1

fi(xk)

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

)2

+ 1

 .

By summing up this inequality from k = 0 to N − 1, where N ≥ 1, we get

N−1∑
k=0

tkE

(
m∑
i=1

fi(xk)−
m∑
i=1

fi(y)

)
+ E(dH(y, xN , y0,N )) ≤

E(dH(y, x0, y0,0)) +

N−1∑
k=0

1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

)2

+ 1

 .

Since dH(y, xN , y0,N ) ≥ 0, as y0,N ∈ ∂H(xN ), we get

E

(
min

0≤k≤N−1

m∑
i=1

fi(xk)−
m∑
i=1

fi(y)

)
≤

dH(y, x0, y0,0) + 1
σ (
∑m

i=1 Lfi)
2

((∑m
i=1

1
p2i

)2
+ 1

)∑N−1
k=0 t2k∑N−1

k=0 tk

and this finishes the proof.

Remark 3.4. The set from which the variable y is chosen in the previous theorem might seems
to be restrictive, however, we would like to recall that in many applications domH is the set
of feasible solutions of the optimization problem (3). Since im(∇H∗) = dom∂H := {x ∈ Rn :
∂H(x) 6= ∅} ⊆ domH, the inequality in Theorem 3.3 is fulfilled for every y ∈ im(∇H∗).
Remark 3.5. Note furthermore that so far we have not made any assumptions about the stepsizes
in Theorem 3.3. It is however clear from the statement that in the case where y = x∗ for an
optimal solution x∗ and the stepsizes (tk)k∈N fulfill the classical condition that

∑∞
k=1 tk = +∞

and
∑∞

k=1 t
2
k < +∞ it follows that limN∈N E (min0≤k≤N−1

∑m
i=1 fi(xk)−

∑m
i=1 fi(x

∗)) = 0.

The optimal stepsize choice, which we provide in the following corollary, is a consequence
of [2, Proposition 4.1], which states that the function

z 7→ c+ (2σ)−1zTDz

bT z
,

where c > 0, b ∈ Rd++ := {(z1, ..., zd)
T ∈ Rd : zi > 0, i = 1, ..., d} and D ∈ Rd×d is a symmetric

positive definite matrix, attains its minimum on Rd++ at z∗ =
√

2cσ
bTD−1b

D−1b and this provides√
2c

σbTD−1b
as optimal objective value.

Corollary 3.6. In the setting of Problem 3.1, assume that the functions fi are Lfi-Lipschitz
continuous on im(∇H∗) for i = 1, ...,m. Let x∗ ∈ domH be an optimal solution of (3) and
(xk)k≥0 be a sequence generated by Algorithm 3.2 with optimal stepsize

tk :=
1∑m

i=1 Lfi

√√√√ dH(x∗, x0, y0,0)(∑m
i=1

1
p2i

)2
+ 1

1√
k
∀k ≥ 0.

8



Then for every N ≥ 1 it holds

E

(
min

0≤k≤N−1

m∑
i=1

fi(xk)−
m∑
i=1

fi(x
∗)

)
≤ 2

(
m∑
i=1

Lfi

)√√√√√dH(x∗, x0, y0,0)

((∑m
i=1

1
p2i

)2
+ 1

)
σ

1√
N
.

Remark 3.7. In the last step of the proof of Theorem 3.3 one could have chosen to use the
following inequality(

N−1∑
k=0

tk

)
E

(
m∑
i=1

fi

(∑N−1
k=0 tkxk∑N−1
k=0 tk

)
−

m∑
i=1

fi(y)

)
≤

N−1∑
k=0

tkE

(
m∑
i=1

fi(xk)−
m∑
i=1

fi(y)

)

given by the convexity of
∑m

i=1 fi(·) in order to prove convergence of the function values for the

ergodic sequence x̄k := 1∑k
i=0 ti

∑k
i=0 tixi for all k ≥ 0. This would lead for every N ≥ 1 and

every y ∈ Rn to

E

(
m∑
i=1

fi(x̄N−1)−
m∑
i=1

fi(y)

)
≤
dH(y, x0, y0,0) + 1

σ (
∑m

i=1 Lfi)
2

((∑m
i=1

1
p2i

)2
+ 1

)∑N−1
k=0 t2k∑N−1

k=0 tk

and for the optimal stepsize choice from Corollary 3.6 to

E

(
m∑
i=1

fi(x̄N−1)−
m∑
i=1

fi(y)

)
≤ 2

(
m∑
i=1

Lfi

)√√√√√dH(x∗, x0, y0,0)

((∑m
i=1

1
p2i

)2
+ 1

)
σ

1√
N
,

and might be beneficial, as it does not require the computation of objective function values,
which are by our implicit assumption of m being large expensive to compute.

4 A stochastic incremental mirror descent algorithm with Breg-
man proximal step

In this section we add another nonsmooth convex function to the objective function of the opti-
mization problem (3) and provide an extension of Algorithm 3.2, which evaluates in particular
the new summand by a proximal type step. However, this asks for supplementary differentia-
bility assumption on the function inducing the mirror map.

Problem 4.1. Consider the optimization problem

min
x∈C

m∑
i=1

fi(x) + g(x) (9)

where C ⊆ Rn is a nonempty, convex and closed set, for every i = 1, ...,m, the functions
fi : Rn → R are proper and convex and g : Rn → R is a proper, convex and lower semicon-
tinuous function, and H : Rm → R is a proper, σ-strongly convex and lower semicontinuous
function such that C = domH, H is continuously differentiable on int(domH), im(∇H∗) ⊆
int (∩mi=1domfi) ∩ int(domH) and int(domH) ∩ domg 6= ∅.

9



For a proper, convex, lower semicontinuous function h : Rn → R we define its Bregman-
proximal operator with respect to the proper, σ-strongly convex and lower semicontinuous func-
tion H : Rn → R as being

proxHh : dom∇H → Rn, proxHh (x) := arg min
u∈Rn

{h(u) +DH(u, x)} .

Due to the strong convexity of H, the Bregman-proximal operator is well-defined. For H = 1
2‖·‖

2

it coincides with the classical proximal operator.
We are now in the position to formulate the iterative scheme we would like to propose for

solving (9). In case g = 0, this algorithm gives exactly the incremental version of the iterative
method in [2], actually suggested by the two authors in this paper.

Algorithm 4.2. Consider for some initial value x0 ∈ im(∇H∗) and sequence of positive step-
sizes (tk)k≥0 the following iterative scheme:

(∀k ≥ 0)


ψ0,k = xk
for i = 1, . . . ,m

ψi,k = ∇H∗(∇H(ψi−1,k)− εi,k tkpi f
′
i(ψi−1,k))

end
xk+1 = proxHtkg(ψm,k),

where εi,k is a {0, 1} valued random variable for every i = 1, ...,m and k ≥ 0, such that εi,k is
independent from ψi−1,k and P(εi,k = 1) = pi for every i = 1, ...,m and k ≥ 0.

Lemma 4.3. In the setting of Problem 4.1, Algorithm 4.2 is well-defined.

Proof. As im(∇H∗) ⊆ int (∩mi=1domfi), it follows for every i = 2, ...,m and every k ≥ 0 imme-
diately that ψi−1,k ∈ int domfi, thus a subgradient of fi at ψi−1,k exists.

In what follows we prove that this is the case also for ψ0,k, for every k ≥ 0. To this aim it
is enough to show that xk ∈ im(∇H∗) for every k ≥ 0. For k = 0 this statement is true by the
choice of the initial value. For every k ≥ 0 we have that

0 ∈ ∂ (tkg +H − 〈∇H(ψm,k), ·〉) (xk+1),

which, according to int(domH) ∩ domg 6= ∅, is equivalent to

0 ∈ tk∂g(xk+1) + ∂H(xk+1)−∇H(ψm,k).

Thus xk+1 ∈ dom∂H = im(∇H∗) for every k ≥ 0 and this concludes the proof.

Example 4.4. Consider the case when m = 1, ε1,k = 1 for every k ≥ 0 and H(x) = 1
2‖x‖

2 for
x ∈ C, while H(x) = +∞ for x /∈ C, where C ⊆ Rn is a nonempty, convex and closed set. In
this setting, ∇H∗ is equal to the orthogonal projection PC onto the set C. Algorithm 4.2 yields
the following iterative scheme, which basically minimizes the sum f1 + g over the set C:

(∀k ≥ 0) xk+1 = proxHtkg(PC(xk − tkf ′1(xk))). (10)

The difficulty in Example 4.4, assuming that it is reasonably possible to project onto the set C,
lies in evaluating proxHtkg, for every k ≥ 0, as this itself is a constraint optimization problem

proxHtkg(x) = arg min
u∈C

{
tkg(u) +

1

2
‖x− u‖2

}
.

When C = Rn, the iterative scheme (10) becomes the proximal subgradient algorithm investigated
in [7].
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Theorem 4.5. In the setting of Problem 4.1, assume that the functions fi are Lfi-Lipschitz
continuous on im(∇H∗) for i = 1, ...,m. Let (xk)k≥0 be a sequence generated by Algorithm 4.2.
Then for every N ≥ 1 and every y ∈ Rn it holds

E

(
min

0≤k≤N−1

(
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
≤

2σDH(y, x0) +

(
2
(∑m

i=1
1
p2i

) 1
2

+ 3 + 2m

)
(
∑m

i=1 Lfi)
2∑N−1

k=0 t2k

2σ
∑N−1

k=0 tk
.

Proof. Let y ∈ ∩mi=1domfi∩domg∩domH be fixed. For y outside this set the conclusion follows
automatically.

As in the first part of the proof of Theorem 3.3, we obtain instead of (8) the following
inequality which holds for every i = 1, ...,m and every k ≥ 0

E (DH(y, ψm,k)) ≤ E(DH(y, xk)) + tkE

(
m∑
i=1

fi(y)−
m∑
i=1

fi(xk)

)

+
1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

) 1
2

+ 1

− E

(
m∑
i=1

1

2
DH(ψi,k, ψi−1,k)

)
. (11)

As pointed out in the proof of Lemma 4.3, for every k ≥ 0 we have

0 ∈ tk∂g(xk+1) +∇H(xk+1)−∇H(ψm,k),

thus
tk(g(y)− g(xk+1)) ≥ 〈∇H(ψm,k)−∇H(xk+1), y − xk+1〉 .

The three point identity leads to

tk(g(y)− g(xk+1)) ≥ −(DH(y, ψm,k)−DH(y, xk+1)−DH(xk+1, ψm,k))

or, equivalently,

tk(g(xk+1)− g(y)) +DH(y, xk+1) ≤ DH(y, ψm,k)−DH(xk+1, ψm,k)

for every k ≥ 0. Since the involved functions are measurable, we can take the expected value on
both sides and obtain for every k ≥ 0

tkE((g(xk+1)− g(y))) + E(DH(y, xk+1)) ≤ E(DH(y, ψm,k))− E(DH(xk+1, ψm,k)). (12)

Combining (11) and (12) gives for every k ≥ 0

tkE((g(xk+1)− g(y))) + tkE

(
m∑
i=1

fi(xk)−
m∑
i=1

fi(y)

)
+ E(DH(y, xk+1)) ≤

E(DH(y, xk)) +
1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

) 1
2

+ 1


− E(DH(xk+1, ψm,k))−

m∑
i=1

1

2
E (DH(ψi,k, ψi−1,k)) .
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By adding and subtracting E (
∑m

i=1 fi(xk+1)) and by using afterwards the Lipschitz continuity
of
∑m

i=1 fi, we get for every k ≥ 0

tkE

((
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)

−tk

(
m∑
i=1

Lfi

)
E(‖xk − xk+1‖) + E(DH(y, xk+1)) ≤

E (DH(y, xk)) +
1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

) 1
2

+ 1


−E (DH(xk+1, ψm,k))−

m∑
i=1

1

2
E (DH(ψi,k, ψi−1,k)) .

By the triangle inequality we obtain for every k ≥ 0

tkE

((
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xk+1)) ≤

E(DH(y, xk)) +
1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

) 1
2

+ 1

− E(DH(xk+1, ψm,k))

+ tk

(
m∑
i=1

Lfi

)
E(‖xk − ψm,k‖) + tk

(
m∑
i=1

Lfi

)
E(‖ψm,k − xk+1‖)−

m∑
i=1

1

2
E (DH(ψi,k, ψi−1,k)) ,

which, due to Young’s inequality and the strong convexity of H, leads to

tkE

((
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xk+1)) ≤

E(DH(y, xk)) +
1

σ
t2k

(
m∑
i=1

Lfi

)2
( m∑

i=1

1

p2
i

) 1
2

+ 1

− E(DH(xk+1, ψm,k))

+ tk

(
m∑
i=1

Lfi

)
E(‖xk − ψm,k‖) +

1

2σ
t2k

(
m∑
i=1

Lfi

)2

+ E(DH(xk+1, ψm,k))−
m∑
i=1

1

2
E (DH(ψi,k, ψi−1,k)) .

Since

‖xk − ψm,k‖ =

∥∥∥∥∥
m∑
i=1

(ψi−1,k − ψi,k)

∥∥∥∥∥ ≤
m∑
i=1

‖ψi−1,k − ψi,k‖,
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we get for every k ≥ 0 that

tkE

((
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xk+1)) ≤

E(DH(y, xk)) +
1

2σ
t2k

(
m∑
i=1

Lfi

)2
2

(
m∑
i=1

1

p2
i

) 1
2

+ 3


+ tk

(
m∑
i=1

Lfi

)
E

(
m∑
i=1

‖ψi−1,k − ψi,k‖

)
−

m∑
i=1

1

2
E (DH(ψi,k, ψi−1,k)) .

Young’s inequality and the strong convexity of H imply that for every i = 1, ...,m and every
k ≥ 0

tk

(
m∑
i=1

Lfi

)
‖ψi−1,k − ψi,k‖ ≤

1

σ
t2k

(
m∑
i=1

Lfi

)2

+
σ

4
‖ψi−1,k − ψi,k‖2

≤ 1

σ
t2k

(
m∑
i=1

Lfi

)2

+
1

2
DH(ψi,k, ψi−1,k)

and thus

tkE

((
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xk+1)) ≤

E(DH(y, xk)) +
1

2σ
t2k

(
m∑
i=1

Lfi

)2
2

(
m∑
i=1

1

p2
i

) 1
2

+ 3 + 2m

 .

Summing up this inequality from k = 0 to N − 1, for N ≥ 1, we get

N−1∑
k=0

tkE

((
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xN )) ≤

E(DH(y, x0)) +
1

2σ

(
m∑
i=1

Lfi

)2
2

(
m∑
i=1

1

p2
i

) 1
2

+ 3 + 2m

N−1∑
k=0

t2k.

This shows that

E

(
min

0≤k≤N−1

(
m∑
i=1

fi + g

)
(xk+1)−

(
m∑
i=1

fi + g

)
(y)

)
≤

2σDH(y, x0) +

(
2
(∑m

i=1
1
p2i

) 1
2

+ 3 + 2m

)
(
∑m

i=1 Lfi)
2∑N−1

k=0 t2k

2σ
∑N−1

k=0 tk

and therefore finishes the proof.

The following result is again a consequence of [2, Proposition 4.1].
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Corollary 4.6. In the setting Problem 4.1, assume that the functions fi are Lfi-Lipschitz con-
tinuous on im(∇H∗) for i = 1, ...,m. Let x∗ ∈ domH be an optimal solution of (9) and (xk)k≥0

be a sequence generated by Algorithm 4.2 with optimal stepsize

tk :=
1∑m

i=1 Lfi

√√√√ 2DH(x∗, x0)

2
(∑m

i=1
1
p2i

)2
+ 3 + 2m

1√
k
∀k ≥ 0.

Then for every N ≥ 1 it holds

E

(
min

0≤k≤N−1

(
m∑
i=1

fi + g

)
(xk)−

(
m∑
i=1

fi + g

)
(x∗)

)
≤

(
m∑
i=1

Lfi

)√√√√√2DH(x∗, x0)

(
2
(∑m

i=1
1
p2i

)2
+ 3 + 2m

)
σ

1√
N
.

Remark 4.7. The same considerations as in Remark 3.7 about ergodic convergence are applicable
also for the rates provided in Theorem 4.5 and Corollary 4.6.

Remark 4.8. Note the straightforward dependence of the optimal stepsizes as well as the right
hand side of the convergence statement on the data, i.e. the distance of the initial point to
optimality, the Lipschitz constants Lfi and the probabilities pi. This backs up the intuition that
the decreased gradient evaluation, i.e. smaller pi, does not come for free but at the cost of a
worse constant in the convergence rate.

5 Applications

In the numerical experiments carried out in this section we will compare three versions of the
provided algorithms. First of all, the non-incremental version, which takes full subgradient steps
with respect to the sum of all component functions instead of every single one individually. This
can be viewed as a special case of the algorithms given, when m = 1 and ε1,k = 1 for all k ≥ 0.
Secondly, we discuss the non-stochastic incremental version, which uses the subgradient of every
single component function in every iteration and thus corresponds to the case when εi,k = 1 for
every i = 1, ...,m and every k ≥ 0. Lastly, we apply the algorithms as intended by evaluating the
subgradients of the respective component functions incrementally with a probability different
from 1.

5.1 Tomography

This application can be found in [3] and arises in the reconstruction of images in positron
emission tomography (PET). We consider the following problem

min
x∈∆

−
m∑
i=1

yi log

 n∑
j=1

rijxj

 , (13)

where ∆ :=
{
x ∈ Rn :

∑n
j=1 xj = 1, x ≥ 0

}
and rij denotes for i = 1, ...,m and j = 1, ..., n the

entry of the matrix R ∈ Rm×n in the i-th row and j-th column and all of these are assumed
to be strictly positive. Furthermore, yi denotes for i = 1, ...,m the positive number of photons
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Figure 1: Results for the optimization problem (13). A plot of fN−f(xbest)
f(x0)−f(xbest)

, where fN :=

min0≤k≤N f(xk), as a function of time, i.e. xN is the last iterate computed before a given point
in time.

NI DI SI

n = 104,
m = 3n

pi = 0.003,∀i

decrease obj.fun.val. [%] 0.066 0.032 0.15
# outer loops 10 1 63
# subgrad. evaluations 300000 6939 6216

n = 103,
m = 6n

pi = 0.0016,∀i

decrease in obj.fun.val. [%] 0.196 0.515 0.671
# outer loops 71 8 1769
# subgrad. evaluations 426000 47435 17734

Table 1: Results for the optimization problem (13), where NI denotes the non-incremental, DI
the deterministic incremental and SI the stochastic incremental version of Algorithm 3.2.

measured in the i-th bin. As discussed in Example 2.5 this can be incorporated into our frame-
work with the mirror map H(x) =

∑n
i=1 xi log(xi) for x ∈ ∆ and H(x) = +∞, otherwise. As

initial value we use the all ones vector divided by the dimension n.
We also want to point out that a similar example given in [2] in which the minimization

of a convex function over the unit simplex ∆ somehow does not match the assumption made
throughout the paper as the interior of ∆ is empty and the function H can therefore not be
continuously differentiable in a classical sense. However, with the setting of Section 3 we are
able to tackle this problem.

The bad performance, see Figure 1, of the deterministic incremental version of Algorithm 3.2
can be explained by the fact that many more evaluations of the mirror map are needed, which
increases the overall computation time dramatically. The stochastic version, however, performs
rather well, after only evaluating merely roughly a fifth of the total number of component
functions, see Table 1.

5.2 Support Vector Machines

We deal with the classic machine learning problem of binary classification based on the well-
known MNIST dataset, which contains 28 by 28 images of handwritten numbers on a grey-scale
pixel map. For each of the digits the dataset comprises around 6000 training images and roughly
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Figure 2: Numerical results for the optimization problem (14) with λ = 0.01. The plot shows
min0≤k≤N f(xk) as a function of time, i.e. xN is the last iterate computed before a given point
in time.

1000 test images. In line with [14], we train a classifier to distinguish the numbers 6 and 7, by
solving the following optimization problem

min
w∈R784

m∑
i=1

max{0, 1− yi〈w, xi〉}+ λ‖w‖1, (14)

where, for i = 1, ...,m, xi ∈ {0, 1, . . . , 255}784 denotes the i-th training image and yi ∈ {−1, 1}
denotes the label of the i-th training image. The 1-norm serves as a regularization term and
λ > 0 balances the two objectives of minimizing the classification error and reducing the 1-
norm of the classifier w. To incorporate this problem into our framework, we set H = 1

2‖·‖
2

which leaves us with the identity as mirror map as this problem is unconstrained. The results
comparing the three versions of Algorithm 4.2 discussed in the beginning of this section are
illustrated in Figure 2. As initial value we simply use the all ones vector. All three versions
show classical first-order behaviour, giving a fast decrease in objective function value first but
then slowing down dramatically. More information about the performance can be seen in Table
2. All three algorithms results in a significant decrease in objective function after being run for
only 4 seconds each. However, from a machine learning point of view, only the misclassification
rate is of actual importance. In both regards, the stochastic incremental version clearly trumps
the other two implementations. It is also interesting to note that it needs only a small fraction
of the number of subgradient evaluations in comparison to the full non-incremental algorithm.

6 Conclusion

In this paper we present two algorithms to solve nonsmooth convex optimization problems
where the objective function is a sum of many functions which are evaluated by their respective
subgradients under the implicit presence of a constraint set which is dealt with by a so-called
mirror map. By allowing for a random selection of each component function to evaluate in each
iteration, the proposed methods become suitable even for very large-scale problems. We prove a

convergence order of O
(

1√
k

)
in expectation for the kth best objective function value, which is

standard for subgradient methods. However, even for the case where all the objective functions
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NI DI SI

λ = 0.01

decrease in obj.fun.val. [%] 99.735 99.958 99.99
#outer loops 83 16 370
#subgrad. evaluations 999006 179531 36962
misclassified[%] 1.057 0.856 0.604

λ = 0.001

decrease obj.fun.val. [%] 99.728 99.958 99.985
#iter 75 15 336
#subgrad. eval. 913725 179320 33777
misclassified[%] 1.007 0.856 0.403

Table 2: Numerical results for the optimization problem (14), where NI denotes the non-
incremental, DI the deterministic incremental and SI the stochastic incremental version of Algo-
rithm 4.2. The computation for different regularization parameters λ show similar performances
of the algorithms, but a lower misclassification rate for the lower value.

are differentiable it is not clear if better theoretical estimates can be achieved, due to the need
of using diminishing stepsizes in order to obtain convergence in incremental algorithms. Future
work could comprise the investigation of different stepsizes, such as constant or dynamic stepsizes
as in [9]. Another possible extension of this would be to use different selection procedures such
as random subsets of fixed size. Our framework, however, does not provide the right setting for
such a batch approach as it would leave εi,k and εj,k dependent.
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