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Abstract. We propose a proximal algorithm for minimizing objective functions consisting of three summands: the com-
position of a nonsmooth function with a linear operator, another nonsmooth function, each of the nonsmooth summands
depending on an independent block variable, and a smooth function which couples the two block variables. The algorithm
is a full splitting method, which means that the nonsmooth functions are processed via their proximal operators, the smooth
function via gradient steps, and the linear operator via matrix times vector multiplication. We provide sufficient conditions for
the boundedness of the generated sequence and prove that any cluster point of the latter is a KKT point of the minimization
problem. In the setting of the Kurdyka-Lojasiewicz property we show global convergence, and derive convergence rates for the
iterates in terms of the Lojasiewicz exponent.
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1. Introduction.

1.1. Problem formulation and motivation. In this paper we propose a full splitting algorithm for
solving nonconvex and nonsmooth problems of the form

(L1) L mn (P (Ar) 4 G () + H (r.0)

where F: RP - Ru {400} and G: R? —» Ru {+0o0} are proper and lower semicontinuous functions, H: R™ x
R? — R is a Fréchet differentiable function with Lipschitz continuous gradient, and A: R™ — RP is a linear
operator. It is noticeable that neither for the nonsmooth nor for the smooth functions convexity is assumed.

In case m = p and A is the identity operator, Bolte, Sabach and Teboulle formulated in [12], also in
the nonconvex setting, a proximal alternating linearization method (PALM) for solving (1.1). PALM is a
proximally regularized variant of the Gauss-Seidel alternating minimization scheme and it basically consists
of two proximal-gradient steps. It had a significant impact in the optimization community, as it can be
used to solve a large variety of nonconvex and nonsmooth problems arising in applications such as: matrix
factorization, image deblurring and denoising, the feasibility problem, compressed sensing, etc. An inertial
version of PALM has been proposed by Pock and Sabach in [26].

A naive approach of PALM for solving (1.1) would require the calculation of the proximal operator
of the function F' o A, for which, in general, even in the convex case, a closed formula is not available.
In the last decade, an impressive progress has been made in the field of primal-dual/proximal ADMM
algorithms, designed to solve convex optimization problems involving compositions with linear operators
in the spirit of the full splitting paradigm. One of the pillars of this development is the conjugate duality
theory which is available for convex optimization problems. In addition, several fundamental algorithms,
like the proximal method, the forward-backward splitting method, the regularized Gauss-Seidel method, the
proximal alternating method, the forward-backward-forward method, and some of their inertial variants have
been exported from the convex to the nonconvex setting and proved to convergence globally in the setting
of the Kurdyka-Lojasiewicz property (see, for instance, [1, 2, 3, 12, 6, 7]). However, a similar undertaking
for structured optimization problems, such as those which involve compositions with linear operators and
require for primal-dual methods with a full-splitting character, was by now not very successful. The main
reason for that is the absence in the nonconvex setting of a correspondent for the convex conjugate duality
theory.
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Despite these premises we succeed to provide in this paper a full splitting algorithm for solving the
nonconvex and nonsmooth problem (1.1); more precisely, the nonsmooth functions are processed via their
proximal operators, the smooth function via gradient steps, and the linear operator via matrix times vector
multiplication. The convergence analysis is based on a descent inequality, which we prove for a regularization
of the augmented Lagrangian Lg : R x R? x R? x R? — R u {400}

Lg(z,y,2,u) =F(z)+G(y)+H(x,y)+<u,Axfz>+§||Axfz|\2,ﬁ>(),

associated with problem (1.1). This is obtained by an appropriate tuning of the parameters involved in the
description of the algorithm. In addition, we provide sufficient conditions in terms of the input functions
F,G and H for the boundedness of the generated sequence of iterates. We also show that any cluster point
of this sequence is a KKT point of the optimization problem (1.1). By assuming that the above-mentioned
regularization of the augmented Lagrangian satisfies the Kurdyka-Lojasiewicz property, we prove global
convergence. If this function satisfies the Lojasiewicz property, then we can even derive convergence rates
for the sequence of iterates formulated in terms of the Lojasiewicz exponent. For similar approaches based on
the use of the Kurdyka-Lojasiewicz property in the proof of the global convergence of nonconvex optimization
algorithms we refer to the papers of Attouch and Bolte [1], Attouch, Bolte and Svaiter [3], and Bolte, Sabach
and Teboulle [12].

One of the benefits which comes with the new algorithm is that furnishes a full splitting iterative scheme
for the nonsmooth and nonconvex optimization problem

(1.2) min {F (Az) + H (x)},

reR™

which follows as a particular case of (1.1) for G(y) = 0 and H(x,y) = H(z) for any (z,y) € R™ x R?, where
H :R™ — R is a Fréchet differentiable function with Lipschitz continuous gradient.

In the last years, several articles have been devoted to the design and convergence analysis of algorithms
for solving structured optimization problems in the nonconvex and nosmooth setting. They all focus on
algorithms relying on the alternating direction method of multipliers (ADMM), which is well-known not
to be a full splitting algorithm. Nonconvex ADMM algorithms for (1.2) have been proposed in [22], under
the assumption that H is twice continuously differentiable with bounded Hessian, and in [30], under the
assumption that one of the summands is convex and continuous on its effective domain. In [29], a general
nonconvex optimization problem involving compositions with linear operators and smooth coupling func-
tions is considered and the importance of providing sufficient conditions for the boundedness of the iterates
generated by the proposed nonconvex ADMM algorithm is recognized. This is achieved by assuming that
the objective function is continuous and coercive over the feasible set, while its nonsmooth part is either
restricted prox-regular or piecewise linear. Similar ingredients are used in [23] in the convergence analysis
of a nonconvex linearized ADMM algorithm. In [17], the ADMM technique is used to minimize the sum
of finitely many smooth nonconvex functions and a nonsmooth convex function, by reformulating it as a
general consensus problem. In [28], a multi-block Bregman ADMM algorithm is proposed and analyzed in a
setting based on restrictive strong convexity assumptions. On the other hand, in [18], two proximal variants
of the ADMM algorithm are introduced and the analyis is focused on providing iteration complexity bounds
to reach an e-KKT solutions.

We would like to mention in this context also the recent publication [13] for the case when A is replaced
by a nonlinear continuously differentiable operator.

1.2. Notations and preliminaries. Every space R?, where d is a positive integer, is assumed to be

equipped with the Euclidean inner product {-,-) and associated norm |-|| = 1/{:,-). The Cartesian product
R4 x R% x ... x R% of the Euclidean spaces R%,i = 1,....k, will be endowed with inner product and
associated norm defined for = := (xq,...,2%),y:= (Y1,...,yx) € R x R% x ... x R%* by

k k
<<m,y>>zz<xi,yi> and ]| = ZH%IR
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respectively. For every x := (z1,...,2;) € R x R% x ... x R% we have

k

k k
1 2
(1.3) —= Dzl < |ll=ll| = ™ < ), llwill-

1=

Let ¢: R? — R U {4} be a proper and lower semicontinuous function and z an element of its effective
domain domy) := {y eRe: 9y (y) < +oo}. The Fréchet (viscosity) subdifferential of ¢ at x is

éw(z) = {dERd: liminfw(y) —v@-dy-w > 0}

v ly — =]

and the limiting (Mordukhovich) subdifferential of ¢ at x is

o (z) := {d € R?: exist sequences z,, — z and d,, — d as n — +o©

such that ¢ (z,) —> ¢ (v) asn — +w and d,, € o (xy,) for any n > 0}.

For x ¢ dom), we set 51/) () =0v (z) = .
The inclusion d¢ (x) < 1 (z) holds for each x € RY. If ¢ is convex, then the two subdifferentials coincide
with the convex subdifferential of v, thus

o (z) = o (z) = {deR: ¢ (y) = ¢ (z) +{d,y — z) Yy e R} for any x e R%

If # € R? is a local minimum of 1, then 0 € 0¢ (z). We denote by crit () := {z € RY: 0 € d¢p (x)} the set
of critical points of ¥. The limiting subdifferential fulfils the following closedness criterion: if {x,},-, and
{dn}, >0 are sequence in R? such that d,, € 0v (x,) for any n = 0 and (2, dyn) — (,d) and ¢ (z,) — 9 (z) as
n — +0, then d € 0y (z). We also have the following subdifferential sum formula (see [24, Proposition 1.107],
[27, Exercise 8.8]): if ®: R? — R is a continuously differentiable function, then @ (¢ + ¢) (z) = v ()+Vé (z)
for any x € R?; and a formula for the subdifferential of the composition of ) with a linear operator A: RF —
R (see [24, Proposition 1.112], [27, Exercise 10.7]): if A is injective, then ¢ (¢ o A) (z) = AT (Az) for any
x € RF,

The following proposition collects some important properties of a (not necessarily convex) Fréchet differ-
entiable function with Lipschitz continuous gradient. For the proof of this result we refer to [8, Proposition
1].

PROPOSITION 1.1. Let ¢: R4 — R be Fréchet differentiable such that its gradient is Lipschitz continuous
with constant £ > 0. Then the following statements are true:

1. For every z,y € R and every z € [z,y] = {(1 —t)z + ty: t € [0,1]} it holds

(1.4 V) < (@) + T )y =)+ 5 ly el

2. For any vy € R\ {0} it holds

(15) nf, {0~ (2 55 ) IVe @I*} = it 0 ).

zeR4

The Descent Lemma, which says that for a Fréchet differentiable function ¢: R* — R having a Lipschitz
continuous gradient with constant ¢ > 0 it holds

/

follows from (1.4) for z := x.
In addition, by taking in (1.4) z := y we obtain

14
V(@) 20 W)+ V@) -y gz —yl* VeyeR”
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1
This is equivalent to the fact that ¥ + 3 || is a convex function, which is the same with ) is f-semiconvex

([11]). In other words, a consequence of Proposition (1.1) is, that a Fréchet differentiable function with
£-Lipschitz continuous gradient is /-semiconvex.

We close ths introductory section by presenting two convergence results for real sequences that will be
used in the sequel in the convergence analysis. The following lemma is useful when proving convergence of
numerical algorithms relying on Fejér monotonicity techniques (see, for instance, [6, Lemma 2.2], [7, Lemma

2]).
LEMMA 1.2. Let {€n},5o be a sequence of real numbers and {wn},~, a sequence of real nonnegative
numbers. Assume that {£,},,~ is bounded from below and that for any n =0

£n+1 + Wy, < §n

Then the following statements hold:
L. the sequence {wn}, - is summable, namely Z Wy < +00;
n=0
2. the sequence {§,.},,~ is monotonically decreasing and convergent.

The following lemma can be found in [6, Lemma 2.3] (see, also [7, Lemma 3]).

LEMMA 1.3. Let {an},~q and {b,}, -, be sequences of real nonnegative numbers such that for any n > 1
(1.6) Ont1 < X0an + X10n—1 + b,
where xo € R and x1 = 0 fulfill xo + x1 <1, and Z b, < 400. Then 2 ap < +00.
n=1 n=0
2. The algorithm. The numerical algorithm we propose for solving (1.1) has the following formulation.

ALGORITHM 2.1. Let u, 8,7 >0 and 0 < o < 1. For a given starting point (xo, Yo, 20, uo) € R™ x R? x
R? x RP generate the sequence {(Zn,Yn, vaun)}nzo for any n = 0 as follows

. H . 2
(2.1a) Yn+1 € arg D {G (y) +<{VyH (Zn,yn) ,y) + 5 ly — ynll }
(2.1b) Zn+1 € arg m}%@n {F (2) + (up, Azy, — 2) + g |Az,, — z||2}
ZERP
(2.1c) Tpg1 = Ty — T 1 (VoH (T, yn+1) + ATu, + BAT (Ax,, — Zn+1))
(21d) Up+4+1 = Up + O'B (Axn+1 - Zn+1) .

The proximal point operator with parameter v > 0 (see [25]) of a proper and lower semicontinuous function
P: R — R U {+00} is the set-valued operator defined as

1
proc, < &Y 2, pro,, (2) = argin {0 ) + - o <o}

Exact formulas for the proximal operator are available not only for large classes of convex functions ([4, 5, 14]),
but also for various nonconvex functions ([2, 15, 21]). In view of the above definition, the iterative scheme
(2.1a) - (2.1d) reads for every n > 0

Yn+1 € ProX, 14 (yn - ﬂilvyH (xnayn))

Znt1 € proxXg-ip (Az, + 87 uy)

Tog1 =2 — T (Vo (T, Yni1) + ATuy + BAT (Azy, — 2041))
Unt1 = Up + 0B (ATny1 — 2ng1) -

One can notice the full splitting character of Algorithm 2.1 and also that the first two steps can be performed
in parallel.
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Remark 2.2. 1. In case G(y) = 0 and H(z,y) = H(z) for any (z,y) € R™ xRY, where H : R™ — R
is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm 2.1 gives rise to
an iterative scheme for solving (1.2) (see also [8]) that reads for any n > 0

Zn41 € PrOXg-1p (Axn + 5_1un)
Tpgl i= Ty —T ° (VH (z,) + AT, + BAT (Az, — zn+1))
Up+1 = Up + O'B (Axn-‘rl - Zn+1) .

2. In case m = p and A = Id is the identity operator on R Algorithm 2.1 gives rise to an iterative
scheme for solving

(2.2) min  {F(2) + G (y) + H (z,9)},

(z,y)eR™ x R4

which reads for any n > 0

Yn+1 € ProX, 14 (yn - ,U/_lVyH (xnayn))

Zny1 € ProXg-1p (a:n + 5_1un)

T+l = Tp — ! (va (zna yn+1) +up + 8 (In - Zn+1))

Up+1 = Up + O-ﬂ (xn-kl - Zn+1) .
We notice that, similar to PALM ([12]), which is also designed to solve optimization problems of the
form (2.2), the algorithm evaluates F' and G by proximal steps, while H is evaluated by gradient
steps for each of the two blocks.

3. Incase m =p, A=1d, F(z) =0 and H(z,y) = H(y) for any (z,y) € R™ x R?, where H : R? - R

is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm 2.1 gives rise to
an iterative scheme for solving

(2.3) min {G(y) + H (y)},

yeRa

which reads for any n > 0

Yn+1 € ProxX, 1 (yn — 1~ ' VH(yn))

and is nothing else than the proximal-gradient method. An inertial version of the proximal-gradient
method for solving (2.3) in the fully nonconvex setting has been considered in [7].

2.1. A descent inequality. We will start with the convergence analysis of Algorithm (2.1) by proving
a descent inequality, which will play a fundamental role in our investigations. We will analyse Algorithm
(2.1) under the following assumptions, which we will be later even weakened.

ASSUMPTION 2.3. 1. the functions F,G and H are bounded from below;
2. the linear operator A is surjective;
3. for any fized y € R? there exists £1(y) = 0 such that

(2.4a) |VaH (z,y) = Vo H (&', y) || < 01 (y) ||o — 2| Vz,x' € R™,

and for any fized x € R™ there exist {2(x),l5(x) = 0 such that

(2.4b) |VyH (z,y) = VyH (2,9)|| < L2 (@) [y —¢/||  Vy,0/ €RY,
(2.4c) |VoH (z,y) = Vo H (2,9)]| < 3 (2) ||y — /|| Yy, 1y € RY;
4. there exist £; + > 0,1 =1,2,3, such that
(2.5) sup 41 (yn) < 414, sup lo (x,) < lo 4, sup ls () < {3 +.
n=0 n=0 n=0

Remark 2.4. Some comments on Assumption 2.3 are in order.
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1. Assumption 1 ensures that the sequence generated by Algorithm 2.1 is well-defined. It has also as

consequence that

(2.6) U= inf {F(2) +G(y) + H(z,y)} > —o0.

(z,y,z) xR™ xRI X RP

. Comparing the assumptions in (iii) and (iv) to the ones in [12], one can notice the presence of

the additional condition (2.4c), which is essential in particular when proving the boundedness of
the sequence of generated iterates. Notice that in iterative schemes of gradient type, proximal-
gradient type or forward-backward-forward type (see [12, 6, 7]) the boundedness of the iterates
follow by combining a descent inequality expressed in terms of the objective function with coercivity
assumptions on the later. In our setting this undertaken is less simple, since the descent inequality
which we obtain below is in terms of the augmented Lagrangian associated with problem (1.1).

. The linear operator A is surjective if and only if its associated matrix has full row rank, which is

the same with the fact that the matrix associated to AAT is positively definite. Since
Amin (AAT) 2] < (AAT2,2) = ||AT2||” vz eRP,

this is further equivalent to Anin (AAT) > 0, where Apin (M) denotes the minimal eigenvalue of a
square matrix M. We also denote by (M) the condition number of M, namely the ratio between
the maximal eigenvalue Apax(M) and the minimal eigenvalue of the square matrix M,

_ e (M) _ M
I{(M) o Amin (M) B Amin (M) > L

Here, | M| denotes the operator norm of M induced by the Euclidean vector norm.

The convergence analysis will make use of the following regularized augmented Lagrangian function

U:R™ x R? x RP x R” x R" x R” - R U {+w0},

defined as

where

(5,92, 0,2%,00) o F(2) + G (9) + H (2,9) + Cu Az — 2+ 5 || Az —

+Co | AT (u=u') + 0B (z — )| + Cy ||z — /||,

4(1-o0)

8(or +41.4)°
2 . )
—025)\min (AAT) 0 and Ch

B:=7ld — BAT A, Co = - 0B Amin (AAT)

> 0.

Notice that

1Bl <,

whenever 27 > 8|A||®. Indeed, this is a consequence of the relation

|Ba|? = 7%|* — 278] Ax|® + B*|AT Ax|* < 72|x|? + B(B|AJ* — 27)| Az|? Vx € R™.

For simplification, we introduce the following notations

R:=R" xR xR x RP x R™ x RP
X = (z,y,2,u, 2, u)
X = (Tn, Yn, 2Zns Un, Tn—1,Up—1) YR =1
U, =¥ (X,) Vn> L

The next result provides the announced descent inequality.
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LEMMA 2.5. Let Assumption 2.3 be satisfied, 21 = B||A||* and {(Tn, Yns 2ns Un) } 50 e a sequence gen-
erated by Algorithm 2.1. Then for any n =1 it holds

(27) \Pn-‘rl + 02 Hxn-&-l - $n||2 + C3 Hyn-&-l - yn||2 + C*4 ||u71+1 - UnH2 < \Iln’
where
Coe b +BAI° 4ot 8(oT+44)°
2 2 BAmin (AAT) ~ 0BAmin (AAT)’
Co = p— Lo 8€§,+
3= - 9
2 0 BAmin (AAT)
1
04 = ﬁ

Proof. Let n = 1 be fixed. We will show first that

B
F (zn41) + G (Yng1) + H (Tng1, Yng1) + {ngt, ATyt — 2ng1) + 9 | A1 — Zn+1||2

0y + BIA] ‘ 1
+G—L+f””>Mm—%f “QQMqum%;@mﬂ—ww

2
(28) < F(zn) + G (yn) + H (20, yn) + (un, Avn — 20) + 5 IIAxn N op ltns1 — |

and provide afterwards an upper estimate for the term ||, 1 — uy,||> on the right-hand side of (2.8).
From (2.1a) and (2.1b) we obtain

G (y’rH—l) + <VyH (xna yn) yYn+1 — yn> + ||yn+1 yn|l2 < G (yn)
and
F (2n41) + (tn, ATy — 2ni1) + g | Azy = zng1||> < F (20) + Ctn, Ay — 200 + = ||A;vn zall?

respectively. Adding these two inequalities yields

F(2n41) + G (Yns1) + (n, ATy — 2pp1) + 5 ”Axn Zn+1H2 + <vyH (Tny Yn) s Ynt1 — Yn)

K 2

+ 9 ||yn+1 yn”

(2.9) < F(z0) + G yn) + (un, Ay — 2,) + g | Az — 2|2

On the other hand, according to the Descent Lemma we have

62 In
H(xnayn-&-l) < H(mnayn) + <vyH (Irwyn) yYn+1 — yn> + ( ) ||yn+1 - yn”2

<H (‘Tnayn) + <vyH ($n7yn) yYn4+1 — yn> ynH2
and, further, by taking into consideration (2.1c),

01 (Yny1) 2
H (xn+1vyn+1) (xnvyn+1) + <VIH (xna yn+1) y Tn41 — xn> + 9 Hanrl - an
H xnv yn+1) <un7 Axpiq — Axn> ﬂ<Axn — Znt1, ATpg1 — Axn>
41 ( yn+1 2
T [#n+1 — n]

B
< H (0, Ynt1) — Uy ATpgr — Azy) + = HAwn P 5 [PzE——

04+ BA|P )
(7= | e — .
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Combining the two above estimates we get

B B ls,
H (#n11,Yn+1) + (Un, ATny1 — Azy) — 9 | Az, — Zn-HHQ + 9 |Azns1 — Zn+1||2 - T+ Yn+1 — yn||2
b4+ BA|
N ( BUNSE IV ) W
(2.10)
< H (20, yn) +{VyH (T, Yn)  Yn+1 — Yn) -
2
We obtain (2.8) after we sum up (2.9) and (2.10), use (2.1d), and add oF [ttt — un||? to both sides of the
o

resulting inequality.
Next we will focus on estimating ||ty 1 — un||>. We can rewrite (2.1¢) as

T(xp — Tpy1) = Vol (Tn, Yns1) + ATupn + BAT (Azpiy — 2ng1) + BATA (2 — Zpt1)

1
=V.H (xn7yn+1) + ATun + ;AT (unJrl - un) + ﬂATA (xn - anrl) 5

where the last equation is due to (2.1d). After multiplying both sides by ¢ and rearranging the terms, we
get

ATUp i1 + 0B (2pi1 —xn) = (1 —0) ATuy — oV H (€0, Yny1) -

Since n has been arbitrarily chosen, we also have

ATu, + 0B (xp —2n_1) = 1 —0) ATu,_y — oV, H (Tn—1,Yn) -
Subtracting these relations and making use of the notations

wy = AT (uy — up_1) + 0B (2 — Tp_1)

Un = 0B (#n — @n-1) + Vol (n-1,yn) = Vol (Tn,Yn+1)

it yields
Wpt1 = (1 — o) wy, + ovy,.

The convexity of ||||* guarantees that (notice that 0 < o < 1)
(2.11) lwns1l? < (1= 0) llwal® + o [[oa])-
In addition, from the definitions of w,, and v,,, we obtain
(2.12) AT (nss = wn)]| < Nwnsrll + 0 1BI fonsr — 2all < lns ]l + 07 5041 — 2l
and

[onll < o Bl lzn — znall + IV H (#n-1,yn) = VaH (T, Yni1)]|

<
< o7 [[an = Znall + Vol (n-1,yn) = Vol (20, yn) || + (Ve H (20, yn) = Vol (20, yni)||
(2.13) < (o7 + b 1) [on — znall + €34 ynt1 — ynll

respectively. Using the Cauchy-Schwarz inequality, (2.12) yields

Amin (AAT)

1 2
9 l|ltns1 — unH2 < 5 HAT (Uny1 — un)“ < ”wn-&-l”2 +o°7r° lZns1 — InHQ

and (2.13) yields

||Un||2 <2(oT+ fl,+)2 lzn — zn—1||2 + 2€§,+ Yn+1 — ynH2~
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After combining these two inequalities with (2.11), we get

U>\min AAT
% 1 = unl® + (1= 0) fwnsa
<(1=0) wnl* + 072 [[Zns1 — zal” + 20 (07 + £1,4)* 20 — T |* + 2065 [[yns1 — yal* -
4
After multiplying the above relation by W > 0 and adding the resulting inequality to (2.8)
it yields
F(znt1) + G (Yns1) + H (Tns1,Ynt1) + Ung1, ATpy1 — Zng1) + g | A1 — ZnHH2
4(1-o0) T 2, 8(oT+64)° 2
+02ﬂ)\min(AAT)H (u +1— U )+O (‘T +1 — & )H +Uﬂ)\min(AAT)Hx +1—Z H
G+ BIAIP 55 8(or+64)° 5
+ (T 9 o°T UﬂAmin (AAT) ||.Tn+1 xn”
p— 4o ¢ 8£§,+ 2 1 2
+ ( 2 0 BAmin (AAT) ||yn+1 ynH + of HunJrl uﬂ”
< F(zn) + G (yn) + H (T, Yn) + {n, ATy — 2n) + g Az — 2n|?
41— o) 7 ,  8(oT+1014)° 5
o AN /A AT A n = n— B n - n— — n - n— )
+ Uzﬁ)\min(AAT) ” (u u 1)+U (.’E €z 1)“ + Uﬁ)\min (AAT) H(E z 1H
which is nothing else than (2.7). |

The following result provides one possibility to choose the parameters in Algorithm 2.1, such that all
three constants Co, C3 and Cy that appear in (2.7) are positive.

LEMMA 2.6. Let

1
14
. — (4 24 4+ 24 2-192 AAT
(2.14D) ﬁ>1_24m(AAT)<+3a+\/ 1 240 + 90 — 1920+ ( ))>0

2 ) T ) T
(2.14c¢) max{ﬂ AIT PAmin (AA ) (1 — 4—” — A/ A ) } <7< 76/\““ (AA ) (1 - % =+ \/K’T)

2 7 240 B T 240
2.14d byt + 1665 + 0
. > _ >0,
( ) M 2,+ O',BAmin (AAT)
where
40y 4 v 8% 6o T
Then we have
min {02, Cg, 04} > 0.
Furthermore, there exist v1,v2 € R\ {0} such that
1 O 4 1 1 O 4 2

(2.15) - and ~— — — -

Y1 272 BAmin (AAT) Yo 292 B (AAT)
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Proof. We will prove first that Cs > 0 or, equivalently,

240’7'2 1651 + 166% + 2
2.1 — 20y =— 21— ’ : A .
(2.16) 2 = Bin (AAT) < Bt (AAT)) " B (AAT) e TOIAIT <0
The reduced discriminant of the quadratic function in 7 in the above relation fulfils
1641 . 2 38403 , 2401 o
A= (1-— ’ — : — : — 240k (AAT
i ( 5Amm<AAT>> B2, (AAT) B (AAT) 27 (A47)
w\® 242 6vo
=(1-=) - = — == — 240k (44T
( B ) B? B (447)
2
(2.17) 1 T (AAT) > 0,

if o and 8 are being chosen as in (2.14a) and (2.14Db), respectively. Indeed, the inequality (2.17) is equivalent
to

(1 - 240k (AAT)) B> = 2(4 + 30) VB — 8 > 0.
The reduced discriminant of the quadratic function in S in the above relation reads
Api= [(4+30) +8 (1 - 240w (A47)) [ 12 = [24 + 240 + 902 — 1920k (447) ] ¥ > 0

as 24 — 1920k (AAT) = 16 + 8 (1 — 240k (AAT)) > 0 for every o that satisfies (2.14a). Hence, for every o
satisfying (2.14a) and every § satisfying (2.14b) it holds (2.17). Therefore, (2.16) is satisfied for every

BAmin (AAT) v BAmin (AAT) v
— (1= =% — VA — (1 - — AL

240 3 ) ST T 24 5 tvar
It remains to verify the feasibility of 7 in (2.14c), in other words, to prove that

BIAIP _ B (AAT) (- 4w o
5 < 1o 1 +AL).

This is easy to see, as, according to (2.17), we have

BIAI®  BAmin (AAT) 4y 1y .
5 < i 1—F @1—?—12UK(AA)>O.

The positivity of C3 follows from the choice of p in (2.14d), while, obviously, Cy > 0.
Finally, we notice that the reduced discriminants of the two quadratic equations in (2.15) (in 77 and,
respectively, v2) are

261 + 14 . 61 + 14
Ayi=1l———— e — =1—- — d, respectivel A, =1l — 2 —— =1— —.
- B (AAT) % and, respectively, v B (AAT) 17
Since
v v
P> T Ston (AT~ 2
it follows that A,,, A,, > 0 and hence each of the two equations has a nonzero real solution. d

Remark 2.7. Hong and Luo proved recently in [16] linear convergence for the iterates generated by a
Lagrangian-based algorithm in the convex setting, without any strong convexity assumption. To this end a
certain error bound condition must hold true and the step size of the dual update, which is also assumed to
depend on the error bound constants, must be taken small. It is also mentioned that the dual step size may
be cumbersome to compute unless the objective function is strongly convex. As one can see in (2.14a) and
(2.14b), the step size of the dual update in our algorithm can be chosen only in dependence of the condition
number of AAT.



A MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX PROBLEMS 11

THEOREM 2.8. Let Assumption 2.3 be satisfied and the parameters in Algorithm 2.1 be such that 2T >
BIIA|? and the constants defined in Lemma 2.5 fulfil min{Cy,Cs,Cys} > 0. If {(Tr, Yns 2ns Un) }ng 05 @
sequence generated by Algorithm 2.1, then the following statements are true:

1. the sequence {\Ijn}nzl is bounded from below and convergent;

2.
(2.18) Tpt1 — T = 0, Ynt1 —Yn — 0, 2ps1 — 2n = 0 and upi1 —up — 0 as n — +00.

Proof. First, we show that ¥ defined in (2.6) is a lower bound of {¥},_,. Suppose the contrary, namely
that there exists ng > 2 such that ¥,,, —¥ < 0. According to Lemma 2.5, {\I/n}n>1 is a nonincreasing sequence
and thus for any N > nyg

N 'n.()—l
S (@ - < Y (U= 0) + (N =g+ 1) (T, — D),
n=1

n=1
which implies that
N
lim ) (¥, - ¥) = —o.

N—+0
n=1

On the other hand, for any n > 1 it holds
U, -V > F(z,) + G(yn) + H(2n,yn) + Un, Azp — zn> -v

1 1
= (Un, ATy, — 2n) = — (Un, Up — Un—1) = || n” l[wn — un—1||2 - Hun—1H2 .
op ﬁ 2003

Therefore, for any N > 1, we have

N
(U, - Z et = || + || NI - || uo||”* = HuOH
n=1

which leads to a contradiction. As {¥,}, -, is bounded from below, we obtain from Lemma 1.2 statement
1 and also that

Tpt1 — Tn = 0, Ynt1 —yn — 0and upi1 —u, — 0as n— 4oo.
Since for any n > 1 it holds
zn+1 = 2nll < [JAl| |Zns1 — @all + [[ATns1 — 2ng1 ]l + | AZn — 24|

(2.19)
Hun - U”I’L—l” )

i
of

it follows that z,4+1 — 2z, — 0 as n — +o0. O

1
= Al lznsr = 2all + 5 llunsa = wnll +

Remark 2.9. Usually, for nonconvex algorithms, the fact that the sequences of differences of consecutive
iterates converge to zero is shown by assuming that the generated sequences are bounded (see [8, 22, 30]).
In our analysis the only ingredients for obtaining statement (ii) in Theorem 2.8 are the descent property and
Lemma 1.2.

As one can notice, the assumption that min{Cs, C3,C4} > 0 plays an essential role in our analysis. In
Lemma 2.6 we provide possible choices of the algorithm parameters, which lead to the fulfillment of this
assumption. However, these choices depend on /4 ;, which, at is turn, is defined as being a finite upper
bound for the sequence of Lipschitz constants (¢1(yn))n=0 (see (2.5)). This condition is definitely fulfilled
when /; is globally bounded. This is for instance the case when H depends only on x and has a Lipschitz
continous gradient (see Remark 2.2(i)), but also when H depends only on y.
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2.2. General conditions for the boundedness of {(xn,¥n;2n,Un)},>o- In the following we will
formulate general conditions in terms of the input data of the optimization problem (1.1) which guarantee
the boundedness of the sequence {(@n,yn, 2n,Un)},>o- Working in the setting of Theorem 2.8, thanks to
(2.18), we have that the sequences {Tn+1 — Tn},>0s {Unt1 = Yntnzo> {201 = Znt,zo a0d {Uuny1 —un},
are bounded. Denote

Sy 1= sg}g{Han — Znll s |Yns1 — Ynll s |Zns1 — 2nll s |1 — unl|} < +o0.

nz=

Even though this observation does not imply immediately that {(2y,%n, 2n,un)},> is bounded, this will
follow under standard coercivity assumptions. Recall that a function 1 : R? — R U {400} is called coercive,
if 11m”x||*)+w P (.’L‘) = +00.

THEOREM 2.10. Let Assumption 2.3 be satisfied and the parameters in Algorithm 2.1 be such that 2T >
BIIA|?, the constants defined in Lemma 2.5 fulfil min{Cs,Cs,Cy4} > 0 and there exist v1,7v, € R\{0} such
that (2.15) holds. Suppose that one of the following conditions hold:

1. the function H is coercive;
2. the operator A is invertible, and F' and G are coercive.
Then every sequence {(Tn,Yn, 2n,Un)},=o generated by Algorithm 2.1 is bounded.

Proof. Let n = 1 be fixed. According to Lemma 2.5 we have that

\Ill >-~>¢’n>an+l
2

1
5 ATpi1 — Znp1 + Eun-kl

1
R20) 3 F(aa) + 6 o)+ H (@) = g5 v+ 5
After multiplying (2.1c¢) by —7 and using (2.1d) it yields
ATunJrl = ATun + O—BAT(Aanrl - Zn+1) = ATun + (U - 1)BAT<A-TTL+1 - Zn+1) + 6AT<Axn+1 - Zn+1)

1
= (1 — ) AT (upi1 —up) + ATuy + BAT (Azy — 21) + BAT A(zp g1 — z0)

g

1
= (1 — o> AT (upi1 —up) + (71d = BAT A) (2, — 2ps1) — Vo H (T, Yns1)

1
= (1 — 0’) AT (Un+1 - un) + B (l’n — l'n+1)

(221) + VIH ($n+1,yn+1) - VIH (mnvynJrl) - VIH (xn+17yn+1) .
This implies
1
| A ]| < (C, - 1) VAN s = nll + (7 + €2, 1) [ns1 = 2all + Vo H @prs )|
1
< ((0_ - ].) HA” + 7+ gl7+> Sy + HVIH ($n+17yn+1)H .

By using the Cauchy-Schwarz inequality we further obtain

2
2 1
Aumin (AAT) Jun s |* < [| AT 4| <2((0—1) ||A|+T+£1,+) 82+ 2| Vo H (i1, o) I

1
Multiplying the above relation by m and combining it with (2.20), we get
1
Uy > F (2n41) + G (Ynt1) + H (Tng1, Yns1) — m ||VxH($n+17yn+1)||2
2 2
1 1 , B 1
(222) - m ((g’ - 1) ||A|| + 7+ el’+> Sk + 5 HAIn+1 — Zn+1 + Bun+1

We will prove the boundedness of {(zy, Yn, zn, Un)}, 5o in each of the two scenarios.
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1. According to (2.22) and Proposition 1.1, we have that for any n > 1

2

1 15} 1
§H (xn+17yn+1) + 5 HAmrH»l — Zp+1 T Bun+l

1 1 2 , .
< _—_ i B B
Wt Gy (=1 M) - w0 G0
Al )= (o - ) 1w I
2 a1 Tnds Ynt Yo 272 oH (Tn+1, Ynt1
1 1 2
<SUi+ ——m ((=-1) 14 2 inf F(2) — inf -
' ! ﬁ)‘min (AAT) ((U ) || || T 617+) S* ZIE%{P (Z) ylen]R‘l G (y) (mvy)é%'m xRa (.’,U,y)

< —+ 0.

1
Since H is coercive and bounded from below, we have that {(z,, yn)},, and {Aa:n — Zn + Bun}
n=0

are bounded. As, according to (2.1d), {Az, — zn},>, is bounded, it follows that {u,},., and
{2n},=0 are also bounded.

. According to (2.22) and Proposition 1.1, we have this time that for any n > 1

2
ATpi1 = Zna1 + ZUnt1

B

1 1 2
<O +— ((==1)y4 2
1+6Amin(AAT) ((U )” |+T+€1’+) o

. 1 ¢
=it {H<xy> - (% - ) ||v$H<xn+1,yn+1>||2}

n>1 297

F o) + G ne) + 5 |

1 1 2
<V +——1([=—-1)]4 14 — inf H .
1t BAmin (AAT) (( > Al + 7+ 1,+) Sk (r,y)ln (z,y) <+

g eR™ xR4

Since F' and G are coercive and bounded from below, it follows that the sequences {(yn,2n)},=o

1

and {Axn — 2 + ﬂun} are bounded. As, according to (2.1d), {Az, — zn},>, is bounded, it
n=0

follows that {uy,},, and {Az,}, -, are bounded. The fact that A is invertible implies that {z,},-

is bounded. O

2.3. The cluster points of {(z,,¥yn,2n,Un)},>, are KKT points. We will close this section ded-
icated to the convergence analysis of the sequence generated by Algorithm 2.1 in a general framework by
proving that any cluster point of {(, Yn; 2n; Un)}, > is @ KKT point of the optimization problem (1.1). We
provided above general conditions which guarantee both the descent inequality (2.7), with positive constants
C5,C5 and Cy, and the boundedness of the generated iterates. Lemma 2.6 and Theorem 2.10 provide one
possible setting that ensures these two fundamental properties of the convergence analysis. We do not want
to restrict ourselves to this particular setting and, therefore, we will work, from now on, under the following
assumptions.

ASSUMPTION 2.11. 1. the functions F,G and H are bounded from below;

2.
3.
4.

the linear operator A is surjective;

every sequence {(Tn,Yn, Zn, Un)},so generated by the Algorithm 2.1 is bounded:

VH is Lipschitz continuous with constant L > 0 on a convex bounded subset By x By € R™ x RY
containing {(Tn,Yn)},=o- In other words, for any (z,y),(z',y") € By x By it holds
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5. the parameters ui, 3,7 >0 and 0 < o < 1 are such that 27 = B| A|? and min{Cs, Cs,Cy} > 0, where

o V24 BJAIP 4ot 8(o7+LV2)
277 2 Bmin (AATY 0B Amim (AAT)
A V2 1612
S 2 UBAmin (AAT) ’
1
04 = %

Remark 2.12. Being facilitated by the boundedness of the generated sequence, Assumption 2.11 4 not
only guarantee the fulfilment of Assumption 2.3 3 and 4 on a convex bounded set, but it also arises in a more
natural way (see also [12]). Assumption 2.11 4 holds, for instance, if H is twice continuously differentiable.
In addition, as (2.23) implies for any (z,y), (¢',y') € By x Bs that

[Vt (2,) =Vl () | + |V H (2,) = Vo H (&,9)]| < LV2 (o — '] + [ly = /]
we can take

(2.24) by =lo g =Lls 4 = LV2.

As (2.4a) - (2.4¢) are valid also on a convex bounded set, the descent inequality

(2.25) Uyt + Co | nst — zol|> + Cs |lyns1 — ynll® + Ca luns1 — un|® < ¥, Yo > 1

remains true, for constants Cs,Cs, Cy taken as in Lemma 2.5 and by taking into consideration (2.24). A
possible choice of the parameters of the algorithm such that min {Cs, C5,Cy} > 0 can be obtained also from
Lemma 2.6.

The next result provide upper estimates for the limiting subgradients of the regularized function ¥ at
(xmyn, Zn,un) for every n = 1.

LEMMA 2.13. Let Assumption 2.11 be satisfied and {(Tn, Yn, Zn,Un)},> be a sequence generated by Al-
gorithm 2.1. Then for any n =1 it holds

(2.26) Dy, = (dy, dy, d2, dy, dyy, dyy ) € 0 (Xn),
where
(2.272) d? =V H (2n,yn) + ATu, + BAT (Az,, — 2,) + 2C1 (¥ — Tp_1)
+ 20CyBT (AT (U, — Up—1) + 0B (z, — xn,l)) ,
(2.27b) dy = VyH (xn,yn) = VyH (Tn-1,Yn-1) + 1 (Yn-1 = Yn),
(2.27¢) dl = up_1 — up + BA(Tpn_1 — Ty),
(2.27d) dn = Ax, — zn + 2C0A (AT (up, — Up—1) + 0B (x, — xn,l)) ,
(2.27e) = —20CyBT (AT (Up, — Up—1) + 0B (2, — xn_l)) —2C) (xp — Tp—1)
(2.27f) "= —2C0A (AT (up — tn—1) + 0B (2, — p—1)) -

In addition, for any n > 1 it holds
(2.28) I1Dnlll < Cs lln = 2n-all + Cs lyn — yn-all + C7 [lun — un—ll,
where

Cs:=2V2-L+7+B|A| +4 (o7 + ||A]|) 67Cy + 4C4,

Co := LN2 + p,

1 2
Cri=1+ e (0_ - 1) [All +4 (o7 + | Al Co || Al -
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Proof. Let n = 1 be fixed. Applying the calculus rules of the limiting subdifferential we get
V.U (X,) = Vo H (20, yn) + ATu, + BAT (Azy, — 2,) + 2C) (2n — 1)

(2.292) +20CyBT (AT (Un — Un—1) + 0B (xn, — Tn_1)),

(2.29b) 0y¥ (Xy) = 0G (yn) + VyH (20, Yn) ,

(2.29¢) 0,V (X,,) = 0F (2n) — upn — B (Axy, — 25)

(2.29d) V¥ (X,) = Az, — 2, + 2CH A (AT (Un — Un—1) + 0B (Tn — Tn-1))

(2.29¢) Vol (X,,) = —20CB" (A" (up — un—1) + 0B (y, — Tn_1)) — 2C1 (Tn, — Tn—1) ,

(2.291) V¥ (X,) =—-2CA (AT (U, — Up—1) + 0B (x, — xn,l)) )

Then (2.27a) and (2.27d) - (2.27f) follow directly from (2.29a) and (2.29d) - (2.29f), respectively. By com-

bining (2.29b) with the optimality criterion for (2.1a)

Oe aG (yn) + vy};‘r (xn—la yn—l) + 14 (yn - yn—l) 9
we obtain (2.27b). Similarly, by combining (2.29¢) with the optimality criterion for (2.1b)

0edF (Zn) — Up—-1 — 6 (Axn—l - Zn) )

we get (2.27¢).
In the following we will derive the upper estimates for the components of the limiting subgradient. From
(2.21) it follows

ldz ] < HVQCH (Tn, yn) + ATunH + B Al || Azy, — 2z || + 2 (C’1 +o 7'200) |zn — Tp-1]|
+207Co || i — trns |

2
< (L\/§ 7420 + 2027200) [P — <U 14 20700) Al lln — 1]l -

In addition, we have
|| < V2w = ol + (EV2+ 1) llgn = yuall,
1dZ1l < BIIAl len = -1l + lun — un-1ll,
m 1 2
1621 < 207G LAl = 2acall + ( 75 + 260 JAI )l = ol
d|| <2 (0*7°Co + C1) |lzn — zp_1l| + 207Co || Al |un — up—1]|,
ld || < 207Co | Al |20 — @1l + 2C0 | A|* [[un = tn—1]| -
The inequality (2.28) follows by combining the above relations with (1.3). 0

We denote by Q := Q ({Xy,},>) the set of cluster points of the sequence {X,},.; < R, which is
nonempty thanks to the boundedness of {X,},.,. The distance function of the set Q is defined for any
X € R by dist (X, Q) :=inf {||X — Y|||: Y € Q}. The main result of this section follows.

THEOREM 2.14. Let Assumption 2.11 be satisfied and {(n, Yn, 2n,Un)},=o be a sequence generated by
Algorithm 2.1. The following statements are true:
Loif {(Tnys YUngs Zns Ung ) Y s 15 @ subsequence of {(Tn, Yns 2ns Un) Y, 5o that converges to (Tx, Ys, 24, Us)
as k — +o0o, then

lim \Ilnk = \Ij(‘r*vy*vz*vu*a‘r*vu*);
k—+00

2. it holds
Q < crit ()

(2.30)
c{XseR: ATy, =V, H (s, y%),0 € OG (Ys) + VyH (T4, Ys) s Us € OF (24) , 24 = Ay},
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where X := (x*ay*az*7u*7x*7u*);
3. it holds liIE dist (X,,, Q) = 0;
n—-+00

4. the set Q is nonempty, connected and compact;
5. the function U takes on Q the value W, = hril U, = HI}_I {F (2n) + G (yn) + H (0, yn)}-
n—-+0o0 n—+00

Proof. Let (T4, Ys, 2%, ux) € R™ x R? x RP x RP be such that the subsequence

{Xnk = (Inkvynkaanvunk7xnk—17unk—l)}k>1
of {X},>, converges t0 Xy 1= (Tu, Ys, 24, Us, T, Use)-
(i) From (2.1a) and (2.1b) we have for any k > 1
H 2
G (ynk) + <vyH (xnk—17y"k—1) yYng — ynk—1> + 5 Hynk - ynk—ln

o 2
< G(y*) + <VyH (xnk—lvynk—l) y Y — ynk—1> + 5 ||y* - ynk—lH
and
B 2
F (an) + <Unk71>A$nk71 - an> + 5 ||A£an,1 - an ||
B 2
< F(Z*) + <unk*17Axnk*1 - Z*> + 5 HAxnk—l - Z*H )

respectively. From (2.1d) and Theorem 2.8 follows Az* = z*. Taking the limit superior as k — +00 on both
sides of the above inequalities, we get

limsup F (zp,) < F (24) and limsup G (Yn,,) < G (yx)
k—+00 k—+00

which, combined with the lower semicontinuity of F' and G, lead to

lim F(zp,) = F (24) and lim G (yn,) = G (yx) -

k— 400 k—+o0

The desired statement follows thanks to the continuity of H.

(ii) For the sequence {D,}, -, defined in (2.26) - (2.27), we have that D,, € 0¥ (Xy,) for any £ > 1 and
D, — 0 as k — +oo, while X,,, — X, and ¥,,, — ¥(X,) as k — +o0. The closedness criterion of the
limiting subdifferential guarantees that 0 € 0U(Xy) or, in other words, X, € crit ().

Choosing now an element X, € crit (¥), it holds

= V. H (74,y:) + ATuy + BAT (Axy — 24),
€ 0G (y«) + Vy H (T4, Yx)
e oF (Z*) — Ux — /B(Al'* - Z*);

= Axy — 24,

o O O O

which is further equivalent to (2.30).

(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [12], also by taking into consider-
ation [12, Remark 5], according to which the properties in (iii) and (iv) are generic for sequences satisfying
X, — X,—1 — 0 as n — +00, which is indeed the case due to (2.18).

(v) Due to (2.18) and the fact that {u,},- is bounded, the sequences {F (2,) + G (yn) + H (Zn,Yn)}, =, and
{Wn},0 have the same limit

U= lim U, = lim {F(z,)+G(yn)+ H (xn,yn)}-

n—+o0 n—-+0o0

The conclusion follows by taking into consideration the first two statements of this theorem. a
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Remark 2.15. An element (x4, ys, 24, uy) fulfilling (2.30) is a so-called KKT point of the optimization
problem (1.1). Such a KKT point obviously fulfils

(2.31) 0€ ATOF (Azy) + Vo H (24,y%),  0€ 0G (yx) + VyH (T4, ys) -
If A is injective, then this system of inclusions is further equivalent to

0€d(FoA)(xg)+VeH (4,ys) =0 (Fo A+ H),
(2.32) 0€ 0G (yx) + VyH (z4,y%) = 0y (G+ H),

in other words, (x4,ys) is a critical point of the optimization problem (1.1). On the other hand, if the
functions F, G and H are convex, then, even without asking A to be injective, (2.31) and (2.32) are equivalent,
which means that (z4,ys) is a global minimum of the optimization problem (1.1).

3. Global convergence and rates. In this section we will prove global convergence for the sequence
{(%n, Yns 2n, Un)}, 5o generated by Algorithm 2.1 in the context of the Kurdyka-Lojasiewicz property and
provide convergence rates for it in the context of the Lojasiewicz property.

3.1. Global convergence under Kurdyka-Lojasiewicz assumptions. The origins of this notion
go back to the pioneering work of Kurdyka who introduced in [19] a general form of the Lojasiewicz inequality
[20]. An extension to the nonsmooth setting has been proposed and studied in [9, 10, 11].

DEFINITION 3.1. Let n € (0,40]. We denote by ®, the set of all concave and continuous functions
w: [0,m) — [0, +00) which satisfy the following conditions:
L. ¢ (0) =0;
2. ¢ is C! on (0,n) and continuous at 0;
3. for any s € (0,n) : ¢ (s) > 0.
DEFINITION 3.2. Let U: RY — R U {+00} be proper and lower semicontinuous.
1. The function U is said to have the Kurdyka-Lojasiewicz (KL) property at a point 0 € domoV :=
{v e R%: 0V (v) # Q}, if there exists n € (0,+0], a neighborhood V' of © and a function ¢ € ®,
such that for any

veVr\{veRd:\II(i}) < ¥ (v) < V() +n}
the following inequality holds
@' (¥ (v) — W (D)) - dist (0,09 (v)) > 1.

2. If U satisfies the KL property at each point of domoW, then W is called KL function.

The functions ¢ belonging to the set ®, for n € (0, +o0] are called desingularization functions. The KL
property reveals the possibility to reparametrize the values of ¥ in order to avoid flatness around the critical
points. To the class of KL functions belong semialgebraic, real subanalytic, uniformly convex functions and
convex functions satisfying a growth condition. We refer to [1, 2, 3, 9, 10, 11, 12] for more properties of KL
functions and illustrating examples.

The following result, the proof of which can be found in [12, Lemma 6], will play an essential role in our
convergence analysis.

LEMMA 3.3. (Uniformized KE property) Let Q2 be a compact set and ¥: R — R U {+0} be a proper
and lower semicontinuous function. Assume that ¥ is constant on ) and satisfies the KL property at each
point of Q. Then there exist € > 0,1 > 0 and ¢ € ®, such that for any U € Q and every element u in the
intersection

{veR: dist (v,Q) <} n{veR": V(D) < T (v) < V(%) +n}
it holds

¢ (T (v) — U (3)) - dist (0, 0T (v)) = 1.
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From now on we will use the following notations

1
Cgi= — Cy 1= Cs, Cs, C d & =T, U, Vn>1,
8 min{CQ,Cg,Cgl}’ 9 ma'X{ 5 6 7} an * n
where ¥, = lim W,
n—+00

The next result shows that if ¥ is a KL function, then the sequence {(zy, Yn;, 2n, Un)}, = converges to
a KKT point of the optimization problem (1.1). This hypothesis is fulfilled if, for instance, F, G and H are
semi-algebraic functions.

THEOREM 3.4. Let Assumption 2.11 be satisfied and {(xn,yn,zn,un)}nzo be a sequence generated by
Algorithm 2.1. If U is a KE function, then the following statements are true:
L. the sequence {(Tn,Yn, Zn, Un)},so has finite length, namely,

(3.1)
Z [Zn+1 — @nl| < +00, Z [Yn+1 = ynll < +o0, Z [2n+1 = 2n|| < +00, Z [tns1 = unl| < 4005
n=0 n=0 n=0 n=0

2. the sequence{(Tn,Yn, Zn;, Un)},=o converges to a KKT point of the optimization problem (1.1).

Proof. Let be Xy € , thus ¥ (X ) = W,. Recall that {£,}, -, is monotonically decreasing and converges
to 0 as n — +00. We consider two cases.
Case 1. Assume that there exists an integer n’ > 1 such that &, = 0 or, equivalently, ¥,,, = ¥,. Due to the
monotonicity of {€,},~,, it follows that &, = 0 or, equivalently, ¥,, = W, for any n > n’. The inequality
(2.25) yields for any n > n' + 1

Tpy1 —Tn =0, Yny1 —Yn =0 and up1 —u, = 0.

The inequality (2.19) gives us further 2,11 — 2, = 0 for any n > n’ + 2. This proves (3.1).
Case 2. Consider now the case when &, > 0 or, equivalently, ¥,, > W, for any n > 1. According to Lemma
3.3, there exist € > 0, n > 0 and a desingularization function ¢ such that for any element X in the intersection

(3.2) {ZeR:dist(Z,Q) <e}n{ZeR: ¥, <V (Z) < ¥y +n}
it holds
O (U (X) — W,) - dist (0,0¥ (X)) > 1.
Let be ny > 1 such that for any n = n;
U, <V, <WU, +n.

Since lil}rl dist (X,,,€2) = 0 (see Lemma 2.14 3), there exists ng > 1 such that for any n > ng
n——+0o0

dist (X,,, Q) < e.

Consequently, X,, = (Zn, Yn, Zn, Un, Tn—1,Un—1) belongs to the intersection in (3.2) for any n > ng :=
max {n,na}, which further implies

(3.3) ¢ (¥, — W) - dist (0,00 (X,,)) = ¢’ (&,) - dist (0,09 (X,,)) = 1.
Define for two arbitrary nonnegative integers ¢ and j
Aiji=p (Wi =) — (¥ —Wy) =0 (&) ().

The monotonicity of the sequence {¥,}, ., and of the function ¢ implies that A;; > 0 for any 1 < i < j.
In addition, for any N = ny > 1 it holds

N
2 An,n-‘rl = AnoJ\’-‘rl = Qo(gno) - @(€N+1) < 90(5710)’

n=ngo
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from which we get 2 Ap g1 < +00.
n=1
By combining Lemma 2.5 with the concavity of ¢ we obtain for any n > 1

An,n-k—l =@ (Sn) - P (gn+1) = Qpl (Sn) (gn - Sn-i-l) = 30/ (&L) (\Ijn - \I/n-i-l)
= min{CQ,Cg, C4}<p/ (gn) (||$n+1 - $nH2 + Hyn-&-l - yn||2 + ”un-‘rl - un||2) :
Thus, (3.3) implies for any n = ng
|Zn+1 — xn||2 + 1Yn+1 — yn||2 + |luns1 — “n||2
< dist (0,09 (X)) ¢' (€n) (11 = 2l + [yt = yul* + ns1 = wal*)
< Cg - dist (0,09 (X)) - Apny1-

By the Cauchy-Schwarz inequality, the arithmetic mean-geometric mean inequality and Lemma 2.13, we
have that for any n > ng and every a > 0

lZns1 — Zull + [[Ynt1 — Ynll + |tng1 — un]

< \/g \/”mn+1 - mnH? + ||yn+1 - ynH2 + ||un+1 - un||2

< /305 /st (0,09 (X,.)) - A

3C,
< - dist (0,00 (X,,)) + T;AM“
3Cg
(3.4) < aCy (|[zn = Tp—1|| + |Yn — Yn-1ll + [|tn — un—1||) + HAn,nH'
If we denote for any n > 0
3C,
(3.5) an = ||Tn — Tpoall + Y0 — Yn—1ll + |n — vn_1]| and by, = T;An,TH—h

then the above inequality is nothing else than (1.6) with

Xo = aCy and x1 := 0.

Since Z b, < 40, by choosing o < 1/Cy, we can apply Lemma 1.3 to conclude that
n=1

> (Ionsr = 2all + lgnss = yll + lanss = wnll ) < +o0.

n=0

The proof of (3.1) is completed by taking into account once again (2.19).
From (i) it follows that the sequence {(zn,Yn,2n;Un)}, o is Cauchy, thus it converges to an element
(T4, Ys, 24, Ux ) which is, according to Lemmas 2.14, a KKT point of the optimization problem (1.1). O

3.2. Convergence rates. As follows we derive convergence rates for the sequence {(Zy, Yn, 2n, Un)}, >0
generated by Algorithm 2.1 and for {V¥,,}, -, provided that the regularized augmented Lagrangian ¥ satisfies
the Lojasiewicz property. The following definition is from [1] (see also [20]).

DEFINITION 3.5. Let W: RY — R U {+00} be proper and lower semicontinuous. Then W satisfies the
Lojasiewicz property, if for any critical point U of U there exists Cr, > 0, 0 € [0,1) and € > 0 such that

W (v) — ¥ (0)]” < Oy - dist (0,00 (v)) Vo € Ball (,¢),

where Ball (U, €) denotes the open ball with center © and radius €.

If Assumption 2.11 is fulfilled and {(z,, yn, 2n, un)}n>o is the sequence generated by Algorithm 2.1, then,
according to Theorem 2.14, the set of cluster points 2 is nonempty, compact and connected and ¥ takes on
Q the value U,; in addition, Q < crit (V).
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According to [1, Lemma 1], if ¥ has the Lojasiewicz property, then there exist Cr, > 0, § € [0,1) and
€ > 0 such that for any

Xe{ZeR:dist(Z,Q) <¢e},
it holds

W (X) — 0, |" < O - dist (0,09 (X))
Obviously, ¥ is a KL function with desingularization function

1
¢ :[0,+00) — [0,400), @ (s):= mC’le_e,

which, according to Theorem 3.4, means that ) contains a single element X, which is the limit of {Xn}nzl
as n — +00. In other words, if ¥ has the Lojasiewicz property, then there exist Cr, > 0, § € [0,1) and & > 0
such that for any X € Ball (X4, ¢)

(3.6) |0 (X) — W, |* < O - dist (0,00 (X))

In this case, ¥ is said to satisfy the Lojasiewicz property with Lojasiewicz constant C;, > 0 and Lojasiewicz
exponent 6 € [0,1).

The following lemma will provide convergence rates for a particular class of monotonically decreasing
real sequences converging to 0. Its proof can be found in [8, Lemma 15].

LEMMA 3.6. Let {en},~, be a monotonically decreasing sequence of nonnegative numbers converging 0.
Assume further that there exists natural numbers ng = 1 such that for any n = ng

20
€n—1 — €n = Ceen )

where C. > 0 is some constant and 0 € [0,1). The following statements are true:
L. if 0 =0, then {en}, >, converges in finite time;
2. if 8 € (0,1/2], then there exist Ceo > 0 and Q € [0,1) such that for any n = ng

0< en < Ce,OQn;

3. if 0 € (1/2,1), then there exists Ceq1 > 0 such that for any n = ng + 1

0<e, < C’e71n_ﬁ.

We prove a recurrence inequality for the sequence {gn}n>0~

LEMMA 3.7. Let Assumption 2.11 be satisfied and {(Zn,Yn, 2n, Un)},>o be a sequence generated by Algo-

rithm 2.1. If U satisfies the Lojasiewicz property with Lojasiewicz constant Cr, > 0 and Lojasiewicz exponent
0 €[0,1), then there exists ng = 1 such that the following estimate holds for any n = ng

Cy
3.7 En1 — En = C1oE, where  Cigi= ————.
( ) n—1 n 106, 10 3(CL-09)2
Proof. For every n > 2 we obtain from Lemma 2.5

gnfl - gn = \I]nfl - \Ijn

> G (llzn = @t I + lyn = yuoa | + lun = waa )
1

= gCS (lzn = zn—1ll + l[yn — Yn—1ll + llun — UanH)Q

> C1oC || Dnlll?,

where D,, € 0¥(X,,). Let £ > 0 be such that (3.6) is fulfilled and choose ng = 1 with the property that for
any n = ng, X, belongs to Ball(X,,e). Relation (3.6) implies (3.7) for any n = no. |
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The following result follows by combining Lemma 3.6 with Lemma 3.7.

THEOREM 3.8. Let Assumption 2.11 be satisfied and {(Tn,Yn, 2n,Un)},>o be a sequence generated by
Algorithm 2.1. If U satisfies the Lojasiewicz property with Lojasiewicz constant Cp > 0 and Lojasiewicz
exponent 0 € [0,1), then the following statements are true:

L. if 0 =0, then {V,.}, -, converges in finite time;
2. if 0 € (0,1/2], then there exist ng = 1, 6’0 >0 and Q € [0,1) such that for any n = ng

0< ¥, — ¥, < Q™
3. if 0 e (1/2,1), then there exist ng = 1 and C1 > 0 such that foranyn =ng+1
0< W, — U, <Cin 21,

The next lemma will play an important role when transferring the convergence rates for {\Iln}nzo to the
sequence of iterates {(Zn,Yn, 2n;, Un)},=0-

LEMMA 3.9. Let Assumption 2.11 be satisfied and {(Zn,Yn, 2n, un)},>o be a sequence generated by Algo-
rithm 2.1. Let (T, Ys, 2%, us) be the KKT point of the optimization problem (1.1) to which {(Zy, Yn, 2n, Un)}p=0
converges as n — +00. Then there exists ng = 1 such that the following estimates hold for any n = ng

o = @l < Crmax {V/Eayp (En) Nl — vl < Cramax {V/En 0 ()}

(3.8) lon = 2]l < Cromax {v/Ea, 0 (E)} llun — sl < Cramax {v/Eny 0 (Ea)}

where

2
Ci1 = 2\/3C8 + 3C8C9 and Cig = <|A + O'B) C11.

Proof. We assume that &, > 0 for any n > 0. Otherwise, the sequence {(2n,Yn, 2n,Un)},=, becomes
identical to (24, Ys, 2%, ux) beginning with a given index and the conclusion follows automatically (see the
proof of Theorem 3.4).

Let € > 0 be such that (3.6) is fulfilled and ng > 2 be such that X,, belongs to Ball(X,,e) for any
n = ng.

We fix n = ng now. One can easily notice that

|27 — sl < [[Tns1 — Tnll + [Tn41 —2al| < - < Z zk+1 — il -
k=n

Similarly, we derive

lyn = wsll < D0 M —wnlls llzn =2l < 35 lanen —2ells M —wsll < ) llunsr — |-

k=n k=n k=n
1
On the other hand, in view of (3.5) and by taking « := oTeN the inequality (3.4) can be written as
9

1
Apt1 < ia" + b, Yn = nyg.

Let us fix now an integer N > n. Summing up the above inequality for k = n, ..., N, we have

N LN N LN N

zak+1<52ak+ zbk:§Zak+1+an—aN+1+ Zbk

k=n k=n k=n k=n k=n
3CsCy

<

ap4+1 + an + © (gn) .

N | =
=

2

B
Il

n
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By passing N — 400, we obtain

Z Q41 = Z (g1 — 2l + lyw+1 — vl + Nlwksr — wl])

k=n k=n

< 2(|[zns1 — zall + [[Ynt1 — Ynll + [Uns1 — uall) + 3CsCoyp (En)

< 2\/3 : \/Hxn-kl - anQ + ||yn+1 - yn||2 + ||un+l - unH2 + 3080950 (gn)

< 24/3C% - \/gn — 5n+1 + 30809%0 (gn) s

which gives the desired statement. 0
We can now formulate convergence rates for the sequence of generated iterates.

THEOREM 3.10. Let Assumption 2.11 be satisfied and {(Zn,Yn, 2n,Un)},q be a sequence generated by
Algorithm 2.1. Suppose further that VU satisfies the Lojasiewicz property with Lojasiewicz constant Cp > 0
and Lojasiewicz exponent 6 € [0,1). Let (x4, yx, 2%, usx) be the KKT point of the optimization problem (1.1)
to which {(zn, yn, zm“n)}n>0 converges as n — +00. Then the following statements are true:

1. if 0 = 0, then the algorithm converges in finite time; R
2. if 0 € (0,1/2], then there exist ng = 1, Cy1,Co2,Co3,Co.4a > 0 and Q € [0,1) such that for any
n = ng

20 — 24| < ConQF,  lyn — vsll < Co2@, 20 — z4ll < CosQ",  |un — us| < CouQF;

3. if 0 e (1/2,1), then there exist ng = 1 and 6’1,1,6’172,6173,6‘1,4 > 0 such that for any n =ng + 1

||an - -T*H < 6'1,171_21%—91’ ||yn _ y*” g 6,17271_ 219—_617
C o ~ 1-6
lzn — 24| < Cran™ 201, |Juy — uy| < Cpgn™20-1.

Proof. Let

1
QD . I:O, +OO) — [0, +OO), S — mCLSlio,

be the desingularization function.

(i) If = 0, then {¥,} _, converges in finite time. As seen in the proof of Theorem 3.4, the sequence
{(%n, Yns 2n, Un)}, > becomes identical to (T4, Yy, 24, us) starting from a given index. In other words, the
sequence {(Tn, Yn, Zn, Un)},>o converges also in finite time and the conclusion follows.

Let be 6 # 1 and nf, > 1 such that for any n > n{, the inequalities (3.8) in Lemma 3.9 and

1 201
< [ —
gn = (1 — 90L>
hold.

(ii) If 6 € (0,1/2), then 26 — 1 < 0 and thus for any n = nj,

1
T <Veén,

which implies that

max{ En, (Sn)} =&,

If = 1/2, then

@ (E,) = 201/ En,

thus

max{ En,ga(é'n)} — max {1,2CL} - /&, Vn > 1.



A MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX PROBLEMS 23

In both cases we have

max{ En,go(c‘fn)} < max {1,201} - /&, Vn = ny,.

By Theorem 3.8, there exist nfj = 1, Co > 0 and Q € [0, 1) such that for @ :=4/Q and every n > n{ it holds

VE, < \ CoQ™? =/ CoQ™.

The conclusion follows from Lemma 3.9 for ng := max {ng, ng}.
(iii) If @ € (1/2,1), then 260 — 1 > 0 and thus for any n > n

1 1-6
<
Ve < =016

which implies that

1

max{ 5n7%0(5n)} =p (&) = mCLgrlz_g-

By Theorem 3.8, there exist n{, > 1 and C; > 0 such that for any n > n/]

1-6

1 A~ _ -0
— CLCi=%(n—2)72r,

-0

o

Cr&y " <1

The conclusion follows again for ng := max {nj, nj} from Lemma 3.9. |
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