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Abstract. We propose a proximal algorithm for minimizing objective functions consisting of three summands: the com-
position of a nonsmooth function with a linear operator, another nonsmooth function, each of the nonsmooth summands
depending on an independent block variable, and a smooth function which couples the two block variables. The algorithm
is a full splitting method, which means that the nonsmooth functions are processed via their proximal operators, the smooth
function via gradient steps, and the linear operator via matrix times vector multiplication. We provide sufficient conditions for
the boundedness of the generated sequence and prove that any cluster point of the latter is a KKT point of the minimization
problem. In the setting of the Kurdyka- Lojasiewicz property we show global convergence, and derive convergence rates for the
iterates in terms of the  Lojasiewicz exponent.
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1. Introduction.

1.1. Problem formulation and motivation. In this paper we propose a full splitting algorithm for
solving nonconvex and nonsmooth problems of the form

(1.1) min
px,yqPRmˆRq

tF pAxq `G pyq `H px, yqu ,

where F : Rp Ñ RYt`8u and G : Rq Ñ RYt`8u are proper and lower semicontinuous functions, H : Rmˆ
Rq Ñ R is a Fréchet differentiable function with Lipschitz continuous gradient, and A : Rm Ñ Rp is a linear
operator. It is noticeable that neither for the nonsmooth nor for the smooth functions convexity is assumed.

In case m “ p and A is the identity operator, Bolte, Sabach and Teboulle formulated in [12], also in
the nonconvex setting, a proximal alternating linearization method (PALM) for solving (1.1). PALM is a
proximally regularized variant of the Gauss-Seidel alternating minimization scheme and it basically consists
of two proximal-gradient steps. It had a significant impact in the optimization community, as it can be
used to solve a large variety of nonconvex and nonsmooth problems arising in applications such as: matrix
factorization, image deblurring and denoising, the feasibility problem, compressed sensing, etc. An inertial
version of PALM has been proposed by Pock and Sabach in [26].

A naive approach of PALM for solving (1.1) would require the calculation of the proximal operator
of the function F ˝ A, for which, in general, even in the convex case, a closed formula is not available.
In the last decade, an impressive progress has been made in the field of primal-dual/proximal ADMM
algorithms, designed to solve convex optimization problems involving compositions with linear operators
in the spirit of the full splitting paradigm. One of the pillars of this development is the conjugate duality
theory which is available for convex optimization problems. In addition, several fundamental algorithms,
like the proximal method, the forward-backward splitting method, the regularized Gauss-Seidel method, the
proximal alternating method, the forward-backward-forward method, and some of their inertial variants have
been exported from the convex to the nonconvex setting and proved to convergence globally in the setting
of the Kurdyka- Lojasiewicz property (see, for instance, [1, 2, 3, 12, 6, 7]). However, a similar undertaking
for structured optimization problems, such as those which involve compositions with linear operators and
require for primal-dual methods with a full-splitting character, was by now not very successful. The main
reason for that is the absence in the nonconvex setting of a correspondent for the convex conjugate duality
theory.
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Despite these premises we succeed to provide in this paper a full splitting algorithm for solving the
nonconvex and nonsmooth problem (1.1); more precisely, the nonsmooth functions are processed via their
proximal operators, the smooth function via gradient steps, and the linear operator via matrix times vector
multiplication. The convergence analysis is based on a descent inequality, which we prove for a regularization
of the augmented Lagrangian Lβ : Rm ˆ Rq ˆ Rp ˆ Rp Ñ RY t`8u

Lβpx, y, z, uq “ F pzq `G pyq `H px, yq ` xu,Ax´ zy `
β

2
‖Ax´ z‖2 , β ą 0,

associated with problem (1.1). This is obtained by an appropriate tuning of the parameters involved in the
description of the algorithm. In addition, we provide sufficient conditions in terms of the input functions
F,G and H for the boundedness of the generated sequence of iterates. We also show that any cluster point
of this sequence is a KKT point of the optimization problem (1.1). By assuming that the above-mentioned
regularization of the augmented Lagrangian satisfies the Kurdyka- Lojasiewicz property, we prove global
convergence. If this function satisfies the  Lojasiewicz property, then we can even derive convergence rates
for the sequence of iterates formulated in terms of the  Lojasiewicz exponent. For similar approaches based on
the use of the Kurdyka- Lojasiewicz property in the proof of the global convergence of nonconvex optimization
algorithms we refer to the papers of Attouch and Bolte [1], Attouch, Bolte and Svaiter [3], and Bolte, Sabach
and Teboulle [12].

One of the benefits which comes with the new algorithm is that furnishes a full splitting iterative scheme
for the nonsmooth and nonconvex optimization problem

(1.2) min
xPRm

tF pAxq `H pxqu ,

which follows as a particular case of (1.1) for Gpyq “ 0 and Hpx, yq “ Hpxq for any px, yq P Rm ˆRq, where
H : Rm Ñ R is a Fréchet differentiable function with Lipschitz continuous gradient.

In the last years, several articles have been devoted to the design and convergence analysis of algorithms
for solving structured optimization problems in the nonconvex and nosmooth setting. They all focus on
algorithms relying on the alternating direction method of multipliers (ADMM), which is well-known not
to be a full splitting algorithm. Nonconvex ADMM algorithms for (1.2) have been proposed in [22], under
the assumption that H is twice continuously differentiable with bounded Hessian, and in [30], under the
assumption that one of the summands is convex and continuous on its effective domain. In [29], a general
nonconvex optimization problem involving compositions with linear operators and smooth coupling func-
tions is considered and the importance of providing sufficient conditions for the boundedness of the iterates
generated by the proposed nonconvex ADMM algorithm is recognized. This is achieved by assuming that
the objective function is continuous and coercive over the feasible set, while its nonsmooth part is either
restricted prox-regular or piecewise linear. Similar ingredients are used in [23] in the convergence analysis
of a nonconvex linearized ADMM algorithm. In [17], the ADMM technique is used to minimize the sum
of finitely many smooth nonconvex functions and a nonsmooth convex function, by reformulating it as a
general consensus problem. In [28], a multi-block Bregman ADMM algorithm is proposed and analyzed in a
setting based on restrictive strong convexity assumptions. On the other hand, in [18], two proximal variants
of the ADMM algorithm are introduced and the analyis is focused on providing iteration complexity bounds
to reach an ε-KKT solutions.

We would like to mention in this context also the recent publication [13] for the case when A is replaced
by a nonlinear continuously differentiable operator.

1.2. Notations and preliminaries. Every space Rd, where d is a positive integer, is assumed to be
equipped with the Euclidean inner product x¨, ¨y and associated norm ‖¨‖ “

a

x¨, ¨y. The Cartesian product
Rd1 ˆ Rd2 ˆ . . . ˆ Rdk of the Euclidean spaces Rdi , i “ 1, ..., k, will be endowed with inner product and
associated norm defined for x :“ px1, . . . , xkq , y :“ py1, . . . , ykq P Rd1 ˆ Rd2 ˆ . . .ˆ Rdk by

⟪x, y⟫ “
k
ÿ

i“1

xxi, yiy and |||x||| “

g

f

f

e

k
ÿ

i“1

‖xi‖2,
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respectively. For every x :“ px1, . . . , xkq P Rd1 ˆ Rd2 ˆ . . .ˆ Rdk we have

(1.3)
1
?
k

k
ÿ

i“1

‖xi‖ ď |||x||| “

g

f

f

e

k
ÿ

i“1

‖xi‖2 ď
k
ÿ

i“1

‖xi‖ .

Let ψ : Rd Ñ RYt`8u be a proper and lower semicontinuous function and x an element of its effective
domain domψ :“

 

y P Rd : ψ pyq ă `8
(

. The Fréchet (viscosity) subdifferential of ψ at x is

pBψ pxq :“

"

d P Rd : lim inf
yÑx

ψ pyq ´ ψ pxq ´ xd, y ´ xy

‖y ´ x‖
ě 0

*

and the limiting (Mordukhovich) subdifferential of ψ at x is

Bψ pxq :“ td P Rd : exist sequences xn Ñ x and dn Ñ d as nÑ `8

such that ψ pxnq Ñ ψ pxq as nÑ `8 and dn P pBψ pxnq for any n ě 0u.

For x R domψ, we set pBψ pxq “ Bψ pxq :“ H.

The inclusion pBψ pxq Ď ψ pxq holds for each x P Rd. If ψ is convex, then the two subdifferentials coincide
with the convex subdifferential of ψ, thus

pBψ pxq “ Bψ pxq “
 

d P Rd : ψ pyq ě ψ pxq ` xd, y ´ xy @y P Rd
(

for any x P Rd.

If x P Rd is a local minimum of ψ, then 0 P Bψ pxq. We denote by crit pψq :“
 

x P Rd : 0 P Bψ pxq
(

the set
of critical points of ψ. The limiting subdifferential fulfils the following closedness criterion: if txnuně0 and

tdnuně0 are sequence in Rd such that dn P Bψ pxnq for any n ě 0 and pxn, dnq Ñ px, dq and ψ pxnq Ñ ψ pxq as
nÑ `8, then d P Bψ pxq. We also have the following subdifferential sum formula (see [24, Proposition 1.107],
[27, Exercise 8.8]): if Φ: Rd Ñ R is a continuously differentiable function, then B pψ ` φq pxq “ Bψ pxq`∇φ pxq
for any x P Rd; and a formula for the subdifferential of the composition of ψ with a linear operator A : Rk Ñ
Rd (see [24, Proposition 1.112], [27, Exercise 10.7]): if A is injective, then B pψ ˝Aq pxq “ AT Bψ pAxq for any
x P Rk.

The following proposition collects some important properties of a (not necessarily convex) Fréchet differ-
entiable function with Lipschitz continuous gradient. For the proof of this result we refer to [8, Proposition
1].

Proposition 1.1. Let ψ : Rd Ñ R be Fréchet differentiable such that its gradient is Lipschitz continuous
with constant ` ą 0. Then the following statements are true:

1. For every x, y P Rd and every z P rx, ys “ tp1´ tqx` ty : t P r0, 1su it holds

(1.4) ψ pyq ď ψ pxq ` x∇ψ pzq , y ´ xy ` `

2
‖y ´ x‖2 ;

2. For any γ P Rz t0u it holds

(1.5) inf
xPRd

"

ψ pxq ´

ˆ

1

γ
´

`

2γ2

˙

‖∇ψ pxq‖2
*

ě inf
xPRd

ψ pxq .

The Descent Lemma, which says that for a Fréchet differentiable function ψ : Rd Ñ R having a Lipschitz
continuous gradient with constant ` ą 0 it holds

ψ pyq ď ψ pxq ` x∇ψ pxq , y ´ xy ` `

2
‖y ´ x‖2 @x, y P Rd,

follows from (1.4) for z :“ x.
In addition, by taking in (1.4) z :“ y we obtain

ψ pxq ě ψ pyq ` x∇ψ pyq , x´ yy ´ `

2
‖x´ y‖2 @x, y P Rd.
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This is equivalent to the fact that ψ`
`

2
‖¨‖2 is a convex function, which is the same with ψ is `-semiconvex

([11]). In other words, a consequence of Proposition (1.1) is, that a Fréchet differentiable function with
`-Lipschitz continuous gradient is `-semiconvex.

We close ths introductory section by presenting two convergence results for real sequences that will be
used in the sequel in the convergence analysis. The following lemma is useful when proving convergence of
numerical algorithms relying on Fejér monotonicity techniques (see, for instance, [6, Lemma 2.2], [7, Lemma
2]).

Lemma 1.2. Let tξnuně0 be a sequence of real numbers and tωnuně0 a sequence of real nonnegative
numbers. Assume that tξnuně0 is bounded from below and that for any n ě 0

ξn`1 ` ωn ď ξn.

Then the following statements hold:
1. the sequence tωnuně0 is summable, namely

ÿ

ně0

ωn ă `8;

2. the sequence tξnuně0 is monotonically decreasing and convergent.

The following lemma can be found in [6, Lemma 2.3] (see, also [7, Lemma 3]).

Lemma 1.3. Let tanuně0 and tbnuně1 be sequences of real nonnegative numbers such that for any n ě 1

(1.6) an`1 ď χ0an ` χ1an´1 ` bn,

where χ0 P R and χ1 ě 0 fulfill χ0 ` χ1 ă 1, and
ÿ

ně1

bn ă `8. Then
ÿ

ně0

an ă `8.

2. The algorithm. The numerical algorithm we propose for solving (1.1) has the following formulation.

Algorithm 2.1. Let µ, β, τ ą 0 and 0 ă σ ď 1. For a given starting point px0, y0, z0, u0q P Rm ˆ Rq ˆ
Rp ˆ Rp generate the sequence tpxn, yn, zn, unquně0 for any n ě 0 as follows

yn`1 P arg min
yPRq

!

G pyq ` x∇yH pxn, ynq , yy `
µ

2
‖y ´ yn‖2

)

(2.1a)

zn`1 P arg min
zPRp

"

F pzq ` xun, Axn ´ zy `
β

2
‖Axn ´ z‖2

*

(2.1b)

xn`1 :“ xn ´ τ
´1

`

∇xH pxn, yn`1q `A
Tun ` βA

T pAxn ´ zn`1q
˘

(2.1c)

un`1 :“ un ` σβ pAxn`1 ´ zn`1q .(2.1d)

The proximal point operator with parameter γ ą 0 (see [25]) of a proper and lower semicontinuous function
ψ : Rd Ñ RY t`8u is the set-valued operator defined as

proxγψ : Rd Ñ 2R
d

, proxγψ pxq “ arg min
yPRd

"

ψ pyq `
1

2γ
‖x´ y‖2

*

.

Exact formulas for the proximal operator are available not only for large classes of convex functions ([4, 5, 14]),
but also for various nonconvex functions ([2, 15, 21]). In view of the above definition, the iterative scheme
(2.1a) - (2.1d) reads for every n ě 0

yn`1 P proxµ´1G

`

yn ´ µ
´1∇yH pxn, ynq

˘

zn`1 P proxβ´1F

`

Axn ` β
´1un

˘

xn`1 :“ xn ´ τ
´1

`

∇xH pxn, yn`1q `A
Tun ` βA

T pAxn ´ zn`1q
˘

un`1 :“ un ` σβ pAxn`1 ´ zn`1q .

One can notice the full splitting character of Algorithm 2.1 and also that the first two steps can be performed
in parallel.
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Remark 2.2. 1. In case Gpyq “ 0 and Hpx, yq “ Hpxq for any px, yq P RmˆRq, where H : Rm Ñ R
is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm 2.1 gives rise to
an iterative scheme for solving (1.2) (see also [8]) that reads for any n ě 0

zn`1 P proxβ´1F

`

Axn ` β
´1un

˘

xn`1 :“ xn ´ τ
´1

`

∇H pxnq `ATun ` βAT pAxn ´ zn`1q
˘

un`1 :“ un ` σβ pAxn`1 ´ zn`1q .

2. In case m “ p and A “ Id is the identity operator on Rm, Algorithm 2.1 gives rise to an iterative
scheme for solving

(2.2) min
px,yqPRmˆRq

tF pxq `G pyq `H px, yqu ,

which reads for any n ě 0

yn`1 P proxµ´1G

`

yn ´ µ
´1∇yH pxn, ynq

˘

zn`1 P proxβ´1F

`

xn ` β
´1un

˘

xn`1 :“ xn ´ τ
´1 p∇xH pxn, yn`1q ` un ` β pxn ´ zn`1qq

un`1 :“ un ` σβ pxn`1 ´ zn`1q .

We notice that, similar to PALM ([12]), which is also designed to solve optimization problems of the
form (2.2), the algorithm evaluates F and G by proximal steps, while H is evaluated by gradient
steps for each of the two blocks.

3. In case m “ p, A “ Id, F pxq “ 0 and Hpx, yq “ Hpyq for any px, yq P Rm ˆ Rq, where H : Rq Ñ R
is a Fréchet differentiable function with Lipschitz continuous gradient, Algorithm 2.1 gives rise to
an iterative scheme for solving

(2.3) min
yPRq

tGpyq `H pyqu ,

which reads for any n ě 0

yn`1 P proxµ´1G

`

yn ´ µ
´1∇Hpynq

˘

,

and is nothing else than the proximal-gradient method. An inertial version of the proximal-gradient
method for solving (2.3) in the fully nonconvex setting has been considered in [7].

2.1. A descent inequality. We will start with the convergence analysis of Algorithm (2.1) by proving
a descent inequality, which will play a fundamental role in our investigations. We will analyse Algorithm
(2.1) under the following assumptions, which we will be later even weakened.

Assumption 2.3. 1. the functions F,G and H are bounded from below;
2. the linear operator A is surjective;
3. for any fixed y P Rq there exists `1pyq ě 0 such that

(2.4a)
∥∥∇xH px, yq ´∇xH

`

x1, y
˘
∥∥ ď `1 pyq

∥∥x´ x1∥∥ @x, x1 P Rm,

and for any fixed x P Rm there exist `2pxq, `3pxq ě 0 such that∥∥∇yH px, yq ´∇yH
`

x, y1
˘
∥∥ ď `2 pxq

∥∥y ´ y1∥∥ @y, y1 P Rq,(2.4b) ∥∥∇xH px, yq ´∇xH
`

x, y1
˘
∥∥ ď `3 pxq

∥∥y ´ y1∥∥ @y, y1 P Rq;(2.4c)

4. there exist `i,` ą 0, i “ 1, 2, 3, such that

(2.5) sup
ně0

`1 pynq ď `1,`, sup
ně0

`2 pxnq ď `2,`, sup
ně0

`3 pxnq ď `3,`.

Remark 2.4. Some comments on Assumption 2.3 are in order.
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1. Assumption 1 ensures that the sequence generated by Algorithm 2.1 is well-defined. It has also as
consequence that

(2.6) Ψ :“ inf
px,y,zqˆRmˆRqˆRp

tF pzq `G pyq `H px, yqu ą ´8.

2. Comparing the assumptions in (iii) and (iv) to the ones in [12], one can notice the presence of
the additional condition (2.4c), which is essential in particular when proving the boundedness of
the sequence of generated iterates. Notice that in iterative schemes of gradient type, proximal-
gradient type or forward-backward-forward type (see [12, 6, 7]) the boundedness of the iterates
follow by combining a descent inequality expressed in terms of the objective function with coercivity
assumptions on the later. In our setting this undertaken is less simple, since the descent inequality
which we obtain below is in terms of the augmented Lagrangian associated with problem (1.1).

3. The linear operator A is surjective if and only if its associated matrix has full row rank, which is
the same with the fact that the matrix associated to AAT is positively definite. Since

λmin

`

AAT
˘

‖z‖2 ď xAAT z, zy “
∥∥AT z∥∥2 @z P Rp,

this is further equivalent to λmin

`

AAT
˘

ą 0, where λmin pMq denotes the minimal eigenvalue of a
square matrix M . We also denote by κpMq the condition number of M , namely the ratio between
the maximal eigenvalue λmaxpMq and the minimal eigenvalue of the square matrix M ,

κ pMq :“
λmax pMq

λmin pMq
“

‖M‖2

λmin pMq
ě 1.

Here, }M} denotes the operator norm of M induced by the Euclidean vector norm.

The convergence analysis will make use of the following regularized augmented Lagrangian function

Ψ: Rm ˆ Rq ˆ Rp ˆ Rp ˆ Rm ˆ Rp Ñ RY t`8u ,

defined as

`

x, y, z, u, x1, u1
˘

ÞÑ F pzq `G pyq `H px, yq ` xu,Ax´ zy `
β

2
‖Ax´ z‖2

` C0

∥∥AT `

u´ u1
˘

` σB
`

x´ x1
˘
∥∥2 ` C1

∥∥x´ x1∥∥2 ,
where

B :“ τ Id´ βATA, C0 :“
4 p1´ σq

σ2βλmin pAAT q
ě 0 and C1 :“

8 pστ ` `1,`q
2

σβλmin pAAT q
ą 0.

Notice that

‖B‖ ď τ,

whenever 2τ ě β ‖A‖2. Indeed, this is a consequence of the relation

}Bx}2 “ τ2}x}2 ´ 2τβ}Ax}2 ` β2}ATAx}2 ď τ2}x}2 ` βpβ}A}2 ´ 2τq}Ax}2 @x P Rm.

For simplification, we introduce the following notations

R :“ Rm ˆ Rq ˆ Rp ˆ Rp ˆ Rm ˆ Rp

X :“
`

x, y, z, u, x1, u1
˘

Xn :“ pxn, yn, zn, un, xn´1, un´1q @n ě 1

Ψn :“ Ψ pXnq @n ě 1.

The next result provides the announced descent inequality.
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Lemma 2.5. Let Assumption 2.3 be satisfied, 2τ ě β ‖A‖2 and tpxn, yn, zn, unquně0 be a sequence gen-
erated by Algorithm 2.1. Then for any n ě 1 it holds

(2.7) Ψn`1 ` C2 ‖xn`1 ´ xn‖2 ` C3 ‖yn`1 ´ yn‖2 ` C4 ‖un`1 ´ un‖2 ď Ψn,

where

C2 :“ τ ´
`1,` ` β ‖A‖2

2
´

4στ2

βλmin pAAT q
´

8 pστ ` `1,`q
2

σβλmin pAAT q
,

C3 :“
µ´ `2,`

2
´

8`23,`
σβλmin pAAT q

,

C4 :“
1

σβ
.

Proof. Let n ě 1 be fixed. We will show first that

F pzn`1q `G pyn`1q `H pxn`1, yn`1q ` xun`1, Axn`1 ´ zn`1y `
β

2
‖Axn`1 ´ zn`1‖2

`

˜

τ ´
`1,` ` β ‖A‖2

2

¸

‖xn`1 ´ xn‖2 `
µ´ `2,`

2
‖yn`1 ´ yn‖2 `

1

σβ
‖un`1 ´ un‖2

ď F pznq `G pynq `H pxn, ynq ` xun, Axn ´ zny `
β

2
‖Axn ´ zn‖2 `

2

σβ
‖un`1 ´ un‖2(2.8)

and provide afterwards an upper estimate for the term ‖un`1 ´ un‖2 on the right-hand side of (2.8).
From (2.1a) and (2.1b) we obtain

G pyn`1q ` x∇yH pxn, ynq , yn`1 ´ yny `
µ

2
‖yn`1 ´ yn‖2 ď G pynq

and

F pzn`1q ` xun, Axn ´ zn`1y `
β

2
‖Axn ´ zn`1‖2 ď F pznq ` xun, Axn ´ zny `

β

2
‖Axn ´ zn‖2 ,

respectively. Adding these two inequalities yields

F pzn`1q `G pyn`1q ` xun, Axn ´ zn`1y `
β

2
‖Axn ´ zn`1‖2 ` x∇yH pxn, ynq , yn`1 ´ yny

`
µ

2
‖yn`1 ´ yn‖2

ď F pznq `G pynq ` xun, Axn ´ zny `
β

2
‖Axn ´ zn‖2 .(2.9)

On the other hand, according to the Descent Lemma we have

H pxn, yn`1q ď H pxn, ynq ` x∇yH pxn, ynq , yn`1 ´ yny `
`2 pxnq

2
‖yn`1 ´ yn‖2

ď H pxn, ynq ` x∇yH pxn, ynq , yn`1 ´ yny `
`2,`

2
‖yn`1 ´ yn‖2

and, further, by taking into consideration (2.1c),

H pxn`1, yn`1q ď H pxn, yn`1q ` x∇xH pxn, yn`1q , xn`1 ´ xny `
`1 pyn`1q

2
‖xn`1 ´ xn‖2

“ H pxn, yn`1q ´ xun, Axn`1 ´Axny ´ β xAxn ´ zn`1, Axn`1 ´Axny

´

ˆ

τ ´
`1 pyn`1q

2

˙

‖xn`1 ´ xn‖2

ď H pxn, yn`1q ´ xun, Axn`1 ´Axny `
β

2
‖Axn ´ zn`1‖2 ´

β

2
‖Axn`1 ´ zn`1‖2

´

˜

τ ´
`1,` ` β ‖A‖2

2

¸

‖xn`1 ´ xn‖2 .
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Combining the two above estimates we get

H pxn`1, yn`1q ` xun, Axn`1 ´Axny ´
β

2
‖Axn ´ zn`1‖2 `

β

2
‖Axn`1 ´ zn`1‖2 ´

`2,`
2

‖yn`1 ´ yn‖2

`

˜

τ ´
`1,` ` β ‖A‖2

2

¸

‖xn`1 ´ xn‖2

ď H pxn, ynq ` x∇yH pxn, ynq , yn`1 ´ yny .
(2.10)

We obtain (2.8) after we sum up (2.9) and (2.10), use (2.1d), and add
2

σβ
‖un`1 ´ un‖2 to both sides of the

resulting inequality.
Next we will focus on estimating ‖un`1 ´ un‖2. We can rewrite (2.1c) as

τ pxn ´ xn`1q “ ∇xH pxn, yn`1q `A
Tun ` βA

T pAxn`1 ´ zn`1q ` βA
TA pxn ´ xn`1q

“ ∇xH pxn, yn`1q `A
Tun `

1

σ
AT pun`1 ´ unq ` βA

TA pxn ´ xn`1q ,

where the last equation is due to (2.1d). After multiplying both sides by σ and rearranging the terms, we
get

ATun`1 ` σB pxn`1 ´ xnq “ p1´ σqA
Tun ´ σ∇xH pxn, yn`1q .

Since n has been arbitrarily chosen, we also have

ATun ` σB pxn ´ xn´1q “ p1´ σqA
Tun´1 ´ σ∇xH pxn´1, ynq .

Subtracting these relations and making use of the notations

wn :“ AT pun ´ un´1q ` σB pxn ´ xn´1q

vn :“ σB pxn ´ xn´1q `∇xH pxn´1, ynq ´∇xH pxn, yn`1q ,

it yields

wn`1 “ p1´ σqwn ` σvn.

The convexity of ‖¨‖2 guarantees that (notice that 0 ă σ ď 1)

(2.11) ‖wn`1‖2 ď p1´ σq ‖wn‖2 ` σ ‖vn‖2 .

In addition, from the definitions of wn and vn, we obtain

(2.12)
∥∥AT pun`1 ´ unq

∥∥ ď ‖wn`1‖` σ ‖B‖ ‖xn`1 ´ xn‖ ď ‖wn`1‖` στ ‖xn`1 ´ xn‖

and

‖vn‖ ď σ ‖B‖ ‖xn ´ xn´1‖` ‖∇xH pxn´1, ynq ´∇xH pxn, yn`1q‖
ď στ ‖xn ´ xn´1‖` ‖∇xH pxn´1, ynq ´∇xH pxn, ynq‖` ‖∇xH pxn, ynq ´∇xH pxn, yn`1q‖
ď pστ ` `1,`q ‖xn ´ xn´1‖` `3,` ‖yn`1 ´ yn‖(2.13)

respectively. Using the Cauchy-Schwarz inequality, (2.12) yields

λmin

`

AAT
˘

2
‖un`1 ´ un‖2 ď

1

2

∥∥AT pun`1 ´ unq
∥∥2 ď ‖wn`1‖2 ` σ2τ2 ‖xn`1 ´ xn‖2

and (2.13) yields

‖vn‖2 ď 2 pστ ` `1,`q
2 ‖xn ´ xn´1‖2 ` 2`23,` ‖yn`1 ´ yn‖2 .
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After combining these two inequalities with (2.11), we get

σλmin

`

AAT
˘

2
‖un`1 ´ un‖2 ` p1´ σq ‖wn`1‖2

ďp1´ σq ‖wn‖2 ` σ3τ2 ‖xn`1 ´ xn‖2 ` 2σ pστ ` `1,`q
2 ‖xn ´ xn´1‖2 ` 2σ`23,` ‖yn`1 ´ yn‖2 .

After multiplying the above relation by
4

σ2βλmin pAAT q
ą 0 and adding the resulting inequality to (2.8)

it yields

F pzn`1q `G pyn`1q `H pxn`1, yn`1q ` xun`1, Axn`1 ´ zn`1y `
β

2
‖Axn`1 ´ zn`1‖2

`
4p1´ σq

σ2βλminpAAT q
}AT pun`1 ´ unq ` σBpxn`1 ´ xnq}

2 `
8 pστ ` `1,`q

2

σβλmin pAAT q
}xn`1 ´ xn}

2

`

˜

τ ´
`1,` ` β ‖A‖2

2
´ σ3τ2 ´

8 pστ ` `1,`q
2

σβλmin pAAT q

¸

‖xn`1 ´ xn‖2

`

˜

µ´ `2,`
2

´
8`23,`

σβλmin pAAT q

¸

‖yn`1 ´ yn‖2 `
1

σβ
‖un`1 ´ un‖2

ď F pznq `G pynq `H pxn, ynq ` xun, Axn ´ zny `
β

2
‖Axn ´ zn‖2

`
4p1´ σq

σ2βλminpAAT q
}AT pun ´ un´1q ` σBpxn ´ xn´1q}

2 `
8 pστ ` `1,`q

2

σβλmin pAAT q
}xn ´ xn´1}

2,

which is nothing else than (2.7).

The following result provides one possibility to choose the parameters in Algorithm 2.1, such that all
three constants C2, C3 and C4 that appear in (2.7) are positive.

Lemma 2.6. Let

(2.14a) 0 ă σ ă
1

24κ pAAT q

(2.14b) β ą
ν

1´ 24σκ pAAT q

ˆ

4` 3σ `
b

24` 24σ ` 9σ2 ´ 192σκ pAAT q

˙

ą 0

(2.14c) max

#

β ‖A‖2

2
,
βλmin

`

AAT
˘

24σ

ˆ

1´
4ν

β
´
a

∆1τ

˙

+

ă τ ă
βλmin

`

AAT
˘

24σ

ˆ

1´
4ν

β
`
a

∆1τ

˙

(2.14d) µ ą `2,` `
16`23,`

σβλmin pAAT q
ą 0,

where

ν :“
4`1,`

λmin pAAT q
ą 0 and ∆1τ :“ 1´

8ν

β
´

8ν2

β2
´

6νσ

β
´ 24σκ

`

AAT
˘

ą 0.

Then we have

min tC2, C3, C4u ą 0.

Furthermore, there exist γ1, γ2 P Rz t0u such that

(2.15)
1

γ1
´
`1,`
2γ21

“
1

βλmin pAAT q
and

1

γ2
´
`1,`
2γ22

“
2

βλmin pAAT q
.
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Proof. We will prove first that C2 ą 0 or, equivalently,

(2.16) ´ 2C2 “
24στ2

βλmin pAAT q
´ 2

ˆ

1´
16`1,`

βλmin pAAT q

˙

τ `
16`21,`

σβλmin pAAT q
` `1,` ` β ‖A‖2 ă 0.

The reduced discriminant of the quadratic function in τ in the above relation fulfils

∆1τ :“

ˆ

1´
16`1,`

βλmin pAAT q

˙2

´
384`21,`

β2λ2min pAA
T q
´

24`1,`σ

βλmin pAAT q
´ 24σκ

`

AAT
˘

“

ˆ

1´
4ν

β

˙2

´
24ν2

β2
´

6νσ

β
´ 24σκ

`

AAT
˘

“ 1´
8ν

β
´

8ν2

β2
´

6νσ

β
´ 24σκ

`

AAT
˘

ą 0,(2.17)

if σ and β are being chosen as in (2.14a) and (2.14b), respectively. Indeed, the inequality (2.17) is equivalent
to

`

1´ 24σκ
`

AAT
˘˘

β2 ´ 2 p4` 3σq νβ ´ 8ν2 ą 0.

The reduced discriminant of the quadratic function in β in the above relation reads

∆β :“
”

p4` 3σq
2
` 8

`

1´ 24σκ
`

AAT
˘˘

ı

ν2 “
“

24` 24σ ` 9σ2 ´ 192σκ
`

AAT
˘‰

ν2 ą 0

as 24 ´ 192σκ
`

AAT
˘

“ 16 ` 8
`

1´ 24σκ
`

AAT
˘˘

ą 0 for every σ that satisfies (2.14a). Hence, for every σ
satisfying (2.14a) and every β satisfying (2.14b) it holds (2.17). Therefore, (2.16) is satisfied for every

βλmin

`

AAT
˘

24σ

ˆ

1´
4ν

β
´
a

∆1τ

˙

ă τ ă
βλmin

`

AAT
˘

24σ

ˆ

1´
4ν

β
`
a

∆1τ

˙

.

It remains to verify the feasibility of τ in (2.14c), in other words, to prove that

β ‖A‖2

2
ă
βλmin

`

AAT
˘

24σ

ˆ

1´
4ν

β
`
a

∆1τ

˙

.

This is easy to see, as, according to (2.17), we have

β ‖A‖2

2
ă
βλmin

`

AAT
˘

24σ

ˆ

1´
4ν

β

˙

ô 1´
4ν

β
´ 12σκ

`

AAT
˘

ą 0.

The positivity of C3 follows from the choice of µ in (2.14d), while, obviously, C4 ą 0.
Finally, we notice that the reduced discriminants of the two quadratic equations in (2.15) (in γ1 and,

respectively, γ2) are

∆γ1 :“ 1´
2`1,`

βλmin pAAT q
“ 1´

ν

2β
and, respectively, ∆γ2 :“ 1´

`1,`
βλmin pAAT q

“ 1´
ν

4β
.

Since

β ą
ν

1´ 24σκ pAAT q
ą
ν

2
,

it follows that ∆γ1 ,∆γ2 ą 0 and hence each of the two equations has a nonzero real solution.

Remark 2.7. Hong and Luo proved recently in [16] linear convergence for the iterates generated by a
Lagrangian-based algorithm in the convex setting, without any strong convexity assumption. To this end a
certain error bound condition must hold true and the step size of the dual update, which is also assumed to
depend on the error bound constants, must be taken small. It is also mentioned that the dual step size may
be cumbersome to compute unless the objective function is strongly convex. As one can see in (2.14a) and
(2.14b), the step size of the dual update in our algorithm can be chosen only in dependence of the condition
number of AAT .
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Theorem 2.8. Let Assumption 2.3 be satisfied and the parameters in Algorithm 2.1 be such that 2τ ě
β ‖A‖2 and the constants defined in Lemma 2.5 fulfil mintC2, C3, C4u ą 0. If tpxn, yn, zn, unquně0 is a
sequence generated by Algorithm 2.1, then the following statements are true:

1. the sequence tΨnuně1 is bounded from below and convergent;
2.

(2.18) xn`1 ´ xn Ñ 0, yn`1 ´ yn Ñ 0, zn`1 ´ zn Ñ 0 and un`1 ´ un Ñ 0 as nÑ `8.

Proof. First, we show that Ψ defined in (2.6) is a lower bound of tΨnuně2. Suppose the contrary, namely
that there exists n0 ě 2 such that Ψn0´Ψ ă 0. According to Lemma 2.5, tΨnuně1 is a nonincreasing sequence
and thus for any N ě n0

N
ÿ

n“1

pΨn ´Ψq ď
n0´1
ÿ

n“1

pΨn ´Ψq ` pN ´ n0 ` 1q pΨn0
´Ψq ,

which implies that

lim
NÑ`8

N
ÿ

n“1

pΨn ´Ψq “ ´8.

On the other hand, for any n ě 1 it holds

Ψn ´Ψ ě F pznq `G pynq `H pxn, ynq ` xun, Axn ´ zny ´Ψ

ě xun, Axn ´ zny “
1

σβ
xun, un ´ un´1y “

1

2σβ
‖un‖2 `

1

2σβ
‖un ´ un´1‖2 ´

1

2σβ
‖un´1‖2 .

Therefore, for any N ě 1, we have

N
ÿ

n“1

pΨn ´Ψq ě
1

2σβ

N
ÿ

n“1

‖un ´ un´1‖2 `
1

2σβ
‖uN‖2 ´ 1

2σβ
‖u0‖2 ě ´

1

2σβ
‖u0‖2 ,

which leads to a contradiction. As tΨnuně1 is bounded from below, we obtain from Lemma 1.2 statement
1 and also that

xn`1 ´ xn Ñ 0, yn`1 ´ yn Ñ 0 and un`1 ´ un Ñ 0 as nÑ `8.

Since for any n ě 1 it holds

‖zn`1 ´ zn‖ ď ‖A‖ ‖xn`1 ´ xn‖` ‖Axn`1 ´ zn`1‖` ‖Axn ´ zn‖

“ ‖A‖ ‖xn`1 ´ xn‖`
1

σβ
‖un`1 ´ un‖`

1

σβ
‖un ´ un´1‖ ,

(2.19)

it follows that zn`1 ´ zn Ñ 0 as nÑ `8.

Remark 2.9. Usually, for nonconvex algorithms, the fact that the sequences of differences of consecutive
iterates converge to zero is shown by assuming that the generated sequences are bounded (see [8, 22, 30]).
In our analysis the only ingredients for obtaining statement (ii) in Theorem 2.8 are the descent property and
Lemma 1.2.

As one can notice, the assumption that mintC2, C3, C4u ą 0 plays an essential role in our analysis. In
Lemma 2.6 we provide possible choices of the algorithm parameters, which lead to the fulfillment of this
assumption. However, these choices depend on ``,1, which, at is turn, is defined as being a finite upper
bound for the sequence of Lipschitz constants p`1pynqqně0 (see (2.5)). This condition is definitely fulfilled
when `1 is globally bounded. This is for instance the case when H depends only on x and has a Lipschitz
continous gradient (see Remark 2.2(i)), but also when H depends only on y.
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2.2. General conditions for the boundedness of tpxn, yn, zn, unquně0. In the following we will
formulate general conditions in terms of the input data of the optimization problem (1.1) which guarantee
the boundedness of the sequence tpxn, yn, zn, unquně0. Working in the setting of Theorem 2.8, thanks to
(2.18), we have that the sequences txn`1 ´ xnuně0, tyn`1 ´ ynuně0, tzn`1 ´ znuně0 and tun`1 ´ ununě0

are bounded. Denote

s˚ :“ sup
ně0

t‖xn`1 ´ xn‖ , ‖yn`1 ´ yn‖ , ‖zn`1 ´ zn‖ , ‖un`1 ´ un‖u ă `8.

Even though this observation does not imply immediately that tpxn, yn, zn, unquně0 is bounded, this will

follow under standard coercivity assumptions. Recall that a function ψ : Rd Ñ RY t`8u is called coercive,
if lim‖x‖Ñ`8 ψ pxq “ `8.

Theorem 2.10. Let Assumption 2.3 be satisfied and the parameters in Algorithm 2.1 be such that 2τ ě
β ‖A‖2, the constants defined in Lemma 2.5 fulfil mintC2, C3, C4u ą 0 and there exist γ1, γ2 P Rzt0u such
that (2.15) holds. Suppose that one of the following conditions hold:

1. the function H is coercive;
2. the operator A is invertible, and F and G are coercive.

Then every sequence tpxn, yn, zn, unquně0 generated by Algorithm 2.1 is bounded.

Proof. Let n ě 1 be fixed. According to Lemma 2.5 we have that

Ψ1 ě . . . ě Ψn ě Ψn`1

ě F pzn`1q `G pyn`1q `H pxn`1, yn`1q ´
1

2β
‖un`1‖2 `

β

2

∥∥∥∥Axn`1 ´ zn`1 `
1

β
un`1

∥∥∥∥2 .(2.20)

After multiplying (2.1c) by ´τ and using (2.1d) it yields

ATun`1 “ ATun ` σβA
T pAxn`1 ´ zn`1q “ ATun ` pσ ´ 1qβAT pAxn`1 ´ zn`1q ` βA

T pAxn`1 ´ zn`1q

“

ˆ

1´
1

σ

˙

AT pun`1 ´ unq `A
Tun ` βA

T pAxn ´ zn`1q ` βA
TApxn`1 ´ xnq

“

ˆ

1´
1

σ

˙

AT pun`1 ´ unq ` pτ Id´ βATAqpxn ´ xn`1q ´∇xH pxn, yn`1q

“

ˆ

1´
1

σ

˙

AT pun`1 ´ unq `B pxn ´ xn`1q

`∇xH pxn`1, yn`1q ´∇xH pxn, yn`1q ´∇xH pxn`1, yn`1q .(2.21)

This implies∥∥ATun`1

∥∥ ď ˆ

1

σ
´ 1

˙

‖A‖ ‖un`1 ´ un‖` pτ ` `1,`q ‖xn`1 ´ xn‖` ‖∇xH pxn`1, yn`1q‖

ď

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙

s˚ ` ‖∇xH pxn`1, yn`1q‖ .

By using the Cauchy-Schwarz inequality we further obtain

λmin

`

AAT
˘

‖un`1‖2 ď
∥∥ATun`1

∥∥2 ď 2

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙2

s2˚ ` 2 ‖∇xH pxn`1, yn`1q‖2 .

Multiplying the above relation by
1

2βλmin pAAT q
and combining it with (2.20), we get

Ψ1 ě F pzn`1q `G pyn`1q `H pxn`1, yn`1q ´
1

βλmin pAAT q
‖∇xH pxn`1, yn`1q‖2

´
1

βλmin pAAT q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙2

s2˚ `
β

2

∥∥∥∥Axn`1 ´ zn`1 `
1

β
un`1

∥∥∥∥2 .(2.22)

We will prove the boundedness of tpxn, yn, zn, unquně0 in each of the two scenarios.
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1. According to (2.22) and Proposition 1.1, we have that for any n ě 1

1

2
H pxn`1, yn`1q `

β

2

∥∥∥∥Axn`1 ´ zn`1 `
1

β
un`1

∥∥∥∥2
ď Ψ1 `

1

βλmin pAAT q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙2

s2˚ ´ inf
zPRp

F pzq ´ inf
yPRm

G pyq

´
1

2
inf
ně1

"

H pxn`1, yn`1q ´

ˆ

1

γ2
´
`1,`
2γ22

˙

‖∇xH pxn`1, yn`1q‖2
*

ď Ψ1 `
1

βλmin pAAT q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙2

s2˚ ´ inf
zPRp

F pzq ´ inf
yPRq

G pyq ´ inf
px,yqPRmˆRq

H px, yq

ă `8.

Since H is coercive and bounded from below, we have that tpxn, ynquně0 and

"

Axn ´ zn `
1

β
un

*

ně0

are bounded. As, according to (2.1d), tAxn ´ znuně0 is bounded, it follows that tununě0 and
tznuně0 are also bounded.

2. According to (2.22) and Proposition 1.1, we have this time that for any n ě 1

F pzn`1q `G pyn`1q `
β

2

∥∥∥∥Axn`1 ´ zn`1 `
1

β
un`1

∥∥∥∥2
ď Ψ1 `

1

βλmin pAAT q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙2

s2˚

´ inf
ně1

"

H pxn`1, yn`1q ´

ˆ

1

γ1
´
`1,`
2γ21

˙

‖∇xH pxn`1, yn`1q‖2
*

ď Ψ1 `
1

βλmin pAAT q

ˆˆ

1

σ
´ 1

˙

‖A‖` τ ` `1,`
˙2

s2˚ ´ inf
px,yqPRmˆRq

H px, yq ă `8.

Since F and G are coercive and bounded from below, it follows that the sequences tpyn, znquně0

and

"

Axn ´ zn `
1

β
un

*

ně0

are bounded. As, according to (2.1d), tAxn ´ znuně0 is bounded, it

follows that tununě0 and tAxnuně0 are bounded. The fact that A is invertible implies that txnuně0

is bounded.

2.3. The cluster points of tpxn, yn, zn, unquně0 are KKT points. We will close this section ded-
icated to the convergence analysis of the sequence generated by Algorithm 2.1 in a general framework by
proving that any cluster point of tpxn, yn, zn, unquně0 is a KKT point of the optimization problem (1.1). We
provided above general conditions which guarantee both the descent inequality (2.7), with positive constants
C2, C3 and C4, and the boundedness of the generated iterates. Lemma 2.6 and Theorem 2.10 provide one
possible setting that ensures these two fundamental properties of the convergence analysis. We do not want
to restrict ourselves to this particular setting and, therefore, we will work, from now on, under the following
assumptions.

Assumption 2.11. 1. the functions F,G and H are bounded from below;
2. the linear operator A is surjective;
3. every sequence tpxn, yn, zn, unquně0 generated by the Algorithm 2.1 is bounded:
4. ∇H is Lipschitz continuous with constant L ą 0 on a convex bounded subset B1 ˆ B2 Ď Rm ˆ Rq

containing tpxn, ynquně0. In other words, for any px, yq , px1, y1q P B1 ˆB2 it holds

(2.23) |||
`

∇xH px, yq ´∇xH
`

x1, y1
˘

,∇yH px, yq ´∇yH
`

x1, y1
˘˘

||| ď L|||px, yq ´
`

x1, y1
˘

|||;
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5. the parameters µ, β, τ ą 0 and 0 ă σ ď 1 are such that 2τ ě β}A}2 and mintC2, C3, C4u ą 0, where

C2 :“ τ ´
L
?

2` β ‖A‖2

2
´

4στ2

βλmin pAAT q
´

8
`

στ ` L
?

2
˘2

σβλmin pAAT q
,

C3 :“
µ´ L

?
2

2
´

16L2

σβλmin pAAT q
,

C4 :“
1

σβ
.

Remark 2.12. Being facilitated by the boundedness of the generated sequence, Assumption 2.11 4 not
only guarantee the fulfilment of Assumption 2.3 3 and 4 on a convex bounded set, but it also arises in a more
natural way (see also [12]). Assumption 2.11 4 holds, for instance, if H is twice continuously differentiable.
In addition, as (2.23) implies for any px, yq , px1, y1q P B1 ˆB2 that∥∥∇xH px, yq ´∇xH

`

x1, y1
˘
∥∥` ∥∥∇yH px, yq ´∇yH

`

x1, y1
˘
∥∥ ď L

?
2
`
∥∥x´ x1∥∥` ∥∥y ´ y1∥∥˘ ,

we can take

(2.24) `1,` “ `2,` “ `3,` :“ L
?

2.

As (2.4a) - (2.4c) are valid also on a convex bounded set, the descent inequality

(2.25) Ψn`1 ` C2 ‖xn`1 ´ xn‖2 ` C3 ‖yn`1 ´ yn‖2 ` C4 ‖un`1 ´ un‖2 ď Ψn @n ě 1

remains true, for constants C2, C3, C4 taken as in Lemma 2.5 and by taking into consideration (2.24). A
possible choice of the parameters of the algorithm such that min tC2, C3, C4u ą 0 can be obtained also from
Lemma 2.6.

The next result provide upper estimates for the limiting subgradients of the regularized function Ψ at
pxn, yn, zn, unq for every n ě 1.

Lemma 2.13. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by Al-
gorithm 2.1. Then for any n ě 1 it holds

(2.26) Dn :“
`

dnx , d
n
y , d

n
z , d

n
u, d

n
x1 , d

n
u1
˘

P BΨ pXnq ,

where

dnx :“ ∇xH pxn, ynq `A
Tun ` βA

T pAxn ´ znq ` 2C1 pxn ´ xn´1q

` 2σC0B
T
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

,
(2.27a)

dny :“ ∇yH pxn, ynq ´∇yH pxn´1, yn´1q ` µ pyn´1 ´ ynq ,(2.27b)

dnz :“ un´1 ´ un ` βA pxn´1 ´ xnq ,(2.27c)

dnu :“ Axn ´ zn ` 2C0A
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

,(2.27d)

dnx1 :“ ´2σC0B
T
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

´ 2C1 pxn ´ xn´1q ,(2.27e)

dnu1 :“ ´2C0A
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

.(2.27f)

In addition, for any n ě 1 it holds

(2.28) |||Dn||| ď C5 ‖xn ´ xn´1‖` C6 ‖yn ´ yn´1‖` C7 ‖un ´ un´1‖ ,

where

C5 :“ 2
?

2 ¨ L` τ ` β ‖A‖` 4 pστ ` ‖A‖qστC0 ` 4C1,

C6 :“ L
?

2` µ,

C7 :“ 1`
1

σβ
`

ˆ

2

σ
´ 1

˙

‖A‖` 4 pστ ` ‖A‖qC0 ‖A‖ .
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Proof. Let n ě 1 be fixed. Applying the calculus rules of the limiting subdifferential we get

∇xΨ pXnq “ ∇xH pxn, ynq `A
Tun ` βA

T pAxn ´ znq ` 2C1 pxn ´ xn´1q

` 2σC0B
T
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

,
(2.29a)

ByΨ pXnq “ BG pynq `∇yH pxn, ynq ,(2.29b)

BzΨ pXnq “ BF pznq ´ un ´ β pAxn ´ znq ,(2.29c)

∇uΨ pXnq “ Axn ´ zn ` 2C0A
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

,(2.29d)

∇x1Ψ pXnq “ ´2σC0B
T
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

´ 2C1 pxn ´ xn´1q ,(2.29e)

∇u1Ψ pXnq “ ´2C0A
`

AT pun ´ un´1q ` σB pxn ´ xn´1q
˘

.(2.29f)

Then (2.27a) and (2.27d) - (2.27f) follow directly from (2.29a) and (2.29d) - (2.29f), respectively. By com-
bining (2.29b) with the optimality criterion for (2.1a)

0 P BG pynq `∇yH pxn´1, yn´1q ` µ pyn ´ yn´1q ,

we obtain (2.27b). Similarly, by combining (2.29c) with the optimality criterion for (2.1b)

0 P BF pznq ´ un´1 ´ β pAxn´1 ´ znq ,

we get (2.27c).
In the following we will derive the upper estimates for the components of the limiting subgradient. From

(2.21) it follows

‖dnx‖ ď
∥∥∇xH pxn, ynq `A

Tun
∥∥` β ‖A‖ ‖Axn ´ zn‖` 2

`

C1 ` σ
2τ2C0

˘

‖xn ´ xn´1‖
` 2στC0 ‖A‖ ‖un ´ un´1‖

ď

´

L
?

2` τ ` 2C1 ` 2σ2τ2C0

¯

‖xn ´ xn´1‖`
ˆ

2

σ
´ 1` 2στC0

˙

‖A‖ ‖un ´ un´1‖ .

In addition, we have∥∥dny∥∥ ď L
?

2 ‖xn ´ xn´1‖`
´

L
?

2` µ
¯

‖yn ´ yn´1‖ ,

‖dnz ‖ ď β ‖A‖ ‖xn ´ xn´1‖` ‖un ´ un´1‖ ,

‖dnu‖ ď 2στC0 ‖A‖ ‖xn ´ xn´1‖`
ˆ

1

σβ
` 2C0 ‖A‖2

˙

‖un ´ un´1‖ ,

‖dnx1‖ ď 2
`

σ2τ2C0 ` C1

˘

‖xn ´ xn´1‖` 2στC0 ‖A‖ ‖un ´ un´1‖ ,

‖dnu1‖ ď 2στC0 ‖A‖ ‖xn ´ xn´1‖` 2C0 ‖A‖2 ‖un ´ un´1‖ .

The inequality (2.28) follows by combining the above relations with (1.3).

We denote by Ω :“ Ω
`

tXnuně1

˘

the set of cluster points of the sequence tXnuně1 Ď R, which is
nonempty thanks to the boundedness of tXnuně1. The distance function of the set Ω is defined for any
X P R by dist pX,Ωq :“ inf t|||X´Y||| : Y P Ωu. The main result of this section follows.

Theorem 2.14. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by
Algorithm 2.1. The following statements are true:

1. if tpxnk , ynk , znk , unkqukě0 is a subsequence of tpxn, yn, zn, unquně0 that converges to px˚, y˚, z˚, u˚q
as k Ñ `8, then

lim
kÑ`8

Ψnk “ Ψ px˚, y˚, z˚, u˚, x˚, u˚q ;

2. it holds

Ω Ď crit pΨq

Ď tX˚ P R : ´ATu˚ “ ∇xH px˚, y˚q , 0 P BG py˚q `∇yH px˚, y˚q , u˚ P BF pz˚q , z˚ “ Ax˚u,

(2.30)
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where X˚ :“ px˚, y˚, z˚, u˚, x˚, u˚q;
3. it holds lim

nÑ`8
dist pXn,Ωq “ 0;

4. the set Ω is nonempty, connected and compact;
5. the function Ψ takes on Ω the value Ψ˚ “ lim

nÑ`8
Ψn “ lim

nÑ`8
tF pznq `G pynq `H pxn, ynqu.

Proof. Let px˚, y˚, z˚, u˚q P Rm ˆ Rq ˆ Rp ˆ Rp be such that the subsequence

tXnk :“ pxnk , ynk , znk , unk , xnk´1, unk´1qukě1

of tXnuně1 converges to X˚ :“ px˚, y˚, z˚, u˚, x˚, u˚q.
(i) From (2.1a) and (2.1b) we have for any k ě 1

G pynkq ` x∇yH pxnk´1, ynk´1q , ynk ´ ynk´1y `
µ

2
‖ynk ´ ynk´1‖2

ď G py˚q ` x∇yH pxnk´1, ynk´1q , y˚ ´ ynk´1y `
µ

2
‖y˚ ´ ynk´1‖2

and

F pznkq ` xunk´1, Axnk´1 ´ znky `
β

2
‖Axnk´1 ´ znk‖

2

ď F pz˚q ` xunk´1, Axnk´1 ´ z˚y `
β

2

∥∥Axnk´1
´ z˚

∥∥2 ,
respectively. From (2.1d) and Theorem 2.8 follows Ax˚ “ z˚. Taking the limit superior as k Ñ `8 on both
sides of the above inequalities, we get

lim sup
kÑ`8

F pznkq ď F pz˚q and lim sup
kÑ`8

G pynkq ď G py˚q

which, combined with the lower semicontinuity of F and G, lead to

lim
kÑ`8

F pznkq “ F pz˚q and lim
kÑ`8

G pynkq “ G py˚q .

The desired statement follows thanks to the continuity of H.
(ii) For the sequence tDnuně0 defined in (2.26) - (2.27), we have that Dnk P BΨ pXnkq for any k ě 1 and
Dnk Ñ 0 as k Ñ `8, while Xnk Ñ X˚ and Ψnk Ñ ΨpX˚q as k Ñ `8. The closedness criterion of the
limiting subdifferential guarantees that 0 P BΨpX˚q or, in other words, X˚ P crit pΨq.

Choosing now an element X˚ P crit pΨq, it holds

$

’

’

’

&

’

’

’

%

0 “ ∇xH px˚, y˚q `A
Tu˚ ` βA

T pAx˚ ´ z˚q ,

0 P BG py˚q `∇yH px˚, y˚q ,

0 P BF pz˚q ´ u˚ ´ β pAx˚ ´ z˚q ,

0 “ Ax˚ ´ z˚,

which is further equivalent to (2.30).
(iii)-(iv) The proof follows in the lines of the proof of Theorem 5 (ii)-(iii) in [12], also by taking into consider-
ation [12, Remark 5], according to which the properties in (iii) and (iv) are generic for sequences satisfying
Xn ´Xn´1 Ñ 0 as nÑ `8, which is indeed the case due to (2.18).

(v) Due to (2.18) and the fact that tununě0 is bounded, the sequences tF pznq `G pynq `H pxn, ynquně0 and
tΨnuně0 have the same limit

Ψ˚ “ lim
nÑ`8

Ψn “ lim
nÑ`8

tF pznq `G pynq `H pxn, ynqu .

The conclusion follows by taking into consideration the first two statements of this theorem.
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Remark 2.15. An element px˚, y˚, z˚, u˚q fulfilling (2.30) is a so-called KKT point of the optimization
problem (1.1). Such a KKT point obviously fulfils

(2.31) 0 P AT BF pAx˚q `∇xH px˚, y˚q , 0 P BG py˚q `∇yH px˚, y˚q .

If A is injective, then this system of inclusions is further equivalent to

0 P B pF ˝Aq px˚q `∇xH px˚, y˚q “ Bx pF ˝A`Hq ,

0 P BG py˚q `∇yH px˚, y˚q “ By pG`Hq ,(2.32)

in other words, px˚, y˚q is a critical point of the optimization problem (1.1). On the other hand, if the
functions F,G and H are convex, then, even without asking A to be injective, (2.31) and (2.32) are equivalent,
which means that px˚, y˚q is a global minimum of the optimization problem (1.1).

3. Global convergence and rates. In this section we will prove global convergence for the sequence
tpxn, yn, zn, unquně0 generated by Algorithm 2.1 in the context of the Kurdyka- Lojasiewicz property and
provide convergence rates for it in the context of the  Lojasiewicz property.

3.1. Global convergence under Kurdyka- Lojasiewicz assumptions. The origins of this notion
go back to the pioneering work of Kurdyka who introduced in [19] a general form of the  Lojasiewicz inequality
[20]. An extension to the nonsmooth setting has been proposed and studied in [9, 10, 11].

Definition 3.1. Let η P p0,`8s. We denote by Φη the set of all concave and continuous functions
ϕ : r0, ηq Ñ r0,`8q which satisfy the following conditions:

1. ϕ p0q “ 0;
2. ϕ is C1 on p0, ηq and continuous at 0;
3. for any s P p0, ηq : ϕ1 psq ą 0.

Definition 3.2. Let Ψ: Rd Ñ RY t`8u be proper and lower semicontinuous.
1. The function Ψ is said to have the Kurdyka- Lojasiewicz (K L) property at a point pv P domBΨ :“

 

v P Rd : BΨ pvq ‰ H
(

, if there exists η P p0,`8s, a neighborhood V of pv and a function ϕ P Φη
such that for any

v P V X
 

v P Rd : Ψ ppvq ă Ψ pvq ă Ψ ppvq ` η
(

the following inequality holds

ϕ1 pΨ pvq ´Ψ ppvqq ¨ dist p0, BΨ pvqq ě 1.

2. If Ψ satisfies the K L property at each point of domBΨ, then Ψ is called K L function.

The functions ϕ belonging to the set Φη for η P p0,`8s are called desingularization functions. The K L
property reveals the possibility to reparametrize the values of Ψ in order to avoid flatness around the critical
points. To the class of K L functions belong semialgebraic, real subanalytic, uniformly convex functions and
convex functions satisfying a growth condition. We refer to [1, 2, 3, 9, 10, 11, 12] for more properties of K L
functions and illustrating examples.

The following result, the proof of which can be found in [12, Lemma 6], will play an essential role in our
convergence analysis.

Lemma 3.3. (Uniformized K L property) Let Ω be a compact set and Ψ: Rd Ñ RYt`8u be a proper
and lower semicontinuous function. Assume that Ψ is constant on Ω and satisfies the K L property at each
point of Ω. Then there exist ε ą 0, η ą 0 and ϕ P Φη such that for any pv P Ω and every element u in the
intersection

 

v P Rd : dist pv,Ωq ă ε
(

X
 

v P Rd : Ψ ppvq ă Ψ pvq ă Ψ ppvq ` η
(

it holds

ϕ1 pΨ pvq ´Ψ ppvqq ¨ dist p0, BΨ pvqq ě 1.
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From now on we will use the following notations

C8 :“
1

min tC2, C3, C4u
, C9 :“ max tC5, C6, C7u and En :“ Ψn ´Ψ˚ @n ě 1,

where Ψ˚ “ lim
nÑ`8

Ψn.

The next result shows that if Ψ is a K L function, then the sequence tpxn, yn, zn, unquně0 converges to
a KKT point of the optimization problem (1.1). This hypothesis is fulfilled if, for instance, F,G and H are
semi-algebraic functions.

Theorem 3.4. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by
Algorithm 2.1. If Ψ is a K L function, then the following statements are true:

1. the sequence tpxn, yn, zn, unquně0 has finite length, namely,
(3.1)

ÿ

ně0

‖xn`1 ´ xn‖ ă `8,
ÿ

ně0

‖yn`1 ´ yn‖ ă `8,
ÿ

ně0

‖zn`1 ´ zn‖ ă `8,
ÿ

ně0

‖un`1 ´ un‖ ă `8;

2. the sequencetpxn, yn, zn, unquně0 converges to a KKT point of the optimization problem (1.1).

Proof. Let be X˚ P Ω, thus Ψ pX˚q “ Ψ˚. Recall that tEnuně1 is monotonically decreasing and converges
to 0 as nÑ `8. We consider two cases.

Case 1. Assume that there exists an integer n1 ě 1 such that En1 “ 0 or, equivalently, Ψn1 “ Ψ˚. Due to the
monotonicity of tEnuně1, it follows that En “ 0 or, equivalently, Ψn “ Ψ˚ for any n ě n1. The inequality
(2.25) yields for any n ě n1 ` 1

xn`1 ´ xn “ 0, yn`1 ´ yn “ 0 and un`1 ´ un “ 0.

The inequality (2.19) gives us further zn`1 ´ zn “ 0 for any n ě n1 ` 2. This proves (3.1).
Case 2. Consider now the case when En ą 0 or, equivalently, Ψn ą Ψ˚ for any n ě 1. According to Lemma
3.3, there exist ε ą 0, η ą 0 and a desingularization function ϕ such that for any element X in the intersection

(3.2) tZ P R : dist pZ,Ωq ă εu X tZ P R : Ψ˚ ă Ψ pZq ă Ψ˚ ` ηu

it holds

ϕ1 pΨ pXq ´Ψ˚q ¨ dist p0, BΨ pXqq ě 1.

Let be n1 ě 1 such that for any n ě n1

Ψ˚ ă Ψn ă Ψ˚ ` η.

Since lim
nÑ`8

dist pXn,Ωq “ 0 (see Lemma 2.14 3), there exists n2 ě 1 such that for any n ě n2

dist pXn,Ωq ă ε.

Consequently, Xn “ pxn, yn, zn, un, xn´1, un´1q belongs to the intersection in (3.2) for any n ě n0 :“
max tn1, n2u, which further implies

(3.3) ϕ1 pΨn ´Ψ˚q ¨ dist p0, BΨ pXnqq “ ϕ1 pEnq ¨ dist p0, BΨ pXnqq ě 1.

Define for two arbitrary nonnegative integers i and j

∆i,j :“ ϕ pΨi ´Ψ˚q ´ ϕ pΨj ´Ψ˚q “ ϕ pEiq ´ ϕ pEjq .

The monotonicity of the sequence tΨnuně0 and of the function ϕ implies that ∆i,j ě 0 for any 1 ď i ď j.
In addition, for any N ě n0 ě 1 it holds

N
ÿ

n“n0

∆n,n`1 “ ∆n0,N`1 “ ϕ pEn0
q ´ ϕ pEN`1q ď ϕ pEn0

q ,
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from which we get
ÿ

ně1

∆n,n`1 ă `8.

By combining Lemma 2.5 with the concavity of ϕ we obtain for any n ě 1

∆n,n`1 “ ϕ pEnq ´ ϕ pEn`1q ě ϕ1 pEnq pEn ´ En`1q “ ϕ1 pEnq pΨn ´Ψn`1q

ě min tC2, C3, C4uϕ
1 pEnq

´

‖xn`1 ´ xn‖2 ` ‖yn`1 ´ yn‖2 ` ‖un`1 ´ un‖2
¯

.

Thus, (3.3) implies for any n ě n0

‖xn`1 ´ xn‖2 ` ‖yn`1 ´ yn‖2 ` ‖un`1 ´ un‖2

ď dist p0, BΨ pXnqq ¨ ϕ
1 pEnq

´

‖xn`1 ´ xn‖2 ` ‖yn`1 ´ yn‖2 ` ‖un`1 ´ un‖2
¯

ď C8 ¨ dist p0, BΨ pXnqq ¨∆n,n`1.

By the Cauchy-Schwarz inequality, the arithmetic mean-geometric mean inequality and Lemma 2.13, we
have that for any n ě n0 and every α ą 0

‖xn`1 ´ xn‖` ‖yn`1 ´ yn‖` ‖un`1 ´ un‖

ď
?

3 ¨

b

‖xn`1 ´ xn‖2 ` ‖yn`1 ´ yn‖2 ` ‖un`1 ´ un‖2

ď
a

3C8 ¨

b

dist p0, BΨ pXnqq ¨∆n,n`1

ď α ¨ dist p0, BΨ pXnqq `
3C8

4α
∆n,n`1

ď αC9 p‖xn ´ xn´1‖` ‖yn ´ yn´1‖` ‖un ´ un´1‖q `
3C8

4α
∆n,n`1.(3.4)

If we denote for any n ě 0

(3.5) an :“ ‖xn ´ xn´1‖` ‖yn ´ yn´1‖` ‖un ´ un´1‖ and bn :“
3C8

4α
∆n,n`1,

then the above inequality is nothing else than (1.6) with

χ0 :“ αC9 and χ1 :“ 0.

Since
ÿ

ně1

bn ă `8, by choosing α ă 1{C9, we can apply Lemma 1.3 to conclude that

ÿ

ně0

´

‖xn`1 ´ xn‖` ‖yn`1 ´ yn‖` ‖un`1 ´ un‖
¯

ă `8.

The proof of (3.1) is completed by taking into account once again (2.19).
From (i) it follows that the sequence tpxn, yn, zn, unquně0 is Cauchy, thus it converges to an element

px˚, y˚, z˚, u˚q which is, according to Lemmas 2.14, a KKT point of the optimization problem (1.1).

3.2. Convergence rates. As follows we derive convergence rates for the sequence tpxn, yn, zn, unquně0

generated by Algorithm 2.1 and for tΨnuně0, provided that the regularized augmented Lagrangian Ψ satisfies
the  Lojasiewicz property. The following definition is from [1] (see also [20]).

Definition 3.5. Let Ψ: Rd Ñ R Y t`8u be proper and lower semicontinuous. Then Ψ satisfies the
 Lojasiewicz property, if for any critical point pv of Ψ there exists CL ą 0, θ P r0, 1q and ε ą 0 such that

|Ψ pvq ´Ψ ppvq|θ ď CL ¨ dist p0, BΨpvqq @v P Ball ppv, εq ,

where Ball ppv, εq denotes the open ball with center pv and radius ε.

If Assumption 2.11 is fulfilled and tpxn, yn, zn, unquně0 is the sequence generated by Algorithm 2.1, then,
according to Theorem 2.14, the set of cluster points Ω is nonempty, compact and connected and Ψ takes on
Ω the value Ψ˚; in addition, Ω Ď crit pΨq.
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According to [1, Lemma 1], if Ψ has the  Lojasiewicz property, then there exist CL ą 0, θ P r0, 1q and
ε ą 0 such that for any

X P tZ P R : dist pZ,Ωq ă εu ,

it holds

|Ψ pXq ´Ψ˚|θ ď CL ¨ dist p0, BΨ pXqq .

Obviously, Ψ is a K L function with desingularization function

ϕ : r0,`8q Ñ r0,`8q, ϕ psq :“
1

1´ θ
CLs

1´θ,

which, according to Theorem 3.4, means that Ω contains a single element X˚, which is the limit of tXnuně1

as nÑ `8. In other words, if Ψ has the  Lojasiewicz property, then there exist CL ą 0, θ P r0, 1q and ε ą 0
such that for any X P Ball pX˚, εq

(3.6) |Ψ pXq ´Ψ˚|θ ď CL ¨ dist p0, BΨ pXqq .

In this case, Ψ is said to satisfy the  Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz
exponent θ P r0, 1q.

The following lemma will provide convergence rates for a particular class of monotonically decreasing
real sequences converging to 0. Its proof can be found in [8, Lemma 15].

Lemma 3.6. Let tenuně0 be a monotonically decreasing sequence of nonnegative numbers converging 0.
Assume further that there exists natural numbers n0 ě 1 such that for any n ě n0

en´1 ´ en ě Cee
2θ
n ,

where Ce ą 0 is some constant and θ P r0, 1q. The following statements are true:
1. if θ “ 0, then tenuně0 converges in finite time;
2. if θ P p0, 1{2s, then there exist Ce,0 ą 0 and Q P r0, 1q such that for any n ě n0

0 ď en ď Ce,0Q
n;

3. if θ P p1{2, 1q, then there exists Ce,1 ą 0 such that for any n ě n0 ` 1

0 ď en ď Ce,1n
´ 1

2θ´1 .

We prove a recurrence inequality for the sequence tEnuně0.

Lemma 3.7. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by Algo-
rithm 2.1. If Ψ satisfies the  Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz exponent
θ P r0, 1q, then there exists n0 ě 1 such that the following estimate holds for any n ě n0

(3.7) En´1 ´ En ě C10E2θ
n , where C10 :“

C8

3 pCL ¨ C9q
2 .

Proof. For every n ě 2 we obtain from Lemma 2.5

En´1 ´ En “ Ψn´1 ´Ψn

ě C8

´

‖xn ´ xn´1‖2 ` ‖yn ´ yn´1‖2 ` ‖un ´ un´1‖2
¯

ě
1

3
C8 p‖xn ´ xn´1‖` ‖yn ´ yn´1‖` ‖un ´ un´1‖q2

ě C10C
2
L|||Dn|||

2
,

where Dn P BΨpXnq. Let ε ą 0 be such that (3.6) is fulfilled and choose n0 ě 1 with the property that for
any n ě n0, Xn belongs to BallpX˚, εq. Relation (3.6) implies (3.7) for any n ě n0.



A MINIMIZATION ALGORITHM FOR STRUCTURED NONCONVEX PROBLEMS 21

The following result follows by combining Lemma 3.6 with Lemma 3.7.

Theorem 3.8. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by
Algorithm 2.1. If Ψ satisfies the  Lojasiewicz property with  Lojasiewicz constant CL ą 0 and  Lojasiewicz
exponent θ P r0, 1q, then the following statements are true:

1. if θ “ 0, then tΨnuně1 converges in finite time;

2. if θ P p0, 1{2s, then there exist n0 ě 1, pC0 ą 0 and Q P r0, 1q such that for any n ě n0

0 ď Ψn ´Ψ˚ ď pC0Q
n;

3. if θ P p1{2, 1q, then there exist n0 ě 1 and pC1 ą 0 such that for any n ě n0 ` 1

0 ď Ψn ´Ψ˚ ď pC1n
´ 1

2θ´1 .

The next lemma will play an important role when transferring the convergence rates for tΨnuně0 to the
sequence of iterates tpxn, yn, zn, unquně0.

Lemma 3.9. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by Algo-
rithm 2.1. Let px˚, y˚, z˚, u˚q be the KKT point of the optimization problem (1.1) to which tpxn, yn, zn, unquně0

converges as nÑ `8. Then there exists n0 ě 1 such that the following estimates hold for any n ě n0

‖xn ´ x˚‖ ď C11 max
!

a

En, ϕ pEnq
)

, ‖yn ´ y˚‖ ď C11 max
!

a

En, ϕ pEnq
)

,

‖zn ´ z˚‖ ď C12 max
!

a

En, ϕ pEnq
)

, ‖un ´ u˚‖ ď C11 max
!

a

En, ϕ pEnq
)

,(3.8)

where

C11 :“ 2
a

3C8 ` 3C8C9 and C12 :“

ˆ

‖A‖` 2

σβ

˙

C11.

Proof. We assume that En ą 0 for any n ě 0. Otherwise, the sequence tpxn, yn, zn, unquně0 becomes
identical to px˚, y˚, z˚, u˚q beginning with a given index and the conclusion follows automatically (see the
proof of Theorem 3.4).

Let ε ą 0 be such that (3.6) is fulfilled and n0 ě 2 be such that Xn belongs to BallpX˚, εq for any
n ě n0.

We fix n ě n0 now. One can easily notice that

‖xn ´ x˚‖ ď ‖xn`1 ´ xn‖` ‖xn`1 ´ x˚‖ ď ¨ ¨ ¨ ď
ÿ

kěn

‖xk`1 ´ xk‖ .

Similarly, we derive

‖yn ´ y˚‖ ď
ÿ

kěn

‖yk`1 ´ yk‖ , ‖zn ´ z˚‖ ď
ÿ

kěn

‖zk`1 ´ zk‖ , ‖un ´ u˚‖ ď
ÿ

kěn

‖uk`1 ´ uk‖ .

On the other hand, in view of (3.5) and by taking α :“
1

2C9
the inequality (3.4) can be written as

an`1 ď
1

2
an ` bn @n ě n0.

Let us fix now an integer N ě n. Summing up the above inequality for k “ n, ..., N , we have

N
ÿ

k“n

ak`1 ď
1

2

N
ÿ

k“n

ak `
N
ÿ

k“n

bk “
1

2

N
ÿ

k“n

ak`1 ` an ´ aN`1 `

N
ÿ

k“n

bk

ď
1

2

N
ÿ

k“n

ak`1 ` an `
3C8C9

2
ϕ pEnq .
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By passing N Ñ `8, we obtain
ÿ

kěn

ak`1 “
ÿ

kěn

p‖xk`1 ´ xk‖` ‖yk`1 ´ yk‖` ‖uk`1 ´ uk‖q

ď 2 p‖xn`1 ´ xn‖` ‖yn`1 ´ yn‖` ‖un`1 ´ un‖q ` 3C8C9ϕ pEnq

ď 2
?

3 ¨

b

‖xn`1 ´ xn‖2 ` ‖yn`1 ´ yn‖2 ` ‖un`1 ´ un‖2 ` 3C8C9ϕ pEnq

ď 2
a

3C8 ¨
a

En ´ En`1 ` 3C8C9ϕ pEnq ,

which gives the desired statement.

We can now formulate convergence rates for the sequence of generated iterates.

Theorem 3.10. Let Assumption 2.11 be satisfied and tpxn, yn, zn, unquně0 be a sequence generated by
Algorithm 2.1. Suppose further that Ψ satisfies the  Lojasiewicz property with  Lojasiewicz constant CL ą 0
and  Lojasiewicz exponent θ P r0, 1q. Let px˚, y˚, z˚, u˚q be the KKT point of the optimization problem (1.1)
to which tpxn, yn, zn, unquně0 converges as nÑ `8. Then the following statements are true:

1. if θ “ 0, then the algorithm converges in finite time;
2. if θ P p0, 1{2s, then there exist n0 ě 1, pC0,1, pC0,2, pC0,3, pC0,4 ą 0 and pQ P r0, 1q such that for any
n ě n0

‖xn ´ x˚‖ ď pC0,1
pQk, ‖yn ´ y˚‖ ď pC0,2

pQk, ‖zn ´ z˚‖ ď pC0,3
pQk, ‖un ´ u˚‖ ď pC0,4

pQk;

3. if θ P p1{2, 1q, then there exist n0 ě 1 and pC1,1, pC1,2, pC1,3, pC1,4 ą 0 such that for any n ě n0 ` 1

‖xn ´ x˚‖ ď pC1,1n
´

1´θ
2θ´1 , ‖yn ´ y˚‖ ď pC1,2n

´
1´θ
2θ´1 ,

‖zn ´ z˚‖ ď pC1,3n
´

1´θ
2θ´1 , ‖un ´ u˚‖ ď pC1,4n

´
1´θ
2θ´1 .

Proof. Let

ϕ : r0,`8q Ñ r0,`8q, s ÞÑ
1

1´ θ
CLs

1´θ,

be the desingularization function.
(i) If θ “ 0, then tΨnuně1 converges in finite time. As seen in the proof of Theorem 3.4, the sequence
tpxn, yn, zn, unquně0 becomes identical to px˚, y˚, z˚, u˚q starting from a given index. In other words, the
sequence tpxn, yn, zn, unquně0 converges also in finite time and the conclusion follows.

Let be θ ‰ 1
2 and n10 ě 1 such that for any n ě n10 the inequalities (3.8) in Lemma 3.9 and

En ď
ˆ

1

1´ θ
CL

˙
2

2θ´1

hold.
(ii) If θ P p0, 1{2q, then 2θ ´ 1 ă 0 and thus for any n ě n10

1

1´ θ
CLE1´θ

n ď
a

En,

which implies that

max
!

a

En, ϕ pEnq
)

“
a

En.

If θ “ 1{2, then

ϕ pEnq “ 2CL
a

En,

thus

max
!

a

En, ϕ pEnq
)

“ max t1, 2CLu ¨
a

En @n ě 1.
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In both cases we have

max
!

a

En, ϕ pEnq
)

ď max t1, 2CLu ¨
a

En @n ě n10.

By Theorem 3.8, there exist n20 ě 1, pC0 ą 0 and Q P r0, 1q such that for pQ :“
?
Q and every n ě n20 it holds

a

En ď
b

pC0Q
n{2 “

b

pC0
pQn.

The conclusion follows from Lemma 3.9 for n0 :“ max tn10, n
2
0u.

(iii) If θ P p1{2, 1q, then 2θ ´ 1 ą 0 and thus for any n ě n10

a

En ď
1

1´ θ
CLE1´θ

n ,

which implies that

max
!

a

En, ϕ pEnq
)

“ ϕ pEnq “
1

1´ θ
CLE1´θ

n .

By Theorem 3.8, there exist n20 ě 1 and pC1 ą 0 such that for any n ě n20

1

1´ θ
CLE1´θ

n ď
1

1´ θ
CL pC1´θ

1 pn´ 2q
´

1´θ
2θ´1 .

The conclusion follows again for n0 :“ max tn10, n
2
0u from Lemma 3.9.
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