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Abstract The Alternating Minimization Algorithm has been proposed by Paul Tseng to solve convex

programming problems with two-block separable linear constraints and objectives, whereby (at least)

one of the components of the latter is assumed to be strongly convex. The fact that one of the subprob-

lems to be solved within the iteration process of this method does not usually correspond to the calcu-

lation of a proximal operator through a closed formula affects the implementability of the algorithm.

In this paper we allow in each block of the objective a further smooth convex function and propose a

proximal version of the algorithm, which is achieved by equipping the algorithm with proximal terms

induced by variable metrics. For suitable choices of the latter, the solving of the two subproblems in the
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iterative scheme can be reduced to the computation of proximal operators. We investigate the conver-

gence of the proposed algorithm in a real Hilbert space setting and illustrate its numerical performances

on two applications in image processing and machine learning.

Keywords Proximal AMA · Lagrangian · Saddle Points · Subdifferential · Convex Optimization ·

Fenchel Duality

Mathematics Subject Classification (2000) 47H05 · 65K05 · 90C25

1 Introduction

Tseng introduced in [1] the so-called Alternating Minimization Algorithm (AMA) to solve optimization

problems with two-block separable linear constraints and two nonsmooth convex objective functions,

one of these assumed to be strongly convex. The numerical scheme consists in each iteration of two

minimization subproblems, each involving one of the two objective functions, and of an update of the

dual sequence which approaches asymptotically a Lagrange multiplier of the dual problem.

The strong convexity of one of the objective functions allows to reduce the corresponding minimiza-

tion subproblem to the calculation of the proximal operator of a proper, convex and lower semicontinu-

ous function. This is for the second minimization problem in general not the case, thus, with the excep-

tion of some very particular cases, one has to use a subroutine in order to compute the corresponding

iterate. This may have a negative influence on the convergence behaviour of the algorithm and affect its

computational tractability. One possibility to avoid this, is to properly modify this subproblem with the

aim of transforming it into a proximal step, and, of course, without losing the convergence properties

of the algorithm. The papers [2] and [3] provide convincing evidences for the efficiency and versatility

of proximal point algorithms for solving nonsmooth convex optimization problems; we also refer to [4]

for a block coordinate variable metric forward-backward method.

In this paper we address in a real Hilbert space setting a more involved two-block separable opti-

mization problem, which is obtained by adding in each block of the objective a further smooth convex

function. To solve this problem we propose a so-called Proximal Alternating Minimization Algorithm

(Proximal AMA), which is obtained by inducing in each of the minimization subproblems additional

proximal terms defined by means of positively semidefinite operators. The two smooth convex func-
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tions in the objective are evaluated via gradient steps. For appropriate choices of these operators we

show that the minimization subproblems turn into proximal steps and the algorithm becomes an itera-

tive scheme formulated in the spirit of the full splitting paradigm. We show that the generated sequence

converges weakly to a saddle point of the Lagrangian associated with the optimization problem under

investigation. The numerical performances of Proximal AMA are illustrated in particular in comparison

to AMA for two applications in image processing and machine learning.

A similarity of AMA to the classical Alternating Direction Method of Multipliers (ADMM) algorithm,

introduced by Gabay and Mercier in [5], is obvious. In [6-8] (see also [9,10]) proximal versions of the

ADMM algorithm have been proposed and proved to provide a unifying framework for primal-dual

algorithms for convex optimization. Parts of the convergence analysis for the Proximal AMA are carried

out in a similar spirit to the convergence proofs in these papers.

2 Preliminaries

The convex optimization problems addressed in [1] is of the form

inf
x∈Rn ,z∈Rm

f (x) + g(z) s.t. Ax + Bz = b, (1)

where f : Rn → R := R∪ {±∞} is a proper, γ-strongly convex with γ > 0 (this means that f − γ
2 ‖ · ‖2 is

convex) and lower semicontinuous function, g : Rm → R is a proper, convex and lower semicontinuous

function, A ∈ Rr×n, B ∈ Rr×m and b ∈ Rr.

For c > 0, the augmented Lagrangian associated with problem (1), Lc : Rn ×Rm ×Rr → R reads

Lc(x, z, p) = f (x) + g(z) + 〈p, b− Ax− Bz〉+ c
2
‖Ax + Bz− b‖2.

The Lagrangian associated with problem (1) is

L : Rn ×Rm ×Rr → R, L(x, z, p) = f (x) + g(z) + 〈p, b− Ax− Bz〉.

Tseng proposed the following so-called Alternating Minimization Algorithm (AMA) for solving (1):
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Algorithm 2.1 (AMA) Choose p0 ∈ Rr and a sequence of strictly positive stepsizes (ck)k≥0. For all

k ≥ 0 set:

xk = argmin
x∈Rn

{
f (x)− 〈pk, Ax〉

}
(2)

zk ∈ argmin
z∈Rm

{
g(z)− 〈pk, Bz〉+ ck

2
‖Axk + Bz− b‖2

}
(3)

pk+1 = pk + ck(b− Axk − Bzk). (4)

The main convergence properties of this numerical algorithm are summarized in the theorem below

(see [1]).

Theorem 2.1 Let A 6= 0 and (x, z) ∈ ri(dom f )× ri(dom g) be such that the equality Ax + Bz = b holds.

Assume that the sequence of stepsizes (ck)k≥0 satisfies

ε ≤ ck ≤
2γ

‖A‖2 − ε ∀k ≥ 0,

where 0 < ε < γ
‖A‖2 . Let (xk, zk, pk)k≥0 be the sequence generated by Algorithm 2.1. Then there exist x∗ ∈ Rn

and an optimal Lagrange multiplier p∗ ∈ Rr associated with the constraint Ax + Bz = b such that

xk → x∗, Bzk → b− Ax∗, pk → p∗(k→ +∞).

If the function z 7→ g(z) + ‖Bz‖2 has bounded level sets, then (zk)k≥0 is bounded and any of its cluster points z∗

provides with (x∗, z∗) an optimal solution of (1).

It is the aim of this paper to propose a proximal variant of this algorithm, called Proximal AMA,

which overcomes its drawbacks, and to investigate its convergence properties.

In the remainder of this section we will introduce some notations, definitions and basic properties

that will be used in the sequel (see [11]). Let H and G be real Hilbert spaces with corresponding inner

products 〈·, ·〉 and associated norms ‖ · ‖ =
√
〈·, ·〉. In both spaces we denote by ⇀ the weak conver-

gence and by→ the strong convergence.

We say that a function f : H → R is proper, if its domain satisfies the assumption dom f :=

{x ∈ H : f (x) < +∞} 6= ∅ and f (x) > −∞ for all x ∈ H. Let be Γ(H) = { f : H → R :

f is proper, convex and lower semicontinuous}.

The (Fenchel) conjugate function f ∗ : H → R of a function f ∈ Γ(H) is defined as

f ∗(p) = supx∈H{〈p, x〉 − f (x)} ∀p ∈ H
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and is a proper, convex and lower semicontinuous function. It also holds f ∗∗ = f , where f ∗∗ is the

conjugate function of f ∗. The convex subdifferential of f is defined as ∂ f (x) = {u ∈ H : f (y) ≥

f (x) + 〈u, y− x〉∀y ∈ H}, if f (x) ∈ R, and as ∂ f (x) = ∅, otherwise.

The infimal convolution of two proper functions f , g : H → R is the function f�g : H → R, defined

by ( f�g)(x) = infy∈H{ f (y) + g(x− y)}.

The proximal point operator of parameter γ of f at x, where γ > 0, is defined as

Proxγ f : H → H, Proxγ f (x) = argmin
y∈H

{
γ f (y) +

1
2
‖y− x‖2

}
.

According to Moreau’s decomposition formula we have

Proxγ f (x) + γ Prox(1/γ) f ∗(γ
−1x) = x, ∀x ∈ H.

Let C ⊆ H be a convex and closed set. The strong quasi-relative interior of C is

sqri(C) = {x ∈ C : ∪λ>0λ(C− x) is a closed linear subspace ofH} .

We always have int(C) ⊆ sqri(C) and, if H is finite dimensional, then sqri(C) = ri(C), where ri(C)

denotes the interior of C relative to its affine hull.

We denote by S+(H) the set of operators from H to H which are linear, continuous, self-adjoint

and positive semidefinite. For M ∈ S+(H) we define the seminorm ‖ · ‖M : H → [0,+∞), ‖x‖M =√
〈x, Mx〉. We consider the Loewner partial ordering on S+(H), defined for M1, M2 ∈ S+(H) by

M1 < M2 ⇔ ‖x‖M1 ≥ ‖x‖M2 ∀x ∈ H.

Furthermore, we define for α > 0 the set Pα(H) := {M ∈ S+(H) : M < αId}, where Id : H →

H, Id(x) = x for all x ∈ H, denotes the identity operator onH.

Let A : H → G be a linear continuous operator. The operator A∗ : G → H, fulfilling 〈A∗y, x〉 =

〈y, Ax〉 for all x ∈ H and y ∈ G, denotes the adjoint operator of A, while ‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1}

denotes the norm of A.

3 The Proximal Alternating Minimization Algorithm

The two-block separable optimization problem we are going to investigate in this paper has the follow-

ing formulation.
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Problem 3.1 LetH, G andK be real Hilbert spaces, f ∈ Γ(H) γ-strongly convex with γ > 0, g ∈ Γ(G),

h1 : H → R a convex and Fréchet differentiable function with L1-Lipschitz continuous gradient with

L1 ≥ 0, h2 : G → R a convex and Fréchet differentiable functions with L2-Lipschitz continuous gradient

with L2 ≥ 0, A : H → K and B : G → K linear continuous operators such that A 6= 0 and b ∈ K.

Consider the following optimization problem with two-block separable objective function and linear

constraints

min
x∈H,z∈G

f (x) + h1(x) + g(z) + h2(z) s.t. Ax + Bz = b. (5)

We allow the Lipschitz constant of the gradients of the functions h1 and h2 to be zero. In this case the

functions are affine.

The Lagrangian associated with the optimization problem (5) is defined by L : H×G ×K → R,

L(x, z, p) = f (x) + h1(x) + g(z) + h2(z) + 〈p, b− Ax− Bz〉.

We say that (x∗, z∗, p∗) ∈ H× G ×K is a saddle point of the Lagrangian L, if

L(x∗, z∗, p) ≤ L(x∗, z∗, p∗) ≤ L(x, z, p∗) ∀(x, z, p) ∈ H× G ×K.

It is well-known that (x∗, z∗, p∗) is a saddle point of the Lagrangian L if and only if (x∗, z∗) is an optimal

solution of (5), p∗ is an optimal solution of its Fenchel dual problem

sup
λ∈K
{−( f ∗�h∗1)(A∗λ)− (g∗�h∗2)(B∗λ) + 〈λ, b〉}, (6)

and the optimal objective values of (5) and (6) coincide. The existence of saddle points for L is guaranteed

when (5) has an optimal solution and, for instance, the Attouch-Brézis-type condition

b ∈ sqri(A(dom f ) + B(dom g)) (7)

holds (see [12, Theorem 3.4]). In the finite dimensional setting this asks for the existence of x ∈ ri(dom f )

and z ∈ ri(dom g) satisfying Ax + Bz = b and coincides with the assumption used by Tseng in [1].

The system of optimality conditions for the primal-dual pair of optimization problems (5)-(6) reads:

A∗p∗ −∇h1(x∗) ∈ ∂ f (x∗), B∗p∗ −∇h2(z∗) ∈ ∂g(z∗) and Ax∗ + Bz∗ = b. (8)

This means that if (5) has an optimal solution (x∗, z∗) and a qualification condition, like for instance (7),

is fulfilled, then there exists an optimal solution p∗ of (6) such that (8) holds; consequently, (x∗, z∗, p∗) is
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a saddle point of the Lagrangian L. Conversely, if (x∗, z∗, p∗) is a saddle point of the Lagrangian L, thus,

(x∗, z∗, p∗) satisfies relation (8), then (x∗, z∗) is an optimal solution of (5) and p∗ is an optimal solution

of (6).

Remark 3.1 If (x∗1 , z∗1 , p∗1) and (x∗2 , z∗2 , p∗2) are two saddle points of the Lagrangian L, then x∗1 = x∗2 . This

follows easily from (8), by using the strong monotonicity of ∂ f and the monotonicity of ∂g.

In the following we formulate the Proximal Alternating Minimization Algorithm to solve (5). To this

end, we modify Tseng’s AMA by evaluating in each of the two subproblems the functions h1 and h2

via gradient steps, respectively, and by introducing proximal terms defined through two sequences of

positively semidefinite operators (Mk
1)k≥0 and (Mk

2)k≥0.

Algorithm 3.1 (Proximal AMA) Let (Mk
1)k≥0 ⊆ S+(H) and (Mk

2)k≥0 ⊆ S+(G). Choose (x0, z0, p0)∈

H× G ×K and a sequence of stepsizes (ck)k≥0 ⊆ (0,+∞). For all k ≥ 0 set:

xk+1 = argmin
x∈H

{
f (x)− 〈pk, Ax〉+ 〈x− xk,∇h1(xk)〉+ 1

2
‖x− xk‖2

Mk
1

}
(9)

zk+1 ∈ argmin
z∈G

{
g(z)− 〈pk, Bz〉+ ck

2
‖Axk+1 + Bz− b‖2 + 〈z− zk,∇h2(zk)〉+ 1

2
‖z− zk‖2

Mk
2

}
(10)

pk+1 = pk + ck(b− Axk+1 − Bzk+1). (11)

Remark 3.2 The sequence (zk)k≥0 is uniquely determined if there exists αk > 0 such that ckB∗B + Mk
2 ∈

Pαk (G) for all k ≥ 0. This actually ensures that the objective function in the subproblem (10) is strongly

convex.

Remark 3.3 Let k ≥ 0 be fixed and Mk
2 := 1

σk
Id− ckB∗B, where σk > 0 and σkck‖B‖2 ≤ 1. Then Mk

2 is

positively semidefinite and the update of zk+1 in the Proximal AMA method becomes a proximal step.

This idea has been used in the past with the same purpose for different algorithms involving proximal

steps; see, for instance, [7,8,9,13,14,15,16]. Indeed, (10) holds if and only if

0 ∈ ∂g(zk+1) + (ckB∗B + Mk
2)z

k+1 + ckB∗(Axk+1 − b)−Mk
2zk +∇h2(zk)− B∗pk

or, equivalently,

0 ∈ ∂g(zk+1) +
1
σk

zk+1 −
(

1
σk

Id−ckB∗B
)

zk +∇h2(zk) + ckB∗(Axk+1 − b)− B∗pk.
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But this is nothing else than

zk+1 = argmin
z∈G

{
g(z) +

1
2σk

∥∥∥z−
(

zk − σk∇h2(zk) + σkckB∗(b− Axk+1 − Bzk) + σkB∗pk
)∥∥∥2

}
= Proxσk g

(
zk − σk∇h2(zk) + σkckB∗(b− Axk+1 − Bzk) + σkB∗pk

)
.

The convergence of the Proximal AMA method is addressed in the next theorem.

Theorem 3.1 In the setting of Problem 3.1 let the set of the saddle points of the Lagrangian L be nonempty. We

assume that Mk
1 −

L1
2 Id ∈ S+(H), Mk

1 < Mk+1
1 , Mk

2 −
L2
2 Id ∈ S+(G), Mk

2 < Mk+1
2 for all k ≥ 0 and that

(ck)k≥0 is a monotonically decreasing sequence satisfying

ε ≤ ck ≤
2γ

‖A‖2 − ε ∀k ≥ 0, (12)

where 0 < ε < γ
‖A‖2 . If one of the following assumptions:

(i) there exists α > 0 such that Mk
2 −

L2
2 Id ∈ Pα(G) for all k ≥ 0;

(ii) there exists β > 0 such that B∗B ∈ Pβ(G);

holds true, then the sequence (xk, zk, pk)k≥0 generated by Algorithm 3.1 converges weakly to a saddle point of the

Lagrangian L.

Proof Let (x∗, z∗, p∗) be a fixed saddle point of the Lagrangian L. This means that it fulfils the system

of optimality conditions

A∗p∗ −∇h1(x∗) ∈ ∂ f (x∗) (13)

B∗p∗ −∇h2(z∗) ∈ ∂g(z∗) (14)

Ax∗ + Bz∗ = b (15)

We start by proving that

∑
k≥0
‖xk+1 − x∗‖2 < +∞, ∑

k≥0
‖Bzk+1 − Bz∗‖2 < +∞, ∑

k≥0
‖zk+1 − zk‖2

Mk
2−

L2
2 Id

< +∞

and that the sequences (zk)k≥0 and (pk)k≥0 are bounded.

Assume that L1 > 0 and L2 > 0. Let k ≥ 0 be fixed. Writing the optimality conditions for the

subproblems (9) and (10) we obtain

A∗pk −∇h1(xk) + Mk
1(xk − xk+1) ∈ ∂ f (xk+1) (16)
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and

B∗pk −∇h2(zk) + ckB∗(−Axk+1 − Bzk+1 + b) + Mk
2(z

k − zk+1) ∈ ∂g(zk+1), (17)

respectively. Combining (13) - (17) with the strong monotonicity of ∂ f and the monotonicity of ∂g it

yields

〈A∗(pk − p∗)−∇h1(xk) +∇h1(x∗) + Mk
1(xk − xk+1), xk+1 − x∗〉 ≥ γ‖xk+1 − x∗‖2

and

〈B∗(pk − p∗)−∇h2(zk) +∇h2(z∗) + ckB∗(−Axk+1 − Bzk+1 + b) + Mk
2(z

k − zk+1), zk+1 − z∗〉 ≥ 0,

which after summation lead to

〈pk − p∗, Axk+1 − Ax∗〉+ 〈pk − p∗, Bzk+1 − Bz∗〉

+〈ck(−Axk+1 − Bzk+1 + b), Bzk+1 − Bz∗〉

−〈∇h1(xk)−∇h1(x∗), xk+1 − x∗〉 − 〈∇h2(zk)−∇h2(z∗), zk+1 − z∗〉

+〈Mk
1(xk − xk+1), xk+1 − x∗〉+ 〈Mk

2(z
k − zk+1), zk+1 − z∗〉 ≥ γ‖xk+1 − x∗‖2. (18)

According to the Baillon-Haddad-Theorem (see [11, Corollary 18.16]) the gradients of h1 and h2 are 1
L1

and 1
L2

-cocoercive, respectively, thus

〈∇h1(x∗)−∇h1(xk), x∗ − xk〉 ≥ 1
L1
‖∇h1(x∗)−∇h1(xk)‖2

〈∇h2(z∗)−∇h2(zk), z∗ − zk〉 ≥ 1
L2
‖∇h2(z∗)−∇h2(zk)‖2.

On the other hand, by taking into account (11) and (15), it holds

〈pk − p∗, Axk+1 − Ax∗〉+ 〈pk − p∗, Bzk+1 − Bz∗〉

= 〈pk − p∗, Axk+1 + Bzk+1 − b〉 = 1
ck
〈pk − p∗, pk − pk+1〉

By employing the last three relations in (18), it yields

1
ck
〈pk − p∗, pk − pk+1〉+ ck〈−Axk+1 − Bzk+1 + b, Bzk+1 − Bz∗〉

+〈Mk
1(xk − xk+1), xk+1 − x∗〉+ 〈Mk

2(z
k − zk+1), zk+1 − z∗〉

+〈∇h1(x∗)−∇h1(xk), xk+1 − x∗〉+ 〈∇h1(x∗)−∇h1(xk), x∗ − xk〉

− 1
L1
‖∇h1(x∗)−∇h1(xk)‖2 + 〈∇h2(z∗)−∇h2(zk), zk+1 − z∗〉

+〈∇h2(z∗)−∇h2(zk), z∗ − zk〉 − 1
L2
‖∇h2(z∗)−∇h2(zk)‖2 ≥ γ‖xk+1 − x∗‖2,
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which, after expressing the inner products by means of norms, becomes

1
2ck

(
‖pk − p∗‖2 + ‖pk − pk+1‖2 − ‖pk+1 − p∗‖2

)
+

ck
2

(
‖Ax∗ − Axk+1‖2 − ‖b− Axk+1 − Bzk+1‖2 − ‖Ax∗ + Bzk+1 − b‖2

)
+

1
2

(
‖xk − x∗‖2

Mk
1
− ‖xk − xk+1‖2

Mk
1
− ‖xk+1 − x∗‖2

Mk
1

)
+

1
2

(
‖zk − z∗‖2

Mk
2
− ‖zk − zk+1‖2

Mk
2
− ‖zk+1 − z∗‖2

Mk
2

)
+〈∇h1(x∗)−∇h1(xk), xk+1 − xk〉 − 1

L1
‖∇h1(x∗)−∇h1(xk)‖2

+〈∇h2(z∗)−∇h2(zk), zk+1 − zk〉 − 1
L2
‖∇h2(z∗)−∇h2(zk)‖2 ≥ γ‖xk+1 − x∗‖2.

Using again (11), the inequality ‖Ax∗ − Axk+1‖2 ≤ ‖A‖2‖x∗ − xk+1‖2 and the following expressions

〈∇h1(x∗)−∇h1(xk), xk+1 − xk〉 − 1
L1
‖∇h1(x∗)−∇h1(xk)‖2

= −L1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2
+

L1

4
‖xk − xk+1‖2,

and

〈∇h2(x∗)−∇h2(zk), zk+1 − zk〉 − 1
L2
‖∇h2(z∗)−∇h2(zk)‖2

= −L2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2
+

L2

4
‖zk − zk+1‖2,

it yields

1
2
‖xk+1 − x∗‖2

Mk
1
+

1
2ck
‖pk+1 − p∗‖2 +

1
2
‖zk+1 − z∗‖2

Mk
2
≤

1
2
‖xk − x∗‖2

Mk
1
+

1
2ck
‖pk − p∗‖2 +

1
2
‖zk − z∗‖2

Mk
2
− ck

2
‖Ax∗ + Bzk+1 − b‖2

−1
2
‖zk − zk+1‖2

Mk
2
−
(

γ− ck
2
‖A‖2

)
‖xk+1 − x∗‖2 − 1

2
‖xk − xk+1‖2

Mk
1

−L1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2
+

L1

4
‖xk − xk+1‖2

−L2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2
+

L2

4
‖zk − zk+1‖2.

Finally, by using the monotonicity of (Mk
1)k≥0, (Mk

2)k≥0 and (ck)k≥0, we obtain

ck+1‖xk+1 − x∗‖2
Mk+1

1
+ ‖pk+1 − p∗‖2 + ck+1‖zk+1 − z∗‖2

Mk+1
2
≤

ck‖xk − x∗‖2
Mk

1
+ ‖pk − p∗‖2 + ck‖zk − z∗‖2

Mk
2
− Rk, (19)
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where

Rk := ck

(
2γ− ck‖A‖2

)
‖xk+1 − x∗‖2 + c2

k‖Bzk+1 − Bz∗‖2+

ck‖zk − zk+1‖2
Mk

2−
L2
2 Id

+ ck‖xk − xk+1‖2
Mk

1−
L1
2 Id

+

2ckL1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2
+

2ckL2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2
.

If L1 = 0 (and, consequently,∇h1 is constant) and L2 > 0, then, by using the same arguments, we obtain

again (19), but with

Rk := ck

(
2γ− ck‖A‖2

)
‖xk+1 − x∗‖2 + c2

k‖Bzk+1 − Bz∗‖2+

ck‖zk − zk+1‖2
Mk

2−
L2
2 Id

+ ck‖xk − xk+1‖2
Mk

1
+

2ckL2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2
.

If L2 = 0 (and, consequently,∇h2 is constant) and L2 > 0, then, by using the same arguments, we obtain

again (19), but with

Rk := ck

(
2γ− ck‖A‖2

)
‖xk+1 − x∗‖2 + c2

k‖Bzk+1 − Bz∗‖2+

ck‖zk − zk+1‖2
Mk

2
+ ck‖xk − xk+1‖2

Mk
1−

L1
2 Id

+

2ckL1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2
.

Relation (19) follows even if L1 = L2 = 0, but with

Rk := ck

(
2γ− ck‖A‖2

)
‖xk+1 − x∗‖2 + c2

k‖Bzk+1 − Bz∗‖2 + ck‖zk − zk+1‖2
Mk

2
+ ck‖xk − xk+1‖2

Mk
1
.

Notice that, due to Mk
1 −

L1
2 Id ∈ S+(H) and Mk

2 −
L2
2 Id ∈ S+(G), all summands in Rk are nonnegative.

Let be N ≥ 0 fixed. By summing the inequality in (19) for k = 0, ..., N and using telescoping argu-

ments, we obtain

cN+1‖xN+1 − x∗‖2
MN+1

1
+ ‖pN+1 − p∗‖2 + cN‖zN+1 − z∗‖2

MN+1
2
≤

c0‖x0 − x∗‖2
M0

1
+ ‖p0 − p∗‖2 + c0‖z0 − z∗‖M0

2
−

N

∑
k=0

Rk.

On the other hand, from (19) we also obtain that

∃ lim
k→∞

(
ck‖xk − x∗‖2

Mk
1
+ ‖pk − p∗‖2 + ck‖zk − z∗‖2

Mk
2

)
, (20)
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thus (pk)k≥0 is bounded, and ∑k≥0 Rk < +∞.

Taking (12) into account we have ck(2γ− ck‖A‖2) ≥ ε2‖A‖2 for all k ≥ 0. Therefore

∑
k≥0
‖xk+1 − x∗‖2 < +∞, ∑

k≥0
‖Bzk+1 − Bz∗‖2 < +∞ (21)

and

∑
k≥0
‖zk+1 − zk‖2

Mk
2−

L2
2 Id

< +∞. (22)

From here we obtain

xk → x∗, Bzk → Bz∗ (k→ +∞), (23)

which, by using (11) and (15), lead to

pk − pk+1 → 0 (k→ +∞). (24)

Taking into account the monotonicity properties of (ck)k≥0 and (Mk
1)k≥0, a direct implication of (20) and

(23) is

∃ lim
k→∞

(
‖pk − p∗‖2 + ck‖zk − z∗‖2

Mk
2

)
. (25)

Suppose that assumption (i) holds true, namely, that there exists α > 0 such that Mk
2−

L2
2 Id ∈ Pα(G)

for all k ≥ 0. From (25) it follows that (zk)k≥0 is bounded, while (22) ensures that

zk+1 − zk → 0 (k→ +∞). (26)

In the following let us prove that each weak sequential cluster point of (xk, zk, pk)k≥0 (notice that

the sequence is bounded) is a saddle point of L. Let be (z̄, p̄) ∈ G × K such that the subsequence

(xkj , zkj , pkj)j≥0 converges weakly to (x∗, z̄, p̄) as j→ +∞. From (16) we have

A∗pkj −∇h1(xkj) + M
kj
1 (xkj − xkj+1) ∈ ∂ f (xkj+1) ∀j ≥ 1.

Due to the fact that xkj converges strongly to x∗ and pkj converges weakly to a p̄ as j → +∞, using the

continuity of ∇h1 and the fact that the graph of the convex subdifferential of f is sequentially closed in

the strong-weak topology (see [11, Proposition 20.33]), it follows

A∗ p̄−∇h1(x∗) ∈ ∂ f (x∗).

From (17) we have for all j ≥ 0

B∗pkj −∇h2(zkj) + ckj
B∗(−Axkj+1 − Bzkj+1 + b) + M

kj
2 (zkj − zkj+1) ∈ ∂g(zkj+1),
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which is equivalent to

B∗pkj +∇h2(zkj+1)−∇h2(zkj) + ckj
B∗(−Axkj+1 − Bzkj+1 + b)

+M
kj
2 (zkj − zkj+1) ∈ ∂(g + h2)(zkj+1)

and further to

zkj+1 ∈ ∂(g + h2)
∗
(

B∗pkj +∇h2(zkj+1)−∇h2(zkj)

+ ckj
B∗(−Axkj+1 − Bzkj+1 + b) + M

kj
2 (zkj − zkj+1)

)
. (27)

By denoting for all j ≥ 0

vj := zkj+1, uj := pkj ,

wj := ∇h2(zkj+1)−∇h2(zkj) + ckj
B∗(−Axkj+1 − Bzkj+1 + b) + M

kj
2 (zkj − zkj+1),

(27) reads

vj ∈ ∂(g + h2)
∗(B∗uj + wj) ∀j ≥ 0.

According to (26) we have vj ⇀ z̄, uj ⇀ p̄ as j→ +∞ thus, by taking into account (23), Bvj → Bz̄ = Bz∗

as j → +∞. Combining (29) with the Lipschitz continuity of ∇h2, (24), (26) and (11), one can easily see

that wj → 0 as j → +∞. Due to the monotonicity of the subdifferential we have that for all (u, v) in the

graph of ∂(g + h2)
∗ and for all j ≥ 0

〈Bvj − Bv, uj〉+ 〈vj − v, wj − u〉 ≥ 0.

We let j converge to +∞ and receive

〈z̄− v, B∗ p̄− u〉 ≥ 0 ∀(u, v) in the graph of ∂(g + h2)
∗.

The maximal monotonicity of the convex subdifferential of (g + h2)
∗ ensures that z̄ ∈ ∂(g + h2)

∗(B∗ p̄),

which is the same as B∗ p̄ ∈ ∂(g + h2)(z̄). In other words, B∗ p̄ −∇h2(z̄) ∈ ∂g(z̄). Finally, by combin-

ing (11) and (24), the equality Ax∗ + Bz̄ = b follows. In conclusion, (x∗, z, p̄) is a saddle point of the

Lagrangian L.

In the following we show that sequence (xk, zk, pk)k≥0 converges weakly. To this end we consider

two sequential cluster points (x∗, z1, p1) and (x∗, z2, p2). Consequently, there exists (ks)s≥0, ks → +∞

as s → +∞, such that the subsequence (xks , zks , pks)s≥0 converges weakly to (x∗, z1, p1) as s → +∞.
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Furthermore there exists (kt)t≥0, kt → +∞ as t → +∞, such that that a subsequence (xkt , zkt , pkt)t≥0

converges weakly to (x∗, z2, p2) as t → +∞. As seen before, (x∗, z1, p1) and (x∗, z2, p2) are both saddle

points of the Lagrangian L.

From (25), which is fulfilled for every saddle point of the Lagrangian L, we obtain

∃ lim
k→+∞

(‖pk − p1‖2 − ‖pk − p2‖2 + ck‖zk − z1‖2
Mk

2
− ck‖zk − z2‖2

Mk
2
) := T. (28)

For all k ≥ 0 we have

‖pk − p1‖2 − ‖pk − p2‖2 + ck‖zk − z1‖2
Mk

2
− ck‖zk − z2‖2

Mk
2
=

‖p2 − p1‖2 + 2〈pk − p2, p2 − p1〉+ ck‖z2 − z1‖2
Mk

2
+ 2ck〈zk − z2, z2 − z1〉Mk

2
.

Since Mk
2 ≥

(
α + L2

2

)
Id for all k ≥ 0 and (Mk

2)k≥0 is a nonincreasing sequence of symmetric operators

in the sense of the Loewner partial ordering, there exists a symmetric operator M ≥
(

α + L2
2

)
Id such

that (Mk
2)k≥0 converges pointwise to M in the strong topology as k → +∞ (see [13, Lemma 2.3]). Fur-

thermore, let c := limk→+∞ ck > 0. Taking the limits in (28) along the subsequences (ks)s≥0 and (kt)t≥0,

it yields

T = −‖p2 − p1‖2 − c‖z2 − z1‖2
M = ‖p2 − p1‖2 + c‖z2 − z1‖2

M,

thus

‖p2 − p1‖2 + c‖z2 − z1‖2
M = 0.

It follows that p1 = p2 and z1 = z2, thus (xk, zk, pk)k≥0 converges weakly to a saddle point of the

Lagrangian L.

Assume now that condition (ii) holds, namely, that there exists β > 0 such that B∗B ∈ Pβ(H). Then

β‖z1 − z2‖2 ≤ ‖Bz1 − Bz2‖2 for all z1, z2 ∈ G, which means that, if (x∗1 , z∗1 , p∗1) and (x∗2 , z∗2 , p∗2) are two

saddle points of the Lagrangian L, then x∗1 = x∗2 and z∗1 = z∗2 .

For the saddle point (x∗, z∗, p∗) of the Lagrangian L we fixed at the beginning of the proof and the

generated sequence (xk, zk, pk)k≥0 we receive because of (23) that

xk → x∗, zk → z∗, pk − pk+1 → 0 (k→ +∞). (29)

Moreover,

∃ lim
k→∞
‖pk − p∗‖2.
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The remainder of the proof follows in analogy to the one given under assumption (i). ut

If h1 = 0 and h2 = 0, and Mk
1 = 0 and Mk

2 = 0 for all k ≥ 0, then the Proximal AMA method becomes

the AMA method as it has been proposed by Tseng in [1]. According to Theorem 3.1 (for L1 = L2 = 0),

the generated sequence converges weakly to a saddle point of the Lagrangian, if there exists β > 0

such that B∗B ∈ Pβ(G). In finite dimensional spaces this condition reduces to the assumption that B is

injective.

4 Numerical Experiments

In this section we compare the numerical performances of AMA and Proximal AMA on two applications

in image processing and machine learning. The numerical experiments were performed on a computer

with an Intel Core i5-3470 CPU and 8 GB DDR3 RAM.

4.1 Image Denoising and Deblurring

We addressed an image denoising and deblurring problem formulated as a nonsmooth convex opti-

mization problem (see [14-16])

inf
x∈Rn

{
1
2
‖Ax− b‖2 + λTV(x)

}
, (30)

where A ∈ Rn×n represents a blur operator, b ∈ Rn is a given blurred and noisy image, λ > 0 is a

regularization parameter and TV : Rn → R is a discrete total variation functional. The vector x ∈ Rn is

the vectorized image X ∈ RM×N , where n = MN and xi,j := Xi,j stands for the normalized value of the

pixel in the i-th row and the j-th column, for 1 ≤ i ≤ M, 1 ≤ j ≤ N.

Two choices have been considered for the discrete total variation, namely, the isotropic total variation

TViso : Rn → R,

TViso(x) =
M−1

∑
i=1

N−1

∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1

∑
i=1
|xi+1,N − xi,j|+

N−1

∑
j=1
|xM,j+1 − xM,j|,

and the anisotropic total variation TVaniso : Rn → R,

TVaniso(x) =
M−1

∑
i=1

N−1

∑
j=1
|xi+1,j − xi,j|+ |xi,j+1 − xi,j|

+
M−1

∑
i=1
|xi+1,N − xi,j|+

N−1

∑
j=1
|xM,j+1 − xM,j|.
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Consider the linear operator L : Rn → Rn ×Rn, xi,j 7→
(

L1xi,j, L2xi,j
)
, where

L1xi,j =


xi+1,j − xi,j, if i < M

0, if i = M

and L2xi,j =


xi,j+1 − xi,j, if j < N

0, if j = N

One can easily see that ‖L‖2 ≤ 8. The optimization problem (30) can be written as

inf
x∈Rn

{ f (Ax) + g(Lx)} , (31)

where f : Rn → R, f (x) = 1
2‖x− b‖2, and g : Rn ×Rn → R is defined by g(y, z) = λ‖(y, z)‖1 for the

anisotropic total variation, and by g(y, z) = λ‖(y, z)‖× := λ ∑M
i=1 ∑N

j=1

√
y2

i,j + z2
i,j for the isotropic total

variation.

We solvde the Fenchel dual problem of (31) by AMA and Proximal AMA and determined in this

way an optimal solution of the primal problem, too. The reason for this strategy was that the Fenchel

dual problem of (31) is a convex optimization problem with two-block separable linear constraints and

objective function.

Indeed, the Fenchel dual problem of (31) reads (see [11,12])

inf
p∈Rn ,q∈Rn×Rn

{ f ∗(p) + g∗(q)} , s.t. A∗p + L∗q = 0. (32)

Since f and g have full domains, strong duality for (31)-(32) holds.

As f ∗(p) = 1
2‖p‖2 + 〈p, b〉 for all p ∈ Rn, f ∗ is 1-strongly convex. We choosed Mk

1 = 0 and Mk
2 =

1
σk

I− ckL∗L (see Remark 3.3) and obtained for Proximal AMA the iterative scheme which reads for every

k ≥ 0 :

pk+1 = Axk − b

qk+1 = Proxσk g∗
(

qk + σkckL(−A∗pk+1 − L∗qk) + σkL(xk)
)

xk+1 = xk + ck(−A∗pk+1 − L∗qk+1).

In the case of the anisotropic total variation, the conjugate of g is the indicator function of the

set [−λ, λ]n × [−λ, λ]n, thus Proxσk g∗ is the projection operator P[−λ,λ]n×[−λ,λ]n on the set [−λ, λ]n ×
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[−λ, λ]n. The iterative scheme reads for all k ≥ 0:

pk+1 = Axk − b

(qk+1
1 , qk+1

2 ) = P[−λ,λ]n×[−λ,λ]n
(
(qk

1, qk
2) + ckσk(−LA∗pk+1 − LL∗(qk

1, qk
2)) + σkLxk

)
xk+1 = xk + ck

(
−A∗pk+1 − L∗(qk+1

1 , qk+1
2 )

)
.

In the case of the isotropic total variation, the conjugate of g is the indicator function of the set S :={
(v, w) ∈ Rn ×Rn : max1≤i≤n

√
v2

i + w2
i ≤ λ

}
, thus Proxσk g∗ is the projection operator PS : Rn ×Rn →

S on S, defined as

(vi, wi) 7→ λ
(vi, wi)

max
{

λ,
√

v2
i + w2

i

} , i = 1, ..., n.

The iterative scheme reads for all k ≥ 0:

pk+1 = Axk − b

(qk+1
1 , qk+1

2 ) = PS

(
(qk

1, qk
2) + ckσk(−LA∗pk+1 − LL∗(qk

1, qk
2)) + σkLxk

)
xk+1 = xk + ck

(
−A∗pk+1 − L∗(qk+1

1 , qk+1
2 )

)
.

(a) Original image ”office 4” (b) Blurred and noisy image (c) Reconstructed image

Fig. 1: The original image, the blurred and noisy image and the reconstructed image after 50 seconds cpu time.

We compared the Proximal AMA method with Tseng’s AMA method. While in Proximal AMA a

closed formula is available for the computation of (qk+1
1 , qk+1

2 )k≥0, in AMA we solved the resulting op-

timization subproblem

(qk+1
1 , qk+1

2 ) = argmin
q1,q2

{
g∗(q1, q2)− 〈xk+1, L∗(q1, q2)〉+

1
2

ck‖A∗pk+1 + L∗(q1, q2)‖2
}

in every iteration k ≥ 0 by making some steps of the FISTA method [2].
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Fig. 2: The objective function values and the ISNR values for the anisotropic TV and λ = 5 · 10−5.

Fig. 3: The objective function values and the ISNR values for the anisotropic TV and λ = 10−5.

Fig. 4: The objective function values and the ISNR values for the isotropic TV and λ = 5 · 10−5.

We used in our experiments a Gaussian blur of size 9× 9 and standard deviation 4, which led to an

operator A with ‖A‖2 = 1 and A∗ = A. Furthermore, we added Gaussian white noise with standard

deviation 10−3. We used for both algorithms a constant sequence of stepsizes ck = 2− 10−7 for all k ≥ 0.

One can notice that (ck)k≥0 fulfills (12). For Proximal AMA we considered σk = 1
8.00001·ck

for all k ≥ 0,
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Fig. 5: The objective function values and the ISNR values for the isotropic TV and λ = 10−4.

which ensured that every matrix Mk
2 = 1

σk
I− ckL∗L is positively definite for all k ≥ 0. This is actually

the case, if σkck‖L‖2 < 1 for all k ≥ 0. In other words, assumption (i) in Theorem 3.1 was verified.

In the Figures 2 - 5 we show how Proximal AMA and AMA perform when reconstructing the blurred

and noisy colored MATLAB test image ”office 4” of 600× 903 pixels for different choices for the regu-

larization parameter λ and by considering both the anisotropic and isotropic total variation as regular-

ization functionals. In all considered instances that Proximal AMA outperformed AMA from the point

of view of both the convergence behaviour of the sequence of the function values and of the sequence

of ISNR (Improvement in Signal-to-Noise Ratio) values. An explanation could be that the number of

iterations Proximal AMA makes in a certain amount of time is more than double the number of outer

iterations performed by AMA.

4.2 Kernel Based Machine Learning

In this subsection we will describe the numerical experiments we carried out in the context of classi-

fying images via support vector machines.

The given data set consisting of 5570 training images and 1850 test images of size 28× 28 was taken

from http://www.cs.nyu.edu/ roweis/data.html. The problem we considered was to determine a deci-

sion function based on a pool of handwritten digits showing either the number five or the number six,

labeled by +1 and −1, respectively (see Figure 6). To evaluate the quality of the decision function we

computed the percentage of misclassified images of the test data set.

In order to describe the approach we used, we denote by

Z = {(X1, Y1), . . . , (Xn, Yn)} ⊆ Rd × {+1,−1},

http://www.cs.nyu.edu/~roweis/data.html
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Fig. 6: A sample of images belonging to the classes +1 and −1, respectively.

the given training data set. The decision functional f was assumed to be an element of the Reproduc-

ing Kernel Hilbert Space (RHKS) Hκ , induced by the symmetric and finitely positive definite Gaussian

kernel function

κ : Rd ×Rd → R, κ(x, y) = exp

(
−‖x− y‖2

2σ2

)
.

By K ∈ Rn×n we denoted the Gram matrix with respect to the training data set Z , namely, the

symmetric and positive definite matrix with entries Kij = κ(Xi, Xj) for i, j = 1, . . . , n. To penalize the

deviation between the predicted value f(x) and the true value y ∈ {+1,−1} we used the hinge loss

functional (x, y) 7→ max{1− xy, 0}.

According to the Representer Theorem, the decision function f can be expressed as a kernel expan-

sion in terms of the training data, in other words f(·) = ∑n
i=1 xiκ(·, Xi), where x = (x1, . . . , xn) ∈ Rn is

the optimal solution of the optimization problem

min
x∈Rn

{
1
2

xTKx + C
n

∑
i=1

max{1− (Kx)iYi, 0}
}

. (33)

Here, C > 0 denotes the regularization parameter controlling the tradeoff between the loss function

and the regularization term. Hence, in order to determine the decision function we solved the convex

optimization problem (33), which can be written as

min
x∈Rn

{ f (x) + g(Kx)}

or, equivalently,

min
x∈Rn ,z∈Rn

{ f (x) + g(z)} , s.t. Kx− z = 0

where f : Rn → R, f (x) = 1
2 xTKx, and g : Rn → R is defined by g(z) = C ∑n

i=1 max{1− ziYi, 0}.

Since the Gram matrix K is positively definite, the function f is λmin(K)-strongly convex, where

λmin(K) , denotes the minimal eigenvalue of K, and differentiable, and it holds ∇ f (x) = Kx for all
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x ∈ Rn. For an element of the form p = (p1, ..., pn) ∈ Rn, it holds

g∗(p) =


∑n

i=1 piYi, if piYi ∈ [−C, 0], i = 1, . . . , n,

+∞, otherwise.

Consequently, for every µ > 0 and p = (p1, ..., pn) ∈ Rn, it holds

Proxµg∗(x) =
(
PY1[−C,0](p1 − σY1), . . . ,PYn [−C,0](pn − σYn)

)
,

where PYi [−C,0] denotes the projection operator on the set Yi[−C, 0], i = 1, ..., n.

We implemented Proximal AMA for Mk
2 = 0 for all k ≥ 0 and different choices for the sequence

(Mk
1)k≥0. This resulted in an iterative scheme which reads for all k ≥ 0:

xk+1 = argmin
x∈Rn

{
f (x)− 〈pk, Kx〉+ 1

2
‖x− xk‖2

Mk
1

}
= (K + Mk

1)
−1(Kpk + Mk

1xk) (34)

zk+1 = Prox 1
ck

g

(
Kxk+1 − 1

ck pk
)
=

(
Kxk+1 − 1

ck pk
)
− 1

ck
Proxck g∗

(
ckKxk+1 − pk

)
(35)

pk+1 = pk + ck(−Kxk+1 + zk+1).

We would like to emphasize that the AMA method updates the sequence (zk+1)k≥0 also via (35), while

the sequence (xk+1)k≥0, as Mk
1 = 0, is updated via xk+1 = pk for all k ≥ 0. However, it turned out

that the Proximal AMA where Mk
1 = τkK, for τk > 0 and all k ≥ 0, performs better than the version

with Mk
1 = 0 for all k ≥ 0, which actually corresponds to the AMA method. In this case (34) becomes

xk+1 = 1
1+τk

(pk + τkxk) for all k ≥ 0.

We used for both algorithms a constant sequence of stepsizes given by ck = 2 · λmin(K)
‖K‖2 − 10−8 for all

k ≥ 0. The tables below show for C = 1 and different values of the kernel parameter σ that Proximal

AMA outperforms AMA in what concerns the time and the number of iterates needed to achieve a

certain value for a given fixed misclassification rate (which proved to be the best one among several

obtained by varying C and σ) and for the RMSE (Root-Mean-Square-Deviation) for the sequence of

primal iterates.
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Table 1: Performance evaluation of Proximal AMA (with τk = 10 for all k ≥ 0) and AMA for the classification problem with

C = 1 and σ = 0.2. The entries refer to the CPU times in seconds and the number of iterations.

Algorithm misclassification rate at 0.7027 % RMSE ≤ 10−3

Proximal AMA 8.18s (145) 23.44s (416)

AMA 8.65s (153) 26.64s (474)

Table 2: Performance evaluation of Proximal AMA (with τk = 102 for all k ≥ 0) and AMA for the classification problem with

C = 1 and σ = 0.25. The entries refer to the CPU times in seconds and the number of iterations.

Algorithm misclassification rate at 0.7027 % RMSE ≤ 10−3

Proximal AMA 141.78s (2448) 629.52s (10940)

AMA 147.99s (2574) 652.61s (11368)

5 Perspectives and Open Problems

In the future, it might be interesting to:

(1) carry out investigations related to the convergence rates for both the iterates and objective func-

tion values of Proximal AMA; as emphasized in [10] for the Proximal ADMM algorithm, the use of

variable metrics can have a determinant role in this context, as they may lead to dynamic stepsizes

which are favourable to an improved convergence behaviour of the algorithm (see also [17,18]);

(2) consider a slight modification of Algorithm 3.1, by replacing (11) with

pk+1 = pk + θck(b− Axk+1 − Bzk+1),

where 0 < θ <
√

5+1
2 and to investigate the convergence properties of the resulting scheme; it has

been noticed in [19] that the numerical performances of the classical ADMM algorithm for convex op-

timization problems in the presence of a relaxation parameter with 1 < θ <
√

5+1
2 outperform the ones

obtained when θ = 1;

(3) embed the investigations made in this paper in the more general framework of monotone inclu-

sion problems, as it was recently done in [10] starting from the Proximal ADMM algorithm.
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6 Conclusions

The Proximal AMA method has the advantage over the classical AMA method that, as long as the

sequence of variable metrics is chosen appropriately, it performs proximal steps when calculating new

iterates. In this way it avoids the use in every iteration of minimization subroutines. In addition, it

handles properly smooth and convex functions which might appear in the objective. The sequences

of generated iterates converge to a primal-dual solution in the same setting as for the classical AMA

method. The fact that instead of solving of minimization subproblems one has only to make proximal

steps, may lead to better numerical performances, as we show in the experiments on image processing

and support vector machines classification.
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